Open Problems on Benders Decomposition Algorithm

  • Georgios K. D. Saharidis
  • Antonios Fragkogios
Part of the Springer Optimization and Its Applications book series (SOIA, volume 141)


The Benders decomposition method is based on the idea of exploiting the structure of an optimization problem so that its solution can be obtained as the solution of several smaller subproblems. We review here the fundamental method proposed by Jacobus F. Benders and present several open problems related to its application.


Benders decomposition Open problems Mixed integer programming 


  1. 1.
    Hiriart-Urruty, J.-B.: Potpouri of conjectures and open questions in nonlinear analysis and optimization. SIAM Rev. 49(2), 255–273 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Wikipedia. Retrieved from (2018)
  3. 3.
    Benders, J.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4, 238–252 (1962)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Scopus. Retrieved from (2018)
  5. 5.
    Maros, I.: Jacques F. Benders is 80. Comput. Manag. Sci. 2, 1 (2005)CrossRefGoogle Scholar
  6. 6.
    Rahmaniani, R., Crainic, T., Gendreau, M., Rei, W.: The Benders decomposition algorithm: a literature review. Eur. J. Oper. Res. 253(3), 801–817 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fragkogios, A., Saharidis, G.: Latest advances on benders decomposition. In: Encyclopedia of Information Science and Technology, Fourth Edition, pp. 5411–5421. IGI GLOBAL, Hershey, PA (2018). CrossRefGoogle Scholar
  8. 8.
    Saharidis, G.K., Minoux, M., Ierapetriou, M.G.: Accelerating Benders method using covering cut bundle generation. Int. Trans. Oper. Res. 17(2), 221–237 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Azad, N., Saharidis, G.K., Davoudpour, H., Malekly, H., Yektamaram, S.A.: Strategies for protecting supply chain networks against facility and transportation disruptions: an improved Benders decomposition approach. Ann. Oper. Res. 210, 125–163 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Conejo, A.J., Castillo, E., Minguez, R., Garcia-Bertrand, R.: Decomposition Techniques in Mathematical Programming: Engineering and Service Applications. Springer, Berlin (2006)zbMATHGoogle Scholar
  11. 11.
    Gabriel, S.A., Fuller, J.D.: A Benders decomposition method for solving stochastic complementarity problems with an application in energy. Comput. Econ. 35(4), 301–329 (2010)CrossRefGoogle Scholar
  12. 12.
    Watkins Jr., D.W., McKinney, D.C., Lasdon, L.S., Nielsen, S.S., Martin, Q.W.: A scenario-based stochastic programming model for water supplies from the highland lakes. Int. Trans. Oper. Res. 7, 211–230 (2000)CrossRefGoogle Scholar
  13. 13.
    Kagan, N., Adams, R.N.: A Benders’ decomposition approach to the multi-objective distribution planning problem. Int. J. Electr. Power Energy Syst. 15(5), 259–271 (1993)CrossRefGoogle Scholar
  14. 14.
    Khodr, H.M., Vale, Z.A., Ramos, C.: A Benders decomposition and fuzzy multicriteria approach for distribution networks remuneration considering DG. IEEE Trans. Power Syst. 24(2), 1091–1101 (2009)CrossRefGoogle Scholar
  15. 15.
    Saharidis, G., Ierapetriou, M.G.: Improving benders decomposition using maximum feasible subsystem (MFS) cut generation strategy. Comput. Chem. Eng. 34, 1237–1245 (2010)CrossRefGoogle Scholar
  16. 16.
    Magnanti, T.L., Wong, R.T.: Accelerating benders decomposition: algorithmic enhancement and model selection criteria. Oper. Res. 29(3), 464–484 (1981)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Geoffrion, A.M., Graves, G.W.: Multicommodity distribution system design by benders decomposition. Manag. Sci. 20(5), 822–844 (1974)CrossRefGoogle Scholar
  18. 18.
    Crainic, T., Hewitt, M., Maggioni, F., Rei, W.: Partial Benders decomposition strategies for two-stage stochastic integer programs. In: CIRRELT-2016-37. CIRRELT, Montreal, QC (2016)Google Scholar
  19. 19.
    Saharidis, G.K., Boile, M., Theofanis, S.: Initialization of the Benders master problem using valid inequalities applied to fixed-charge network problems. Expert Syst. Appl. 38, 6627–6636 (2011). CrossRefGoogle Scholar
  20. 20.
    Fischetti, M., Salvagnin, D., Zanette, A.: A note on the selection of Benders’ cuts. Math. Program. 124, 175–182 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fukuda, K., Liebling, T., Margot, F.: Analysis of backtrack algorithms for listing all vertices and all faces of a convex polyhedron. Comput. Geom. 8, 1–12 (1997). MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Saharidis, G.K., Ierapetriou, M.G.: Speed-up Benders decomposition using maximum density cut (MDC) generation. Ann. Oper. Res. 210, 101–123 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Georgios K. D. Saharidis
    • 1
  • Antonios Fragkogios
    • 1
  1. 1.Department of Mechanical Engineering, Polytechnic SchoolUniversity of ThessalyVolosGreece

Personalised recommendations