Advertisement

A Revocable Group Signature Scheme with Scalability from Simple Assumptions and Its Implementation

  • Keita Emura
  • Takuya Hayashi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11060)

Abstract

Group signatures are signatures providing signer anonymity where signers can produce signatures on behalf of the group that they belong to. Although such anonymity is quite attractive considering privacy issues, it is not trivial to check whether a signer has been revoked or not. Thus, how to revoke the rights of signers is one of the major topics in the research on group signatures. In particular, scalability, where the signing and verification costs and the signature size are constant in terms of the number of signers N, and other costs regarding signers are at most logarithmic in N, is quite important. In this paper, we propose a revocable group signature scheme which is currently more efficient compared to previous all scalable schemes. Moreover, our revocable group signature scheme is secure under simple assumptions (in the random oracle model), whereas all scalable schemes are secure under q-type assumptions. Finally, we implemented our scheme by employing the Barreto-Lynn-Scott curves over a 455-bit prime field (BLS455), and the Barreto-Naehrig curves over a 382-bit prime field (BN382), respectively, by using the RELIC library. We showed that the running times of our signing algorithm were approximately 21 ms (BLS455) and 17 ms (BN382), and those of our verification algorithm were approximately 31 ms (BLS455) and 24 ms (BN382), respectively.

Notes

Acknowledgement

This work was partially supported by the JSPS KAKENHI Grant Number JP16K00198.

References

  1. 1.
  2. 2.
    Intel Software Guard Extensions (Intel SGX). https://software.intel.com/en-us/sgx
  3. 3.
    Akane, M., Nogami, Y., Morikawa, Y.: Fast ate pairing computation of embedding degree 12 using subfield-twisted elliptic curve. IEICE Trans. 92-A(2), 508–516 (2009)Google Scholar
  4. 4.
    Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic
  5. 5.
    Attrapadung, N., Emura, K., Hanaoka, G., Sakai, Y.: A revocable group signature scheme from identity-based revocation techniques: achieving constant-size revocation list. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 419–437. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07536-5_25CrossRefGoogle Scholar
  6. 6.
    Attrapadung, N., Emura, K., Hanaoka, G., Sakai, Y.: Revocable group signature with constant-size revocation list. Comput. J. 58(10), 2698–2715 (2015)CrossRefGoogle Scholar
  7. 7.
    Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. IACR Cryptology ePrint Archive 2017:334 (2017)Google Scholar
  8. 8.
    Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryptol. (2018).  https://doi.org/10.1007/s00145-018-9280-5
  9. 9.
    Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36413-7_19CrossRefGoogle Scholar
  10. 10.
    Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006).  https://doi.org/10.1007/11693383_22CrossRefGoogle Scholar
  11. 11.
    Begum, N., Nakanishi, T., Sadiah, S., Islam, M.E.: Implementation of a revocable group signature scheme with compact revocation list using accumulator. In: CANDAR, pp. 610–615 (2016)Google Scholar
  12. 12.
    Bellare, M., Boldyreva, A., Kurosawa, K., Staddon, J.: Multirecipient encryption schemes: how to save on bandwidth and computation without sacrificing security. IEEE Trans. Inf. Theor. 53(11), 3927–3943 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15317-4_24CrossRefGoogle Scholar
  14. 14.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_3CrossRefGoogle Scholar
  15. 15.
    Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM CCS, pp. 168–177 (2004)Google Scholar
  16. 16.
    Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39555-5_7CrossRefGoogle Scholar
  17. 17.
    Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for hardware authentication and attestation. In: IEEE SocialCom, pp. 768–775 (2010)Google Scholar
  18. 18.
    Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45708-9_5CrossRefGoogle Scholar
  19. 19.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-46416-6_22CrossRefGoogle Scholar
  20. 20.
    Cheon, J.H.: Discrete logarithm problems with auxiliary inputs. J. Cryptol. 23(3), 457–476 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Chow, S.S.M., Zhang, H., Zhang, T.: Real hidden identity-based signatures. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 21–38. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70972-7_2CrossRefGoogle Scholar
  22. 22.
    Cramer, R., Damgård, I., MacKenzie, P.D.: Efficient zero-knowledge proofs of knowledge without intractability assumptions. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 354–372. Springer, Heidelberg (2000).  https://doi.org/10.1007/978-3-540-46588-1_24CrossRefGoogle Scholar
  23. 23.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer, Heidelberg (2006).  https://doi.org/10.1007/11958239_13CrossRefGoogle Scholar
  25. 25.
    Derler, D., Slamanig, D.: Highly-efficient fully-anonymous dynamic group signatures. In: ACM AsiaCCS, pp. 551–565 (2018)Google Scholar
  26. 26.
    Emura, K., Hayashi, T.: Road-to-vehicle communications with time-dependent anonymity: a lightweight construction and its experimental results. IEEE Trans. Veh. Technol. 67(2), 1582–1597 (2018)CrossRefGoogle Scholar
  27. 27.
    Emura, K., Hayashi, T., Ishida, A.: Group signatures with time-bound keys revisited: a new model and an efficient construction. In: ACM AsiaCCS, pp. 777–788 (2017)Google Scholar
  28. 28.
    Emura, K., Miyaji, A., Omote, K.: An \(r\)-hiding revocable group signature scheme: group signatures with the property of hiding the number of revoked users. J. Appl. Math. 2014, 983040:1–983040:14 (2014)CrossRefGoogle Scholar
  29. 29.
    Fan, C.-I., Hsu, R.-H., Manulis, M.: Group signature with constant revocation costs for signers and verifiers. In: Lin, D., Tsudik, G., Wang, X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 214–233. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25513-7_16CrossRefGoogle Scholar
  30. 30.
    Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of the Fiat-Shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34931-7_5CrossRefGoogle Scholar
  31. 31.
    Furukawa, J., Imai, H.: An efficient group signature scheme from bilinear maps. IEICE Trans. 89-A(5), 1328–1338 (2006)Google Scholar
  32. 32.
    Groth, J.: Fully anonymous group signatures without random Oracles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76900-2_10CrossRefGoogle Scholar
  33. 33.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_24CrossRefGoogle Scholar
  34. 34.
    Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins and separable authorities. IJSN 1(1/2), 24–45 (2006)CrossRefGoogle Scholar
  35. 35.
    Kiayias, A., Zhou, H.: Hidden identity-based signatures. IET Inf. Secur. 3(3), 119–127 (2009)CrossRefGoogle Scholar
  36. 36.
    Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_4CrossRefGoogle Scholar
  37. 37.
    Kumar, V., Li, H., Park, J.J., Bian, K., Yang, Y.: Group signatures with probabilistic revocation: a computationally-scalable approach for providing privacy-preserving authentication. In: ACM CCS, pp. 1334–1345 (2015)Google Scholar
  38. 38.
    Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_20CrossRefGoogle Scholar
  39. 39.
    Libert, B., Mouhartem, F., Peters, T., Yung, M.: Practical “signatures with efficient protocols” from simple assumptions. In: ACM AsiaCCS, pp. 511–522 (2016)Google Scholar
  40. 40.
    Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 571–589. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_34CrossRefGoogle Scholar
  41. 41.
    Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 609–627. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_36CrossRefGoogle Scholar
  42. 42.
    Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving signatures: standard model security from simple assumptions. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 296–316. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_15CrossRefGoogle Scholar
  43. 43.
    Libert, B., Vergnaud, D.: Group signatures with verifier-local revocation and backward unlinkability in the standard model. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 498–517. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10433-6_34CrossRefzbMATHGoogle Scholar
  44. 44.
    Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes with constant costs for signing and verifying. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 463–480. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00468-1_26CrossRefGoogle Scholar
  45. 45.
    Nakanishi, T., Funabiki, N.: Verifier-local revocation group signature schemes with backward unlinkability from bilinear maps. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg (2005).  https://doi.org/10.1007/11593447_29CrossRefGoogle Scholar
  46. 46.
    Nakanishi, T., Funabiki, N.: A short verifier-local revocation group signature scheme with backward unlinkability. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 17–32. Springer, Heidelberg (2006).  https://doi.org/10.1007/11908739_2CrossRefGoogle Scholar
  47. 47.
    Nakanishi, T., Funabiki, N.: Revocable group signatures with compact revocation list using accumulators. IEICE Trans. 98-A(1), 117–131 (2015)Google Scholar
  48. 48.
    Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_3CrossRefGoogle Scholar
  49. 49.
    Ohara, K., Emura, K., Hanaoka, G., Ishida, A., Ohta, K., Sakai, Y.: Shortening the Libert-Peters-Yung revocable group signature scheme by using the random Oracle methodology. IACR Cryptology ePrint Archive 2016:477 (2016)Google Scholar
  50. 50.
    Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29485-8_7CrossRefGoogle Scholar
  51. 51.
    Rahaman, S., Cheng, L., Yao, D.D., Li, H., Park, J.J.: Provably secure anonymous-yet-accountable crowdsensing with scalable sublinear revocation. In: PoPETs, vol. 2017, no. 4, pp. 384–403 (2017)Google Scholar
  52. 52.
    Sadiah, S., Nakanishi, T.: Revocable group signatures with compact revocation list using vector commitments. IEICE Trans. 100-A(8), 1672–1682 (2017)Google Scholar
  53. 53.
    Slamanig, D., Spreitzer, R., Unterluggauer, T.: Adding controllable linkability to pairing-based group signatures for free. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 388–400. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13257-0_23CrossRefGoogle Scholar
  54. 54.
    Slamanig, D., Spreitzer, R., Unterluggauer, T.: Linking-based revocation for group signatures: a pragmatic approach for efficient revocation checks. In: Phan, R.C.-W., Yung, M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 364–388. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61273-7_18CrossRefGoogle Scholar
  55. 55.
    Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_10CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.National Institute of Information and Communications Technology (NICT)TokyoJapan

Personalised recommendations