Advertisement

New MIP model for Multiprocessor Scheduling Problem with Communication Delays

  • Abdessamad Ait El Cadi
  • Mustapha Ratli
  • Nenad Mladenović
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 141)

Abstract

In this chapter, we consider The Multiprocessor Scheduling Problem with Communication Delays. We propose a new Mixed Integer Program (MIP) formulation for this problem taking into account the precedence constraints and the communication delays—delays that depend on the network and the tasks. The new proposed formulation reduces both the number of variables and the number of constraints, when compared to the best mathematical programming formulations from the literature. We summarize the mathematical formulation in a previous work and, in the present chapter; we added extra results to show the quality of the new model. The aim of the extended tests is to assess the quality of this model from one side and from the other side to show which parameters affect the performance of our model, especially the network architecture, the communication, and the number of task impacts. The results are significant but there are still some open problems to solve.

Keywords

Multiprocessors Task scheduling Communication delay Mixed Integer Program CPLEX 

Notes

Acknowledgements

The authors would like to gratefully thank the IRT (Institut de recherche technologique) Railenium for the financial support to achieve this research. Also, the authors thank the International Chair Professor N. Mladenović, for his contribution to this work. This Chair position at the University of Valenciennes is cofunded by the region Nord-Pas-de-Calais and the IRT Railenium. This research is conducted within or partially covered by the framework of the grant num. BR05236839 “Development of information technologies and systems for stimulation of personality’s sustainable development as one of the bases of development of digital Kazakhstan”.

References

  1. 1.
    Ait El Cadi, A.: Automatisation de la parallèlisation de systémes complexes avec application à l’environnement Matlab/Simulink. MS Thesis, École Polytechnique de Montréal (2004)Google Scholar
  2. 2.
    Ait El Cadi, A., Ben Atitallah, R., Hanafi, S., Mladenović, N., Artiba, A.: New MIP model for multiprocessor scheduling problem with communication delays. Optimization Letters, 11(6), 1091–1107 (2017)Google Scholar
  3. 3.
    Ali, H.H., El-Rewini, H.: An optimal algorithm for scheduling interval ordered tasks with communication on N processor, University of Nebraska at Omaha, Mathematics and Computer Science Department, Technical Report, 91-20 (1990)Google Scholar
  4. 4.
    Baker, K.R., Trietsch, D.: Principles of Sequencing and Scheduling. Wiley, Hoboken (2009)CrossRefGoogle Scholar
  5. 5.
    Banharnsakun, A., Sirinaovakul, B., Achalakul, T.: Job Shop Scheduling with the Best-so-far ABC. Eng. Appl. Artif. Intell. 25(3), 583–593 (2012)CrossRefGoogle Scholar
  6. 6.
    Cakici, E., Mason, S.J.: Parallel machine scheduling subject to auxiliary resource constraints. Prod. Plan. Control 18, 217–225 (2007)CrossRefGoogle Scholar
  7. 7.
    Chen, W.H., Lin, C.S.: A hybrid heuristic to solve a task allocation problem. Comput. Oper. Res. 27(3), 287–303 (2000)CrossRefGoogle Scholar
  8. 8.
    Chrétienne, P., Picouleau, C.: Scheduling with communication delays: a survey. In: Chrétienne, P., Coffman, E.G., Lenstra, J.K., Liu, Z. (eds.) Scheduling Theory and Its Applications, pp. 65–90. Wiley, New York (1995)Google Scholar
  9. 9.
    Darte, A., Robert, Y., Vivien, F.: Scheduling and Automatic Parallelization. Birkhäuser, Boston (2000)CrossRefGoogle Scholar
  10. 10.
    Dauzère-Pérès, S., Sevaux, M.: Using Lagrangean relaxation to minimize the weighted number of late jobs on a single machine. Nav. Res. Logist. 50(3), 273–288 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Davidović, T., Crainic, T.G.: Benchmark-problem instances for static scheduling of task graphs with communication delays on homogeneous multiprocessor systems. Comput. Oper. Res. 33, 2155–2177 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Davidović, T., Hansen, P., Mladenović, N.: Permutation-based genetic, Tabu and variable neighborhood search heuristics for multiprocessor scheduling with communication delays. Asia Pac. J. Oper. Res. 22(3), 297–326 (2005)zbMATHGoogle Scholar
  13. 13.
    Davidović, T., Liberti, L., Maculan, N., Mladenović, N.: Towards the optimal solution of the multiprocessor scheduling problem with communication delays. In: MISTA Proceedings (2007)Google Scholar
  14. 14.
    Djordjević, G.L., Tošić, M.B.: A heuristic for scheduling task graphs with communication delays onto multiprocessors. Parallel Comput. 22(9), 1197–1214 (1996)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. WH Freeman & Co., San Francisco (1979)zbMATHGoogle Scholar
  16. 16.
    Harris, J.M.: Combinatorics and Graph Theory. Springer, New York (2000)CrossRefGoogle Scholar
  17. 17.
    Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. 207, 1–14 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hwang, R., Gen, M., Katayama, H.: A comparison of multiprocessor task scheduling algorithms with communication costs. Comput. Oper. Res. 35, 976–993 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Isaak, G.: Scheduling rooted forests with communication delays. Order 11, 309–316 (1994)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jeannot, E., Saule, E., Trystram, E.: Optimizing performance and reliability on heterogeneous parallel systems: approximation algorithms and heuristics. J. Parallel Distrib. Comput. 72, 268–280 (2012)CrossRefGoogle Scholar
  21. 21.
    Jóźwiak, L., Nedjah, N.: Modern architectures for embedded reconfigurable systems - a survey. J. Circuits Syst. Comput. 18(2), 209–254 (2009)CrossRefGoogle Scholar
  22. 22.
    Knuth, D.E.: The Art of Computer Programming, vol. 1, 3rd edn. Addison-Wesley, Boston (1997)zbMATHGoogle Scholar
  23. 23.
    Long, Q., Lin, J., Sun, Z.: Agent scheduling model for adaptive dynamic load balancing in agent-based distributed simulations. Simul. Model. Pract. Theory 19, 1021–1034 (2011)CrossRefGoogle Scholar
  24. 24.
    Luo, P., Lü, K., Shi, Z.: A revisit of fast greedy heuristics for mapping a class of independent tasks onto heterogeneous computing systems. J. Parallel Distrib. Comput. 67, 695–714 (2007)CrossRefGoogle Scholar
  25. 25.
    Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Murty, K.G.: Operations Research: Deterministic Optimization Models. Prentice-Hall, Englewood Cliffs (1994)zbMATHGoogle Scholar
  27. 27.
    Pinedo, M.: Scheduling: Theory, Algorithms, and Systems, 2nd edn. Prentice-Hall, Upper Saddle River (2002)zbMATHGoogle Scholar
  28. 28.
    Prastein, M.: Precedence-constrained scheduling with minimum time and communication. MS Thesis, University of Illinois at Urbana-Champaign (1987)Google Scholar
  29. 29.
    Rayward-Smith, V.J.: UET scheduling with unit interprocessor communication delays. Discret. Appl. Math. 18, 55–71 (1987)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sousa, J.P., Wolsey, L.A.: A time-indexed formulation of nonpreemptive single machine scheduling problems. Math. Program. 54, 353–367 (1992)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Unlu, Y., Mason, S.J.: Evaluation of mixed integer programming formulations for non-preemptive parallel machine scheduling problems. Comput. Ind. Eng. 58, 785–800 (2010)CrossRefGoogle Scholar
  32. 32.
    Urban, T.L.: Note. Optimal Balancing of U-Shaped Assembly Lines. Manag. Sci. 44(5), 738–741 (1998)CrossRefGoogle Scholar
  33. 33.
    Venugopalan, S., Sinnen, O.: Optimal linear programming solutions for multiprocessor scheduling with communication delays. In: Xiang, Y., Stojmenovic, I., Apduhan, B.O., Wang, G., Nakano, K., Zomaya, A. (eds.) Algorithms and Architectures for Parallel Processing, vol. 7439, pp. 129–138. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Abdessamad Ait El Cadi
    • 1
  • Mustapha Ratli
    • 1
  • Nenad Mladenović
    • 2
    • 3
  1. 1.Université Polytechnique Hauts-De-France (UPHF)/LAMIH CNRS UMR 8201Campus Mont-Houy, Valenciennes Cedex 9France
  2. 2.Emirates College of TechnologiesAbu DhabiUAE
  3. 3.Mathematical InstituteSASA, BelgradeSerbia

Personalised recommendations