Advertisement

Open Research Areas in Distance Geometry

  • Leo Liberti
  • Carlile Lavor
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 141)

Abstract

Distance geometry is based on the inverse problem that asks to find the positions of points, in a Euclidean space of given dimension, that are compatible with a given set of distances. We briefly introduce the field, and discuss some open and promising research areas.

Keywords

Computational geometry Fundamental distance geometry problem Problem variants and extensions Rigidity structure Protein backbones Clifford algebra Computational complexity 

Notes

Acknowledgements

We are grateful for Ana Flavia Lima for helping to check the manuscript prior to submission. LL was partly supported by the ANR “Bip:Bip” project n. ANR-10-BINF-03-08. CL was partly supported by the Brazilian research agencies FAPESP, CNPq.

References

  1. 1.
    Aaronson, S.: Is P versus NP formally independent? Bulletin of the EATCS 81, Computational Complexity Column (2003)Google Scholar
  2. 2.
    Abbott, T.: Generalizations of Kempe’s universality theorem. Master’s thesis, MIT (2008)Google Scholar
  3. 3.
    Alexandrov, A.: Convex Polyhedra (in Russian). Gosudarstv. Izdat. Tekhn.-Theor. Lit., Moscow (1950)Google Scholar
  4. 4.
    Alfakih, A.: Universal rigidity of bar frameworks in general position: a Euclidean distance matrix approach. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry: Theory, Methods, and Applications, pp. 3–22. Springer, New York (2013)zbMATHCrossRefGoogle Scholar
  5. 5.
    Alizadeh, F.: Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5(1), 13–51 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and feasible systems of linear equations. Comput. Complex. 8, 99–126 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Alves, R., Cassioli, A., Mucherino, A., Lavor, C., Liberti, L.: Adaptive branching in iBP with Clifford algebra. In: Andrioni, A., Lavor, C., Liberti, L., Mucherino, A., Maculan, N., Rodriguez, R. (eds.) Proceedings of the workshop on Distance Geometry and Applications. Universidade Federal do Amazonas, Manaus (2013)Google Scholar
  8. 8.
    Alves, R., Lavor, C.: Geometric algebra to model uncertainties in the discretizable molecular distance geometry problem. Adv. Appl. Clifford Algebr. 27, 439–452 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Alves, R., Lavor, C., Souza, C., Souza, M.: Clifford algebra and discretizable distance geometry. Adv. Appl. Clifford Algebr. 25(4), 925–942 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Asimow, L., Roth, B.: The rigidity of graphs. Trans. Am. Math. Soc. 245, 279–289 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Asimow, L., Roth, B.: The rigidity of graphs II. J. Math. Anal. Appl. 68, 171–190 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Babai, L.: Automorphism groups, isomorphism, reconstruction. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, vol. 2, pp. 1447–1540. MIT Press, Cambridge, MA (1996)Google Scholar
  13. 13.
    Babai, L.: Graph isomorphism in quasipolynomial time. Technical Report 1512.03547v2, arXiv (2016)Google Scholar
  14. 14.
    Bahr, A., Leonard, J., Fallon, M.: Cooperative localization for autonomous underwater vehicles. Int. J. Robot. Res. 28(6), 714–728 (2009)CrossRefGoogle Scholar
  15. 15.
    Barvinok, A.: Problems of distance geometry and convex properties of quadratic maps. Discret. Comput. Geom. 13, 189–202 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Barvinok, A.: Measure concentration in optimization. Math. Program. 79, 33–53 (1997)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer, New York (2006)zbMATHGoogle Scholar
  18. 18.
    Beeker, N., Gaubert, S., Glusa, C., Liberti, L.: Is the distance geometry problem in NP? In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry: Theory, Methods, and Applications, pp. 85–94. Springer, New York (2013)zbMATHCrossRefGoogle Scholar
  19. 19.
    Benedetti, R., Risler, J.J.: Real algebraic and semi-algebraic sets. Hermann, Paris (1990)zbMATHGoogle Scholar
  20. 20.
    Berger, B., Kleinberg, J., Leighton, T.: Reconstructing a three-dimensional model with arbitrary errors. J. ACM 46(2), 212–235 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Billinge, S., Duxbury, P., Gonçalves, D., Lavor, C., Mucherino, A.: Assigned and unassigned distance geometry: applications to biological molecules and nanostructures. 4OR 14, 337–376 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Biswas, P., Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In: Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks (IPSN04), pp. 46–54. ACM, New York, NY (2004)Google Scholar
  23. 23.
    Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions, and universal machines. Bull. Am. Math. Soc. 21(1), 1–46 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Blumenthal, L.: A Modern View of Geometry. Freeman & C., San Francisco (1961)zbMATHGoogle Scholar
  25. 25.
    Bollobás, B.: Random Graphs. Cambridge Studies in Advanced Mathematics, vol. 73. Cambridge University Press, Cambridge (2001)Google Scholar
  26. 26.
    Borcea, C., Streinu, I.: Geometric auxetics. Proc. R. Soc. A 471(2184), 20150033 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Borg, I., Groenen, P.: Modern Multidimensional Scaling, 2nd edn. Springer, New York (2010)zbMATHGoogle Scholar
  28. 28.
    Bourgain, J.: On Lipschitz embeddings of finite metric spaces in Hilbert space. Isr. J. Math. 52(1–2), 46–52 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Bowers, J., Bowers, P.: A Menger redux: embedding metric spaces isometrically. Am. Math. Mon. 124(7), 621–636 (2017)zbMATHCrossRefGoogle Scholar
  30. 30.
    Bürgisser, P., Clausen, M., Shokrollahi, M.: Algebraic Complexity Theory. Grundlehren der mathematischen Wissenschaften, vol. 315. Springer, Berlin (1997)zbMATHCrossRefGoogle Scholar
  31. 31.
    Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM, Providence, RI (2009)zbMATHCrossRefGoogle Scholar
  32. 32.
    Cassioli, A., Bordeaux, B., Bouvier, G., Mucherino, A., Alves, R., Liberti, L., Nilges, M., Lavor, C., Malliavin, T.: An algorithm to enumerate all possible protein conformations verifying a set of distance constraints. BMC Bioinf. 16, 23 (2015)CrossRefGoogle Scholar
  33. 33.
    Cauchy, A.L.: Sur les polygones et les polyèdres. J. de l’École Polytech. 16(9), 87–99 (1813)Google Scholar
  34. 34.
    Cayley, A.: A theorem in the geometry of position. Camb. Math. J. II, 267–271 (1841)Google Scholar
  35. 35.
    Cheung, H., Kwok, T., Lau, L.: Fast matrix rank algorithms and applications. J. ACM 60(5), 31:1–31:25 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-Hillel, Y. (ed.) Logic, Methodology and Philosophy of Science, pp. 24–30. North-Holland, Amsterdam (1965)Google Scholar
  37. 37.
    Connelly, R.: A counterexample to the rigidity conjecture for polyhedra. Publications Mathématiques de l’IHES 47, 333–338 (1978)zbMATHCrossRefGoogle Scholar
  38. 38.
    Cook, S.: The complexity of theorem-proving procedures. In: ACM Symposium on the Theory of Computing, STOC, pp. 151–158. ACM, New York (1971)Google Scholar
  39. 39.
    Coope, I.: Reliable computation of the points of intersection of n spheres in \(\mathbb {R}^n\). Aust. N. Z. Ind. Appl. Math. J. 42, C461–C477 (2000)Google Scholar
  40. 40.
    Costa, V., Mucherino, A., Lavor, C., Cassioli, A., Carvalho, L., Maculan, N.: Discretization orders for protein side chains. J. Glob. Optim. 60, 333–349 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Cremona, L.: Le figure reciproche nella statica grafica. G. Bernardoni, Milano (1872)Google Scholar
  42. 42.
    Cremona, L.: Elementi di calcolo grafico. Paravia, Torino (1874)Google Scholar
  43. 43.
    Crippen, G.: An alternative approach to distance geometry using l distances. Discret. Appl. Math. 197, 20–26 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Cucuringu, M.: Asap – an eigenvector synchronization algorithm for the graph realization problem. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry: Theory, Methods, and Applications, pp. 177–196. Springer, New York (2013)CrossRefGoogle Scholar
  45. 45.
    Cucuringu, M., Singer, A., Cowburn, D.: Eigenvector synchronization, graph rigidity and the molecule problem. Inf. Inference J IMA 1, 21–67 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Dakić, T.: On the turnpike problem. Ph.D. thesis, Simon Fraser University (2000)Google Scholar
  47. 47.
    D’Ambrosio, C., Ky, V.K., Lavor, C., Liberti, L., Maculan, N.: New error measures and methods for realizing protein graphs from distance data. Discrete Comput. Geom. 57(2), 371–418 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    D’Ambrosio, C., Liberti, L.: Distance geometry in linearizable norms. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information. Lecture Notes in Computer Science, vol. 10589, pp. 830–838. Springer, Berlin (2017)zbMATHCrossRefGoogle Scholar
  49. 49.
    Dekkers, A., Aarts, E.: Global optimization and simulated annealing. Math. Program. 50, 367–393 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Dias, G., Liberti, L.: Diagonally dominant programming in distance geometry. In: Cerulli, R., Fujishige, S., Mahjoub, R. (eds.) International Symposium in Combinatorial Optimization. Lecture Notes in Computer Science, vol. 9849, pp. 225–236. Springer, New York (2016)zbMATHGoogle Scholar
  51. 51.
    Doherty, L., Pister, K., El Ghaoui, L.: Convex position estimation in wireless sensor networks. In: Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. INFOCOM, vol. 3, pp. 1655–1663. IEEE, Piscataway (2001)Google Scholar
  52. 52.
    Dokmanić, I., Parhizkar, R., Ranieri, J., Vetterli, M.: Euclidean distance matrices: Essential theory, algorithms and applications. IEEE Signal Process. Mag. 1053–5888, 12–30 (2015)CrossRefGoogle Scholar
  53. 53.
    Donald, B.: Algorithms in Structural Molecular Biology. MIT Press, Boston (2011)Google Scholar
  54. 54.
    Dong, Q., Wu, Z.: A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances. J. Glob. Optim. 22, 365–375 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Du, H., Alechina, N., Stock, K., Jackson, M.: The logic of NEAR and FAR. In: Tenbrink, T., et al. (eds.) COSIT. Lecture Notes in Computer Science, vol. 8116, pp. 475–494. Springer, Cham (2013)Google Scholar
  56. 56.
    Duxbury, P., Granlund, L., Juhas, P., Billinge, S.: The unassigned distance geometry problem. Discret. Appl. Math. 204, 117–132 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Edmonds, J.: Paths, trees and flowers. Can. J. Math. 17, 449–467 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Erdős, P., Renyi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)Google Scholar
  59. 59.
    Eren, T., Goldenberg, D., Whiteley, W., Yang, Y., Morse, A., Anderson, B., Belhumeur, P.: Rigidity, computation, and randomization in network localization. In: IEEE INFOCOM, pp. 2673–2684 (2004)Google Scholar
  60. 60.
    Euler, L.: Continuatio fragmentorum ex adversariis mathematicis depromptorum: II Geometria, 97. In: Fuss, P., Fuss, N. (eds.) Opera postuma mathematica et physica anno 1844 detecta, vol. I, pp. 494–496. Eggers & C., Petropolis (1862)Google Scholar
  61. 61.
    Fréchet, M.: Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo 22, 1–74 (1906)zbMATHCrossRefGoogle Scholar
  62. 62.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  63. 63.
    Garibaldi, J., Iosevich, A., Senger, S.: The Erdős Distance Problem. Student Mathematical Library, vol. 56. American Mathematical Society, Providence (2011)Google Scholar
  64. 64.
    Gluck, H.: Almost all simply connected closed surfaces are rigid. In: Dold, A., Eckmann, B. (eds.) Geometric Topology. Lecture Notes in Mathematics, vol. 438, pp. 225–239. Springer, Berlin (1975)CrossRefGoogle Scholar
  65. 65.
    Gödel, K.: On the isometric embeddability of quadruples of points of r 3 in the surface of a sphere. In: Feferman, S., Dawson, J., Kleene, S., Moore, G., Solovay, R., van Heijenoort J. (eds.) Kurt Gödel: Collected Works, vol. I, pp. (1933b) 276–279. Oxford University Press, Oxford (1986)Google Scholar
  66. 66.
    Gortler, S., Healy, A., Thurston, D.: Characterizing generic global rigidity. Am. J. Math. 132(4), 897–939 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity. American Mathematical Society, Providence, RI (1993)zbMATHCrossRefGoogle Scholar
  68. 68.
    Grünbaum, B., Shephard, G.: Lectures on lost mathematics. Technical Report EPrint Collection – Mathematics [112], University of Washington (2010)Google Scholar
  69. 69.
    Havel, T., Wüthrich, K.: An evaluation of the combined use of nuclear magnetic resonance and distance geometry for the determination of protein conformations in solution. J. Mol. Biol. 182(2), 281–294 (1985)CrossRefGoogle Scholar
  70. 70.
    Havel, T., Kuntz, I., Crippen, G.: The theory and practice of distance geometry. Bull. Math. Biol. 45(5), 665–720 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21(1), 65–84 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Heron: Metrica, vol. I. Alexandria (∼100AD)Google Scholar
  73. 73.
    Hoang, T.: On the complexity of some problems in linear algebra. Ph.D. thesis, Universität Ulm (2003)Google Scholar
  74. 74.
    Indyk, P., Naor, A.: Nearest neighbor preserving embeddings. ACM Trans. Algorithms 3(3), Art. 31 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Jackson, B., Jordán, T.: Connected rigidity matroids and unique realization of graphs. J. Comb. Theory Ser. B 94, 1–29 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Jackson, B., Jordán, T.: Graph theoretic techniques in the analysis of uniquely localizable sensor networks. In: Mao, G., Fidan, B. (eds.) Localization Algorithms and Strategies for Wireless Sensor Networks: Monitoring and Surveillance Techniques for Target Tracking, pp. 146–173. IGI Global, Hershey (2009)CrossRefGoogle Scholar
  77. 77.
    Jacobs, D., Thorpe, M.: Generic rigidity percolation. Phys. Rev. Lett. 75(22), 4051–4054 (1995)CrossRefGoogle Scholar
  78. 78.
    Johnson, D.: The NP-completeness column: an ongoing guide. J. Algorithms 3, 182–195 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. In: Hedlund, G. (ed.) Conference in Modern Analysis and Probability. Contemporary Mathematics, vol. 26, pp. 189–206. American Mathematical Society, Providence (1984)CrossRefGoogle Scholar
  80. 80.
    Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, W. (eds.) Complexity of Computer Computations. IBM Research Symposia, vol. 5, pp. 85–104. Plenum, New York (1972)CrossRefGoogle Scholar
  81. 81.
    Khoo, Y.: Protein structural calculation from NMR spectroscopy. Ph.D. thesis, Princeton University (2016)Google Scholar
  82. 82.
    Krislock, N., Wolkowicz, H.: Explicit sensor network localization using semidefinite representations and facial reductions. SIAM J. Optim. 20, 2679–2708 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Kuratowski, C.: Quelques problèmes concernant les espaces métriques non-séparables. Fundamenta Mathematicæ 25, 534–545 (1935)zbMATHCrossRefGoogle Scholar
  84. 84.
    Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4(4), 331–340 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Laurent, M.: Polynomial instances of the positive semidefinite and Euclidean distance matrix completion problems. SIAM J. Matrix Anal. Appl. 22(3), 874–894 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Laurent, M.: Matrix completion problems. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, 2nd edn., pp. 1967–1975. Springer, New York (2009)CrossRefGoogle Scholar
  87. 87.
    Lavor, C.: On generating instances for the molecular distance geometry problem. In: Liberti, L., Maculan, N. (eds.) Global Optimization: from Theory to Implementation, pp. 405–414. Springer, Berlin (2006)CrossRefGoogle Scholar
  88. 88.
    Lavor, C., Liberti, L., Maculan, N.: Molecular distance geometry problem. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, 2nd edn., pp. 2305–2311. Springer, New York (2009)Google Scholar
  89. 89.
    Lavor, C., Lee, J., Lee-St. John, A., Liberti, L., Mucherino, A., Sviridenko, M.: Discretization orders for distance geometry problems. Optim. Lett. 6, 783–796 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. 52, 115–146 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the discretizable molecular distance geometry problem. Eur. J. Oper. Res.219, 698–706 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Lavor, C., Liberti, L., Mucherino, A.: The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances. J. Glob. Optim. 56, 855–871 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Lavor, C., Alves, R., Figuereido, W., Petraglia, A., Maculan, N.: Clifford algebra and the discretizable molecular distance geometry problem. Adv. Appl. Clifford Algebr. 25, 925–942 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Lavor, C., Firer, M., Martinez, J.M., Liberti, L.: Preface. Int. Trans. Oper. Res. 23(5), 841 (2016)CrossRefGoogle Scholar
  95. 95.
    Lavor, C., Liberti, L., Donald, B., Worley, B., Bardiaux, B., Malliavin, T., Nilges, M.: Minimal NMR distance information for rigidity of protein graphs. Discret. Appl. Math. https://doi.org/10.1016/j.dam.2018.03.071
  96. 96.
    Lemke, P., Skiena, S., Smith, W.: Reconstructing sets from interpoint distances. In: Aronov, B., et al. (eds.) Discrete and Computational Geometry. Algorithms and Combinatorics, vol. 25, pp. 597–631. Springer, Berlin (2003)Google Scholar
  97. 97.
    Liberti, L. (ed.): Proceedings of the DIMACS Workshop on Distance Geometry Theory and Applications (DGTA16) (2016)Google Scholar
  98. 98.
    Liberti, L., Lavor, C.: Six mathematical gems in the history of distance geometry. Int. Trans. Oper. Res. 23, 897–920 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Liberti, L., Vu, K.: Barvinok’s naive algorithm in distance geometry. Oper. Res. Lett. 46, 476–481, 2018MathSciNetCrossRefGoogle Scholar
  100. 100.
    Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res. 18, 33–51 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Liberti, L., Lavor, C., Mucherino, A.: The discretizable molecular distance geometry problem seems easier on proteins. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry: Theory, Methods, and Applications, pp. 47–60. Springer, New York (2013)zbMATHCrossRefGoogle Scholar
  103. 103.
    Liberti, L., Lavor, C., Alencar, J., Abud, G.: Counting the number of solutions of kDMDGP instances. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information. Lecture Notes in Computer Science, vol. 8085, pp. 224–230. Springer, New York (2013)zbMATHCrossRefGoogle Scholar
  104. 104.
    Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Liberti, L., Masson, B., Lavor, C., Lee, J., Mucherino, A.: On the number of realizations of certain Henneberg graphs arising in protein conformation. Discrete Appl. Math. 165, 213–232 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Liberti, L., Swirszcz, G., Lavor, C.: Distance geometry on the sphere. In: Akiyama, J., et al. (eds.) JCDCG2. Lecture Notes in Computer Science, vol. 9943, pp. 204–215. Springer, New York (2016)Google Scholar
  107. 107.
    Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. In: Proceedings of the Symposium on Foundations of Computer Science. FOCS, vol. 35, pp. 577–591. IEEE, Piscataway (1994)Google Scholar
  108. 108.
    Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    Locatelli, M.: Simulated annealing algorithms for global optimization. In: Pardalos, P., Romeijn, H. (eds.) Handbook of Global Optimization, vol. 2, pp. 179–229. Kluwer Academic Publishers, Dordrecht (2002)zbMATHCrossRefGoogle Scholar
  110. 110.
    Lovász, L., Yemini, Y.: On generic rigidity in the plane. SIAM J. Algebraic Discrete Methods 3(1), 91–98 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    Mahajan, M., Sarma, J.: On the complexity of matrix rank and rigidity. Theory Comput. Syst. 46, 9–26 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Matoušek, J.: Lecture notes on metric embeddings. Technical report, ETH Zürich (2013)Google Scholar
  113. 113.
    Maxwell, J.: On reciprocal figures and diagrams of forces. Philos. Mag. 27(182), 250–261 (1864)CrossRefGoogle Scholar
  114. 114.
    Maxwell, J.: On the calculation of the equilibrium and stiffness of frames. Philos. Mag. 27(182), 294–299 (1864)CrossRefGoogle Scholar
  115. 115.
    Mehlhorn, K., Sanders, P.: Algorithms and Data Structures. Springer, Berlin (2008)zbMATHGoogle Scholar
  116. 116.
    Menger, K.: Untersuchungen über allgemeine Metrik. Mathematische Annalen 100, 75–163 (1928)MathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    Menger, K.: New foundation of Euclidean geometry. Am. J. Math. 53(4), 721–745 (1931)MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    Milnor, J.: On the Betti numbers of real varieties. Proc. Am. Math. Soc. 15, 275–280 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    Moré, J., Wu, Z.: Global continuation for distance geometry problems. SIAM J. Optim. 7(3), 814–846 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    Mosek ApS: The mosek manual, Version 7 (Revision 114) (2014). www.mosek.com
  121. 121.
    Moukarzel, C., Duxbury, P.: Stressed backbone and elasticity of random central-force systems. Phys. Rev. Lett. 75(22), 4055–4059 (1995)CrossRefGoogle Scholar
  122. 122.
    Mucherino, A., Liberti, L., Lavor, C.: MD-jeep: an implementation of a branch-and-prune algorithm for distance geometry problems. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) Mathematical Software. Lecture Notes in Computer Science, vol. 6327, pp. 186–197. Springer, New York (2010)Google Scholar
  123. 123.
    Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. Optim. Lett. 6, 1671–1686 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  124. 124.
    Mucherino, A., Lavor, C., Liberti, L.: Exploiting symmetry properties of the discretizable molecular distance geometry problem. J. Bioinf. Comput. Biol. 10, 1242009(1–15) (2012)zbMATHCrossRefGoogle Scholar
  125. 125.
    Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.): Distance Geometry: Theory, Methods, and Applications. Springer, New York (2013)zbMATHGoogle Scholar
  126. 126.
    Mucherino, A., de Freitas, R., Lavor, C.: Preface. Discrete Appl. Math. 197, 1–2 (2015)CrossRefGoogle Scholar
  127. 127.
    Nilges, M., Clore, G., Gronenborn, A.: Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 229(2), 317–324 (1988)CrossRefGoogle Scholar
  128. 128.
    Nilges, M., Gronenborn, A., Brunger, A., Clore, G.: Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Eng. 2, 27–38 (1988)CrossRefGoogle Scholar
  129. 129.
    Recski, A.: Applications of combinatorics to statics — A survey. Rendiconti del Circolo Matematico di Palermo II(Suppl. 3), 237–247 (1984)Google Scholar
  130. 130.
    Recski, A.: Applications of combinatorics to statics — a second survey. Discret. Math. 108, 183–188 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  131. 131.
    Rojas, N.: Distance-based formulations for the position analysis of kinematic chains. Ph.D. thesis, Universitat Politecnica de Catalunya (2012)Google Scholar
  132. 132.
    Santana, R., Larrañaga, P., Lozano, J.: Side chain placement using estimation of distribution algorithms. Artif. Intell. Med. 39, 49–63 (2007)CrossRefGoogle Scholar
  133. 133.
    Santana, R., Larrañaga, P., Lozano, J.: Combining variable neighbourhood search and estimation of distribution algorithms in the protein side chain placement problem. J. Heuristics 14, 519–547 (2008)zbMATHCrossRefGoogle Scholar
  134. 134.
    Saxe, J.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)Google Scholar
  135. 135.
    Schoenberg, I.: Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une classe d’espaces distanciés vectoriellement applicable sur l’espace de Hilbert”. Ann. Math. 36(3), 724–732 (1935)MathSciNetzbMATHCrossRefGoogle Scholar
  136. 136.
    Singer, A.: Angular synchronization by eigenvectors and semidefinite programming. Appl. Comput. Harmon. Anal. 30, 20–36 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  137. 137.
    Sitharam, M., Zhou, Y.: A tractable, approximate, combinatorial 3D rigidity characterization. In: Fifth Workshop on Automated Deduction in Geometry (2004)Google Scholar
  138. 138.
    Sitharam, M., Vince, A., Cheng, J.: Graph algorithmic characterizations and rank bounds for maximal rank abstract rigidity matroids. Technical Report, Manuscript, University of Florida (2018)Google Scholar
  139. 139.
    Sljoka, A.: Algorithms in rigidity theory with applications to protein flexibility and mechanical linkages. Ph.D. thesis, York University, Canada (2012)Google Scholar
  140. 140.
    Souza, M., Lavor, C., Muritiba, A., Maculan, N.: Solving the molecular distance geometry problem with inaccurate distance data. BMC Bioinf. 14(Suppl. 9), S71–S76 (2013)Google Scholar
  141. 141.
    Tarski, A.: A decision method for elementary algebra and geometry. Technical Report R-109, Rand Corporation (1951)Google Scholar
  142. 142.
    Tay, T.S., Whiteley, W.: Generating isostatic frameworks. Struct. Topol. 11, 21–69 (1985)MathSciNetzbMATHGoogle Scholar
  143. 143.
    Thorpe, M., Duxbury, P. (eds.): Rigidity Theory and Applications. Fundamental Materials Research. Springer, New York (2002)Google Scholar
  144. 144.
    Wüthrich, K.: Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science 243, 45–50 (1989)CrossRefGoogle Scholar
  145. 145.
    Wüthrich, K., Billeter, M., Braun, W.: Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J. Mol. Biol. 169, 949–961 (1983)CrossRefGoogle Scholar
  146. 146.
    Yemini, Y.: The positioning problem — a draft of an intermediate summary. In: Proceedings of the Conference on Distributed Sensor Networks, pp. 137–145. Carnegie-Mellon University, Pittsburgh (1978)Google Scholar
  147. 147.
    Yemini, Y.: Some theoretical aspects of position-location problems. In: Proceedings of the 20th Annual Symposium on the Foundations of Computer Science, pp. 1–8. IEEE, Piscataway (1979)Google Scholar
  148. 148.
    Young, G., Householder, A.: Discussion of a set of points in terms of their mutual distances. Psychometrika 3(1), 19–22 (1938)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.CNRS LIX, Ecole PolytechniquePalaiseauFrance
  2. 2.Department of Applied Mathematics (IMECC-UNICAMP)University of CampinasCampinasBrazil

Personalised recommendations