Function-Dependent Commitments for Verifiable Multi-party Computation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11060)


In cloud computing, delegated computing raises the security issue of guaranteeing data authenticity during a remote computation. Existing solutions do not simultaneously provide fast correctness verification, strong security properties, and information-theoretic confidentiality. We introduce a novel approach, in the form of function-dependent commitments, that combines these strengths. We also provide an instantiation of function-dependent commitments for linear functions that is unconditionally, i.e. information-theoretically, hiding and relies on standard hardness assumptions. This powerful construction can for instance be used to build verifiable computing schemes providing information-theoretic confidentiality. As an example, we introduce a verifiable multi-party computation scheme for shared data providing public verifiability and unconditional privacy towards the servers and parties verifying the correctness of the result. Our scheme can be used to perform verifiable computations on secret shares while requiring only a single party to compute the audit data for verification. Furthermore, our verification procedure is asymptotically even more efficient than performing operations locally on the shared data. Thus, our solution improves the state of the art for authenticated computing, verifiable computing and multi-party computation.


Commitments Homomorphic cryptography MPC 



This work has been co-funded by the DFG as part of project “Long-Term Secure Archiving” within CRC 1119 CROSSING. It has also received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement 644962.


  1. 1.
    Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009). Scholar
  2. 2.
    Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011). Scholar
  3. 3.
    Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical and privacy-preserving proofs on authenticated data. In: SP 2015, pp. 271–286. IEEE Computer Society (2015)Google Scholar
  4. 4.
    Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced data. In: CCS 2013, pp. 863–874. ACM (2013)Google Scholar
  5. 5.
    Barbosa, M., Farshim, P.: Delegatable homomorphic encryption with applications to secure outsourcing of computation. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 296–312. Springer, Heidelberg (2012). Scholar
  6. 6.
    Baum, C., Damgård, I., Orlandi, C.: Publicly auditable secure multi-party computation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 175–196. Springer, Cham (2014). Scholar
  7. 7.
    Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013). Scholar
  8. 8.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). Scholar
  10. 10.
    Catalano, D., Fiore, D., Gennaro, R., Nizzardo, L.: Generalizing homomorphic MACs for arithmetic circuits. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 538–555. Springer, Heidelberg (2014). Scholar
  11. 11.
    Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private: constructions and applications to (homomorphic) signatures with shorter public keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 254–274. Springer, Heidelberg (2015). Scholar
  12. 12.
    Catalano, D., Fiore, D., Nizzardo, L.: Programmable Hash Functions go Private: Constructions and Applications to (Homomorphic) Signatures with Shorter Public Keys. IACR Cryptology ePrint Archive 2015, 826 (2015)Google Scholar
  13. 13.
    Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012). Scholar
  14. 14.
    Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient verification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014). Scholar
  15. 15.
    Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M., Parno, B., Zahur, S.: Geppetto: versatile verifiable computation. In: SP 2015, pp. 253–270. IEEE Computer Society (2015)Google Scholar
  16. 16.
    Culnane, C., Schneider, S.A.: A peered bulletin board for robust use in verifiable voting systems. In: CSF, pp. 169–183. IEEE Computer Society (2014)Google Scholar
  17. 17.
    Demirel, D., Schabhüser, L., Buchmann, J.A.: Privately and Publicly Verifiable Computing Techniques: A Survey. Springer Briefs in Computer Science. Springer, Heidelberg (2017). Scholar
  18. 18.
    Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer, Heidelberg (2012). Scholar
  19. 19.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). Scholar
  20. 20.
    Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: STOC, pp. 99–108. ACM (2011)Google Scholar
  21. 21.
    Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from polynomial commitments to pairing-based accumulators from simple assumptions. In: ICALP 2016. LIPIcs, vol. 55, pp. 30:1–30:14. Schloss Dagstuhl (2016)Google Scholar
  22. 22.
    Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting privacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer, Heidelberg (2006). Scholar
  23. 23.
    Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: SP 2013, pp. 238–252. IEEE Computer Society (2013)Google Scholar
  24. 24.
    Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012). Scholar
  25. 25.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). Scholar
  26. 26.
    Schabhüser, L., Buchmann, J., Struck, P.: A linearly homomorphic signature scheme from weaker assumptions. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 261–279. Springer, Cham (2017). Scholar
  27. 27.
    Schabhüser, L., Demirel, D., Buchmann, J.A.: An unconditionally hiding auditing procedure for computations over distributed data. In: CNS 2016, pp. 552–560. IEEE (2016)Google Scholar
  28. 28.
    Schoenmakers, B., Veeningen, M.: Universally verifiable multiparty computation from threshold homomorphic cryptosystems. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 3–22. Springer, Cham (2015). Scholar
  29. 29.
    Schoenmakers, B., Veeningen, M., de Vreede, N.: Trinocchio: privacy-preserving outsourcing by distributed verifiable computation. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 346–366. Springer, Cham (2016). Scholar
  30. 30.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhang, L.F., Safavi-Naini, R.: Generalized homomorphic MACs with efficient verification. In: ASIAPKC 2014, pp. 3–12. ACM (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations