Advertisement

Analytical Solution for Long Battery Lifetime Prediction in Nonadaptive Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11024)

Abstract

Uppaal SMC is a state-of-the-art tool for modelling and statistical analysis of hybrid systems, allowing the user to directly model the expected battery consumption in battery-operated devices. The tool employs a numerical approach for solving differential equations describing the continuous evolution of a hybrid system, however, the addition of a battery model significantly slows down the simulation and decreases the precision of the analysis. Moreover, Uppaal SMC is not optimized for obtaining simulations with durations of realistic battery lifetimes. We propose an analytical approach to address the performance and precision issues of battery modelling, and a trace extrapolation technique for extending the prediction horizon of Uppaal SMC. Our approach shows a performance gain of up to 80% on two industrial wireless sensor protocol models, while improving the precision with up to 55%. As a proof of concept, we develop a tool prototype where we apply our extrapolation technique for predicting battery lifetimes and show that the expected battery lifetime for several months of device operation can be computed within a reasonable computation time.

Keywords

Longer Battery Lifetime Nonadaptive System Kinetic Battery Model (KiBaM) LMAC Protocol UPPAAL CORA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Kevin H. Jørgensen, Niels B. Christoffersen, Rasmus D. Petersen and Tim H. Gjøderum for their help with integrating our tool with VisuAAL and numerous discussions about the annotation of battery modes in Uppaal SMC models of the two wireless network protocols. We thank Neocortec for allowing us to use their MAC protocol in our experiments and Thomas Steen Halkier for discussions about the battery consumption patterns and for providing us with current consumption graphs. The work was funded by the center IDEA4CPS, the Innovation Fund Denmark center DiCyPS and ERC Advanced Grant LASSO. The last author is partially affiliated with FI MU, Brno.

References

  1. 1.
    Bisgaard, M., Gerhardt, D., Hermanns, H., Krčál, J., Nies, G., Stenger, M.: Battery-aware scheduling in low orbit: the GomX–3 case. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 559–576. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48989-6_34CrossRefGoogle Scholar
  2. 2.
    Boker, U., Henzinger, T.A., Radhakrishna, A.: Battery transition systems. In: ACM SIGPLAN Notices, vol. 49, pp. 595–606. ACM (2014)Google Scholar
  3. 3.
    Chiasserini, C.F., Rao, R.R.: Energy efficient battery management. IEEE J. Sel. Areas Commun. 19(7), 1235–1245 (2001)CrossRefGoogle Scholar
  4. 4.
    David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)CrossRefGoogle Scholar
  5. 5.
    David, A., et al.: Statistical model checking for networks of priced timed automata. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24310-3_7CrossRefGoogle Scholar
  6. 6.
    Doyle, M., Fuller, T.F., Newman, J.: Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 140(6), 1526–1533 (1993)CrossRefGoogle Scholar
  7. 7.
    Eder, K., Gallagher, J.: Energy-aware software engineering. In: ICT - Energy Concepts for Energy Efficiency and Sustainability, pp. 103–127. InTechOpen (2017)Google Scholar
  8. 8.
    Fehnker, A., van Hoesel, L., Mader, A.: Modelling and verification of the LMAC protocol for wireless sensor networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 253–272. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73210-5_14CrossRefGoogle Scholar
  9. 9.
    Gold, S.: A PSPICE macromodel for lithium-ion batteries. In: Twelfth Annual Battery Conference on Applications and Advances, pp. 215–222. IEEE (1997)Google Scholar
  10. 10.
    Haemmerlé, R., López-García, P., Liqat, U., Klemen, M., Gallagher, J.P., Hermenegildo, M.V.: A transformational approach to parametric accumulated-cost static profiling. In: Kiselyov, O., King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp. 163–180. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29604-3_11CrossRefGoogle Scholar
  11. 11.
    Heni, M., Bouallegue, A., Bouallegue, R.: Energy consumption model in ad hoc mobile network. Int. J. Comput. Netw. Commun. 4(3), 207–217 (2012)Google Scholar
  12. 12.
    Jaeger, M.G.B.: Wireless network medium access control protocol. https://www.google.com/patents/US20120120871. US Patent App. 12/945,989 (2012)
  13. 13.
    Jongerden, M., Haverkort, B., Bohnenkamp, H., Katoen, J.P.: Maximizing system lifetime by battery scheduling. In: Proceedings of 2009 IEEE/IFIP International Conference on Dependable Systems & Networks, pp. 63–72. IEEE (2009)Google Scholar
  14. 14.
    Jongerden, M.R., Haverkort, B.R.: Which battery model to use? IET Software 3(6), 445–457 (2009)CrossRefGoogle Scholar
  15. 15.
    Jongerden, M.R., Haverkort, B.R.: Battery aging, battery charging and the kinetic battery model: a first exploration. In: Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 88–103. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66335-7_6CrossRefGoogle Scholar
  16. 16.
    Jørgensen, K.H., Christoffersen, N.B., Petersen, R.D., Gjøderum, T.H.: VisuAAL - an application for visualizing realistic mesh network protocol behavior through Uppaal simulations, Master Thesis. Aalborg University, Department of Computer Science (2017)Google Scholar
  17. 17.
    Manwell, J.F., McGowan, J.G.: Lead acid battery storage model for hybrid energy systems. Solar Energy 50(5), 399–405 (1993)CrossRefGoogle Scholar
  18. 18.
    Panigrahi, D., Dey, S., Rao, R., Lahiri, K., Chiasserini, C., Raghunathan, A.: Battery life estimation of mobile embedded systems. In: Fourteenth International Conference on VLSI Design 2001, pp. 57–63. IEEE (2001)Google Scholar
  19. 19.
    Rakhmatov, D.N., Vrudhula, S.B.: An analytical high-level battery model for use in energy management of portable electronic systems. In: Proceedings of the 2001 IEEE/ACM International Conference on Computer-Aided Design, pp. 488–493. IEEE (2001)Google Scholar
  20. 20.
    Rodrigues, L.M., Montez, C., Moraes, R., Portugal, P., Vasques, F.: A temperature-dependent battery model for wireless sensor networks. Sensors 17(2), 422 (2017)Google Scholar
  21. 21.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, vol. 12. Springer, New York (2013).  https://doi.org/10.1007/978-0-387-21738-3
  22. 22.
  23. 23.
    Wognsen, E.R., Haverkort, B.R., Jongerden, M., Hansen, R.R., Larsen, K.G.: A score function for optimizing the cycle-life of battery-powered embedded systems. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 305–320. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22975-1_20CrossRefzbMATHGoogle Scholar
  24. 24.
    Xue, J., Yuan, Z., Zhang, Q.: Traffic load-aware power-saving mechanism for IEEE 802.16 E sleep mode. In: Proceedings of 4th International Conference on Wireless Communications, Networking and Mobile Computing 2008, pp. 1–4. IEEE (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Hamburg University of TechnologyHamburgGermany
  2. 2.Department of Computer ScienceAalborg UniversityAalborgDenmark

Personalised recommendations