Collaborative Network for District Energy Operation and Semantic Technologies: A Case Study

  • Corentin KusterEmail author
  • Jean-Laurent Hippolyte
  • Yacine Rezgui
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 534)


The growing interest toward renewable energies and alternative energy sources has led to the development of an increasingly complex district energy landscape with multiple agents and systems. In this new prospect, some frameworks such as USEF [1] or holonic multi-agent systems [2] propose new approaches, where, in the way of a Virtual Organisation Breeding Environment (VOBE) [3], diverse organizations cooperate on a long-term basis to run an energy system. This study focuses on the THERMOSS project, an EU-funded project that investigates the efficient operation of district heating and cooling networks, and demonstrates that such organisation can be integrated into the Collaborative Networks (CNs) paradigm. Additionally, a semantic approach is briefly introduced as a mean to support and improve data transfer and communication between the different entities of THERMOSS as a CN.


Collaborative networks District heating and cooling Semantic 



The research presented in this paper is financially supported by the Building Research Establishment (BRE) and the European Commission as part of the Horizon2020 THERMOSS (project Id: 723562).


  1. 1.
    USEF Foundation: USEF: the Framework specifications 2015 (2015)Google Scholar
  2. 2.
    Howell, S., Rezgui, Y., Hippolyte, J.L., Jayan, B., Li, H.: Towards the next generation of smart grids: semantic and holonic multi-agent management of distributed energy resources. Renew. Sustain. Energy Rev. 77, 193–214 (2017)CrossRefGoogle Scholar
  3. 3.
    Camarinha-Matos, L.M., Afsarmanesh, H.: Collaborative networks: a new scientific discipline. J. Intell. Manuf. 16(4–5), 439–452 (2005)CrossRefGoogle Scholar
  4. 4.
    Blaauwbroek, N., Nguyen, P.H., Konsman, M.J., Shi, H., Kamphuis, R.I.G., Kling, W.L.: Decentralized resource allocation and load scheduling for multicommodity smart energy systems. IEEE Trans. Sustain. Energy 6(4), 1506–1514 (2015)CrossRefGoogle Scholar
  5. 5.
    Hippolyte, J.-L., Rezgui, Y., Li, H., Jayan, B., Howell, S.: Ontology-driven development of web services to support district energy applications. Autom. Constr. 86, 210–225 (2017)CrossRefGoogle Scholar
  6. 6.
    Anda, M., Le Gay Brereton, F., Brennan, J., Paskett, E.: Smart Metering Infrastructure for Residential Water Efficiency: Results of a Trial in a Behavioural Change Program in Perth, Western Australia (2013)Google Scholar
  7. 7.
    Camarinha-Matos, L.M., Afsarmanesh, H., Galeano, N., Molina, A.: Collaborative networked organizations – Concepts and practice in manufacturing enterprises. Comput. Ind. Eng. 57(1), 46–60 (2009)CrossRefGoogle Scholar
  8. 8.
    Camarinha-Matos, L.M., Afsarmanesh, H.: Collaborative Networked Organizations. Springer, US, Boston (2004)CrossRefGoogle Scholar
  9. 9.
    National Research Council: Visionary manufacturing challenges for 2020, visionary manufacturing challenges for 2020/committee on visionary manufacturing challenges, board on manufacturing and engineering design, commission on engineering and technology. In: Board on manufacturing and engineering design commission on engineering and technical systems (1998)Google Scholar
  10. 10.
    Rabelo, R.J., Gusmeroli, S., Arana, C., Nagellen, T.: The ecolead ICT infrastructure for collaborative networked organizations. IFIP Int. Fed. Inf. Process. 224(3), 451–460 (2006)Google Scholar
  11. 11.
    Silva, N., Rocha, J.: VE Infrastructures Requirements for Cooperation and Knowledge Sharing. IFIP Int Fed. Inf. Process. 56, 79–86 (2001)Google Scholar
  12. 12.
    Keller, M., Menzel, K., Scherer, Raimar J.: Towards a meta-model for collaborative construction project management. In: Camarinha-Matos, L.M., Afsarmanesh, H., Ortiz, A. (eds.) PRO-VE 2005. ITIFIP, vol. 186, pp. 361–368. Springer, Boston, MA (2005). Scholar
  13. 13.
    Allan, L., Menzel, K.: Virtual enterprises for integrated energy service provision. In: Camarinha-Matos, L.M., Paraskakis, I., Afsarmanesh, H. (eds.) PRO-VE 2009. IAICT, vol. 307, pp. 659–666. Springer, Heidelberg (2009). Scholar
  14. 14.
    Praça, I., Morais, H., Cardoso, M., Ramos, C., Vale, Z.: Virtual power producers integration into mascem. In: Camarinha-Matos, L.M., Afsarmanesh, H., Novais, P., Analide, C. (eds.) PRO-VE 2007. ITIFIP, vol. 243, pp. 291–298. Springer, Boston, MA (2007). Scholar
  15. 15.
    Rahimi, F., Ipakchi, A.: Demand response as a market resource under the smart grid paradigm. IEEE Trans. Smart Grid 1(1), 82–88 (2010)CrossRefGoogle Scholar
  16. 16.
    Lund, H., et al.: 4th Generation District Heating (4GDH). Integrating smart thermal grids into future sustainable energy systems. Energy 68, 1–11 (2014)CrossRefGoogle Scholar
  17. 17.
    Camarinha-Matos, L.M.: Collaborative smart grids – a survey on trends. Renew. Sustain. Energy Rev. 65, 283–294 (2016)CrossRefGoogle Scholar
  18. 18.
    Calvanese, D., Giese10, M.: The optique project: towards OBDA systems for industry (Short Paper),” OWL Exp. Dir. Work. OWLED, pp. 7–11 (2013)Google Scholar
  19. 19.
    Chituc, C.M., Toscano, C., Azevedo, A.L.: Towards seamless interoperability in collaborative networks. IFIP Int. Fed. Inf. Process. 243, 445–452 (2007)Google Scholar
  20. 20.
    Petychakis, M., Alvertis, I., Biliri, E., Tsouroplis, R., Lampathaki, F., Askounis, D.: Enterprise Collaboration Framework for Managing, Advancing and Unifying the Functionality of Multiple Cloud-Based Services with the Help of a Graph API. In: Camarinha-Matos, L.M., Afsarmanesh, H. (eds.) PRO-VE 2014. IAICT, vol. 434, pp. 153–160. Springer, Heidelberg (2014). Scholar
  21. 21.
    Mulder, W., Rongen, P.H.H., Meijer, G.R.: Towards ontology-based CNO matching applied to squads. Collab. Networks Their Breed. Environ. 186, 117–124 (2005)CrossRefGoogle Scholar
  22. 22.
    Daclin, N., Chen, D., Vallespir, B.: Methodology for Enterprise Interoperability. IFAC Proc. 41(2), 12873–12878 (2008)CrossRefGoogle Scholar
  23. 23.
    Guevara-Masis, V., Afsarmanesh, H., Hertzberger, L.O.: “Ontology-Based Automatic Data Structure Generation for Collaborative Networks”, in PRO-VE. Virtual Enterprises and Collaborative Networks 2004, 163–174 (2004)CrossRefGoogle Scholar
  24. 24.
    Compton, M., et al.: The SSN ontology of the W3C semantic sensor network incubator group. J. Web Semant. 17, 25–32 (2012)CrossRefGoogle Scholar
  25. 25.
    Cox, S.J.D.: Ontology for observations and sampling features, with alignments to existing models. Semant. Web 8(3), 453–470 (2017)CrossRefGoogle Scholar
  26. 26.
    W3C, “Semantic Sensor Network Ontology,” 2005Google Scholar
  27. 27.
    Kharlamov, E., et al.: Ontology-based integration of streaming and static relational data with optique. In: Proceedings of the 2016 International Conference on Management of Data - SIGMOD 2016, no. ii, pp. 2109–2112 (2016)Google Scholar
  28. 28.
    Podnar Žarko, I., Broering, A., Soursos, S., Serrano, M. (eds.): InterOSS-IoT 2016. LNCS, vol. 10218. Springer, Cham (2017). Scholar
  29. 29.
    Atemezing, G., Corcho, O., Garijo, D., Mora, J., Poveda-Villalón, M., Rozas, P., Vila-Suero, D., Villazón-Terrazas, B.: Transforming meteorological data into linked data. Semant. Web 4(3), 285–290 (2013)Google Scholar
  30. 30.
    Daniele, L., den Hartog, F., Roes, J.: Created in close interaction with the industry: the Smart Appliances REFerence (SAREF) ontology. In: Cuel, R., Young, R. (eds.) FOMI 2015. LNBIP, vol. 225, pp. 100–112. Springer, Cham (2015). Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Corentin Kuster
    • 1
    Email author
  • Jean-Laurent Hippolyte
    • 1
  • Yacine Rezgui
    • 1
  1. 1.BRE Trust Centre for Sustainable Engineering, Cardiff UniversityCardiffUK

Personalised recommendations