Advertisement

Fractal Spaces

  • Kathy D. Merrill
Chapter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

In this chapter we present a fractal space GMRA created by Dutkay and Jorgensen in 2006. These authors enlarged fractals formed by iterated function systems in Euclidean space, in order to allow translation invariance. They then built a multiresolution structure on the resulting L2 space with respect to Hausdorff measure extended to this enlarged set. We describe the Dutkay/Jorgensen construction on the spaces associated with the ordinary Cantor set and with other fractals, the use of generalized filters to build wavelets, and a version of a Fourier transform on this space due to Dutkay.

References

  1. 1.
    Baggett, L., Larsen, N., Packer, J., Raeburn, I., Ramsay, A.: Direct limits, multiresolution analyses, and wavelets. J. Funct. Anal. 258, 2714–2738 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baggett, L., Merrill, K., Packer, J., Ramsay, A.: Probability measures on solenoids corresponding to fractal wavelets. Trans. Am. Math. Soc. 364, 2723–2748 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bohnstengel, J., Kesseböhmer, M.: Wavelets for iterated function systems. J. Funct. Anal. 259, 583–601 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    D’Andrea, J.: Wavelet frames on fractal spaces of Dutkay-Jorgensen type. Ph.D. thesis, University of Colorado at Boulder (2008)Google Scholar
  5. 5.
    D’Andrea, J.: Constructing fractal wavelet frames. Num. Funct. Anal. Opt. 33, 906–927 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    D’Andrea, J., Merrill, K., Packer, J.: Fractal wavelets of Dutkay-Jorgensen type for the Sierpinski gasket space. Contemp. Math. 451, 69–88 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dutkay, D.: Low-pass filters and representations of the Baumslag-Solitar group. Trans. Amer. Math. Soc. 358, 5271–5291 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dutkay, D., Jorgensen, P.: Wavelets on fractals. Rev. Math. Iberoamericana 22, 131–180 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gopinath, R., Burrus, C.: Wavelet transforms and filter banks. In: Chui, C.K. (ed.) Wavelets, a Tutorial in Theory and Applications, pp. 603–654. Academic, San Diego (1992)zbMATHGoogle Scholar
  10. 10.
    Hutchinson, J.E.: Fractals and self similarity. Indiana Univ. Math. J. 30, 713–747 (1981)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jonnson, A.: Wavelets on fractals and Besov spaces. J. Fourier Anal. Appl. 4, 329–340 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jorgensen, P.E.T.: Ruelle operators: functions which are harmonic with respect to a transfer operator. Mem. Am. Math. Soc. 152(720), viii+60 (2001)Google Scholar
  13. 13.
    Jorgensen, P.E.T., Pedersen, S.: Dense analytic subspaces in fractal L2 spaces. J. Anal. Math. 75, 185–228 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Strichartz, R.S.: Function spaces on fractals. J. Funct. Anal. 198, 43–83 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kathy D. Merrill
    • 1
  1. 1.Department of MathematicsThe Colorado CollegeColorado SpringsUSA

Personalised recommendations