Advertisement

Neuromodulation of Hippocampal Cells and Circuits

  • J. Josh LawrenceEmail author
  • Stuart CobbEmail author
Chapter
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)

Abstract

The hippocampus is a major brain centre for information processing, where subcortical neuromodulatory circuits interface with intrinsic learning circuits to assign salience to sensory information relevant to behavioural state. Glutamatergic principal cells (PCs) of the dentate gyrus (DG), CA3 and CA1 regions comprise the classic trisynaptic circuit, which compare patterns of incoming sensory stimuli with internal representations, enabling the detection of novelty. Within the trisynaptic circuitry, distinct feedforward and feedback inhibitory circuits spatiotemporally constrain the timing of PC excitability, which, together with disinhibitory circuits, synchronize PC ensembles to generate network rhythms. Neuromodulation alters network rhythms and synaptic plasticity by releasing neurotransmitters and neuropeptides onto diverse receptor subtypes, often expressed in a cell type- and circuit-specific manner. Moreover, extrinsic neuromodulation can induce the secondary release of intrinsic neuromodulators. For each neurotransmitter system, we review the structural organization and target specificity of afferent innervation, receptor subtype distribution and, where known, their functional effects on hippocampal cells and circuits. Despite the complexity involved and evident gaps in scientific knowledge, general principles of neuromodulation are emerging. With the development of next-generation technologies, the vision of understanding how neuromodulatory mechanisms engage circuit elements to regulate hippocampal memory encoding and recall is coming into sharper focus.

Keywords

Acetylcholine Dopamine Norepinephrine Serotonin Histamine Neuromodulation Endocannabinoids Interneuron Synapse Neuron 

References

  1. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32(1):19–29.  https://doi.org/10.1016/j.tins.2008.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Acker CD, Yan P, Loew LM (2011) Single-voxel recording of voltage transients in dendritic spines. Biophys J 101(2):L11–L13.  https://doi.org/10.1016/j.bpj.2011.06.021 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Acsady L, Arabadzisz D, Freund TF (1996a) Correlated morphological and neurochemical features identify different subsets of vasoactive intestinal polypeptide-immunoreactive interneurons in rat hippocampus. Neuroscience 73(2):299–315PubMedCrossRefPubMedCentralGoogle Scholar
  4. Acsady L, Arabadzisz D, Katona I, Freund TF (1996b) Topographic distribution of dorsal and median raphe neurons with hippocampal, septal and dual projection. Acta Biol Hung 47(1-4):9–19PubMedPubMedCentralGoogle Scholar
  5. Alger BE, Nagode DA, Tang AH (2014) Muscarinic cholinergic receptors modulate inhibitory synaptic rhythms in hippocampus and neocortex. Front Synaptic Neurosci 6:18.  https://doi.org/10.3389/fnsyn.2014.00018 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Alkondon M, Pereira EF, Albuquerque EX (1998) Alpha-bungarotoxin- and methyllycaconitine-sensitive nicotinic receptors mediate fast synaptic transmission in interneurons of rat hippocampal slices. Brain Res 810(1-2):257–263.  https://doi.org/10.1016/s0006-8993(98)00880-4 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Allen TG, Abogadie FC, Brown DA (2006) Simultaneous release of glutamate and acetylcholine from single magnocellular “cholinergic” basal forebrain neurons. J Neurosci 26(5):1588–1595.  https://doi.org/10.1523/JNEUROSCI.3979-05.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Alvarez EO (2009) The role of histamine on cognition. Behav Brain Res 199(2):183–189.  https://doi.org/10.1016/j.bbr.2008.12.010 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Alzheimer C, Rohrenbeck J, ten Bruggencate G (1991) Adenosine depresses induction of LTP at the mossy fiber-CA3 synapse in vitro. Brain Res 543(1):163–165PubMedCrossRefPubMedCentralGoogle Scholar
  10. Ambree O, Buschert J, Zhang W, Arolt V, Dere E, Zlomuzica A (2014) Impaired spatial learning and reduced adult hippocampal neurogenesis in histamine H1-receptor knockout mice. Eur Neuropsychopharmacol 24(8):1394–1404.  https://doi.org/10.1016/j.euroneuro.2014.04.006 CrossRefPubMedGoogle Scholar
  11. Amilhon B, Lepicard E, Renoir T, Mongeau R, Popa D, Poirel O, Miot S, Gras C, Gardier AM, Gallego J, Hamon M, Lanfumey L, Gasnier B, Giros B, El Mestikawy S (2010) VGLUT3 (vesicular glutamate transporter type 3) contribution to the regulation of serotonergic transmission and anxiety. J Neurosci 30(6):2198–2210.  https://doi.org/10.1523/JNEUROSCI.5196-09.2010 CrossRefPubMedGoogle Scholar
  12. Andersson R, Johnston A, Fisahn A (2012a) Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons. PLoS One 7(7):e40906.  https://doi.org/10.1371/journal.pone.0040906 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Andersson RH, Johnston A, Herman PA, Winzer-Serhan UH, Karavanova I, Vullhorst D, Fisahn A, Buonanno A (2012b) Neuregulin and dopamine modulation of hippocampal gamma oscillations is dependent on dopamine D4 receptors. Proc Natl Acad Sci U S A 109(32):13118–13123.  https://doi.org/10.1073/pnas.1201011109 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Andersson R, Galter D, Papadia D, Fisahn A (2017) Histamine induces KCNQ channel-dependent gamma oscillations in rat hippocampus via activation of the H1 receptor. Neuropharmacology 118:13–25.  https://doi.org/10.1016/j.neuropharm.2017.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Andrade R (1998) Regulation of membrane excitability in the central nervous system by serotonin receptor subtypes. Ann N Y Acad Sci 861:190–203PubMedCrossRefPubMedCentralGoogle Scholar
  16. Andrade R, Chaput Y (1991) 5-Hydroxytryptamine4-like receptors mediate the slow excitatory response to serotonin in the rat hippocampus. J Pharmacol Exp Ther 257(3):930–937PubMedPubMedCentralGoogle Scholar
  17. Andrade R, Nicoll RA (1987) Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol 394:99–124PubMedPubMedCentralCrossRefGoogle Scholar
  18. Andrade R, Malenka RC, Nicoll RA (1986) A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234(4781):1261–1265PubMedCrossRefPubMedCentralGoogle Scholar
  19. Andrade R, Foehring RC, Tzingounis AV (2012) The calcium-activated slow AHP: cutting through the Gordian knot. Front Cell Neurosci 6:47.  https://doi.org/10.3389/fncel.2012.00047 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Andreetta F, Carboni L, Grafton G, Jeggo R, Whyment AD, van den Top M, Hoyer D, Spanswick D, Barnes NM (2016) Hippocampal 5-HT7 receptors signal phosphorylation of the GluA1 subunit to facilitate AMPA receptor mediated-neurotransmission in vitro and in vivo. Br J Pharmacol 173(9):1438–1451.  https://doi.org/10.1111/bph.13432 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Arancio O, Kiebler M, Lee CJ, Lev-Ram V, Tsien RY, Kandel ER, Hawkins RD (1996) Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons. Cell 87(6):1025–1035PubMedCrossRefGoogle Scholar
  22. Armstrong C, Soltesz I (2012) Basket cell dichotomy in microcircuit function. J Physiol 590(4):683–694.  https://doi.org/10.1113/jphysiol.2011.223669 CrossRefPubMedGoogle Scholar
  23. Armstrong C, Krook-Magnuson E, Soltesz I (2012) Neurogliaform and Ivy Cells: A Major Family of nNOS Expressing GABAergic Neurons. Front Neural Circuits 6:23.  https://doi.org/10.3389/fncir.2012.00023 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Arrang JM, Garbarg M, Schwartz JC (1983) Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 302(5911):832–837PubMedCrossRefGoogle Scholar
  25. Arrigoni E, Rosenberg PA (2006) Nitric oxide-induced adenosine inhibition of hippocampal synaptic transmission depends on adenosine kinase inhibition and is cyclic GMP independent. Eur J Neurosci 24(9):2471–2480PubMedCrossRefGoogle Scholar
  26. Atzori M, Lau D, Tansey EP, Chow A, Ozaita A, Rudy B, McBain CJ (2000) H2 histamine receptor-phosphorylation of Kv3.2 modulates interneuron fast spiking. Nat Neurosci 3(8):791–798.  https://doi.org/10.1038/77693 CrossRefPubMedGoogle Scholar
  27. Auerbach JM, Segal M (1994) A novel cholinergic induction of long-term potentiation in rat hippocampus. J Neurophysiol 72(4):2034–2040.  https://doi.org/10.1152/jn.1994.72.4.2034 CrossRefPubMedGoogle Scholar
  28. Auerbach JM, Segal M (1996) Muscarinic receptors mediating depression and long-term potentiation in rat hippocampus. J Physiol 492(Pt 2):479–493PubMedPubMedCentralCrossRefGoogle Scholar
  29. Aznar S, Qian Z, Shah R, Rahbek B, Knudsen GM (2003) The 5-HT1A serotonin receptor is located on calbindin- and parvalbumin-containing neurons in the rat brain. Brain Res 959(1):58–67PubMedCrossRefGoogle Scholar
  30. Aznavour N, Mechawar N, Descarries L (2002) Comparative analysis of cholinergic innervation in the dorsal hippocampus of adult mouse and rat: a quantitative immunocytochemical study. Hippocampus 12(2):206–217.  https://doi.org/10.1002/hipo.1108 CrossRefPubMedGoogle Scholar
  31. Aznavour N, Watkins KC, Descarries L (2005) Postnatal development of the cholinergic innervation in the dorsal hippocampus of rat: Quantitative light and electron microscopic immunocytochemical study. J Comp Neurol 486(1):61–75.  https://doi.org/10.1002/cne.20501 CrossRefPubMedGoogle Scholar
  32. Bacci A, Huguenard JR, Prince DA (2004) Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature 431(7006):312–316PubMedCrossRefGoogle Scholar
  33. Bacci A, Huguenard JR, Prince DA (2005) Modulation of neocortical interneurons: extrinsic influences and exercises in self-control. Trends Neurosci 28(11):602–610.  https://doi.org/10.1016/j.tins.2005.08.007 CrossRefPubMedGoogle Scholar
  34. Bacciottini L, Passani MB, Giovannelli L, Cangioli I, Mannaioni PF, Schunack W, Blandina P (2002) Endogenous histamine in the medial septum-diagonal band complex increases the release of acetylcholine from the hippocampus: a dual-probe microdialysis study in the freely moving rat. Eur J Neurosci 15(10):1669–1680PubMedCrossRefGoogle Scholar
  35. Bacon WL, Beck SG (2000) 5-Hydroxytryptamine(7) receptor activation decreases slow afterhyperpolarization amplitude in CA3 hippocampal pyramidal cells. J Pharmacol Exp Ther 294(2):672–679PubMedGoogle Scholar
  36. Balazsfi DG, Zelena D, Farkas L, Demeter K, Barna I, Cserep C, Takacs VT, Nyiri G, Goloncser F, Sperlagh B, Freund TF, Haller J (2017) Median raphe region stimulation alone generates remote, but not recent fear memory traces. PLoS One 12(7):e0181264.  https://doi.org/10.1371/journal.pone.0181264 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Baraban SC, Tallent MK (2004) Interneuron Diversity series: interneuronal neuropeptides – endogenous regulators of neuronal excitability. Trends Neurosci 27(3):135–142PubMedCrossRefGoogle Scholar
  38. Baratta MV, Lamp T, Tallent MK (2002) Somatostatin depresses long-term potentiation and Ca2+ signaling in mouse dentate gyrus. J Neurophysiol 88(6):3078–3086.  https://doi.org/10.1152/jn.00398.2002 CrossRefPubMedGoogle Scholar
  39. Barbin G, Garbarg M, Schwartz JC, Storm-Mathisen J (1976) Histamine synthesizing afferents to the hippocampal region. J Neurochem 26(2):259–263PubMedCrossRefGoogle Scholar
  40. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38(8):1083–1152PubMedCrossRefGoogle Scholar
  41. Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8(1):45–56.  https://doi.org/10.1038/nrn2044 CrossRefGoogle Scholar
  42. Baskys A, Niesen CE, Davies MF, Carlen PL (1989) Modulatory actions of serotonin on ionic conductances of hippocampal dentate granule cells. Neuroscience 29(2):443–451PubMedCrossRefGoogle Scholar
  43. Battey J, Wada E (1991) Two distinct receptor subtypes for mammalian bombesin-like peptides. Trends Neurosci 14(12):524–528PubMedCrossRefGoogle Scholar
  44. Bauer EP (2015) Serotonin in fear conditioning processes. Behav Brain Res 277:68–77.  https://doi.org/10.1016/j.bbr.2014.07.028 CrossRefPubMedGoogle Scholar
  45. Bazargani N, Attwell D (2017) Amines, astrocytes, and arousal. Neuron 94(2):228–231.  https://doi.org/10.1016/j.neuron.2017.03.035 CrossRefPubMedGoogle Scholar
  46. Beck SG, Choi KC (1991) 5-Hydroxytryptamine hyperpolarizes CA3 hippocampal pyramidal cells through an increase in potassium conductance. Neurosci Lett 133(1):93–96PubMedCrossRefGoogle Scholar
  47. Beck SG, Choi KC, List TJ (1992) Comparison of 5-hydroxytryptamine1A-mediated hyperpolarization in CA1 and CA3 hippocampal pyramidal cells. J Pharmacol Exp Ther 263(1):350–359PubMedGoogle Scholar
  48. Behr J, Empson RM, Schmitz D, Gloveli T, Heinemann U (1997) Effects of serotonin on synaptic and intrinsic properties of rat subicular neurons in vitro. Brain Res 773(1–2):217–222PubMedCrossRefGoogle Scholar
  49. Behr J, Gloveli T, Schmitz D, Heinemann U (2000) Dopamine depresses excitatory synaptic transmission onto rat subicular neurons via presynaptic D1-like dopamine receptors. J Neurophysiol 84(1):112–119.  https://doi.org/10.1152/jn.2000.84.1.112 CrossRefPubMedGoogle Scholar
  50. Behrends JC, ten Bruggencate G (1993) Cholinergic modulation of synaptic inhibition in the guinea pig hippocampus in vitro: excitation of GABAergic interneurons and inhibition of GABA-release. J Neurophysiol 69(2):626–629.  https://doi.org/10.1152/jn.1993.69.2.626 CrossRefPubMedGoogle Scholar
  51. Bekkers JM (1993) Enhancement by histamine of NMDA-mediated synaptic transmission in the hippocampus. Science 261(5117):104–106PubMedCrossRefGoogle Scholar
  52. Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6(7):565–575PubMedCrossRefGoogle Scholar
  53. Bell KA, Shim H, Chen CK, McQuiston AR (2011) Nicotinic excitatory postsynaptic potentials in hippocampal CA1 interneurons are predominantly mediated by nicotinic receptors that contain alpha4 and beta2 subunits. Neuropharmacology 61(8):1379–1388.  https://doi.org/10.1016/j.neuropharm.2011.08.024 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Bell LA, Bell KA, McQuiston AR (2013) Synaptic muscarinic response types in hippocampal CA1 interneurons depend on different levels of presynaptic activity and different muscarinic receptor subtypes. Neuropharmacology 73:160–173.  https://doi.org/10.1016/j.neuropharm.2013.05.026 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Bell LA, Bell KA, McQuiston AR (2015a) Acetylcholine release in mouse hippocampal CA1 preferentially activates inhibitory-selective interneurons via alpha4beta2* nicotinic receptor activation. Front Cell Neurosci 9:115.  https://doi.org/10.3389/fncel.2015.00115 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Bell LA, Bell KA, McQuiston AR (2015b) Activation of muscarinic receptors by ACh release in hippocampal CA1 depolarizes VIP but has varying effects on parvalbumin-expressing basket cells. J Physiol 593(1):197–215.  https://doi.org/10.1113/jphysiol.2014.277814 CrossRefPubMedGoogle Scholar
  57. Benardo LS, Prince DA (1982a) Cholinergic excitation of mammalian hippocampal pyramidal cells. Brain Res 249(2):315–331.  https://doi.org/10.1016/0006-8993(82)90066-x CrossRefPubMedGoogle Scholar
  58. Benardo LS, Prince DA (1982b) Cholinergic pharmacology of mammalian hippocampal pyramidal cells. Neuroscience 7(7):1703–1712.  https://doi.org/10.1016/0306-4522(82)90028-8 CrossRefPubMedGoogle Scholar
  59. Benardo LS, Prince DA (1982c) Dopamine action on hippocampal pyramidal cells. J Neurosci 2(4):415–423PubMedCrossRefGoogle Scholar
  60. Benardo LS, Prince DA (1982d) Dopamine modulates a Ca2+-activated potassium conductance in mammalian hippocampal pyramidal cells. Nature 297(5861):76–79PubMedCrossRefGoogle Scholar
  61. Benardo LS, Prince DA (1982e) Ionic mechanisms of cholinergic excitation in mammalian hippocampal pyramidal cells. Brain Res 249(2):333–344.  https://doi.org/10.1016/0006-8993(82)90067-1 CrossRefPubMedGoogle Scholar
  62. Bergles DE, Doze VA, Madison DV, Smith SJ (1996) Excitatory actions of norepinephrine on multiple classes of hippocampal CA1 interneurons. J Neurosci 16(2):572–585PubMedCrossRefGoogle Scholar
  63. Bergson C, Mrzljak L, Smiley JF, Pappy M, Levenson R, Goldman-Rakic PS (1995) Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci 15(12):7821–7836PubMedCrossRefGoogle Scholar
  64. Bernardi G, Calabresi P, Mercuri N, Stanzione P (1984) Effect of dopamine on the threshold of the voltage-dependent ionic channels in the rat brain. Ann Ist Super Sanita 20(1):1–4PubMedGoogle Scholar
  65. Bickmeyer U, Heine M, Manzke T, Richter DW (2002) Differential modulation of I(h) by 5-HT receptors in mouse CA1 hippocampal neurons. Eur J Neurosci 16(2):209–218PubMedCrossRefGoogle Scholar
  66. Bijak M (1989) Antidepressant drugs potentiate the alpha 1-adrenoceptor effect in hippocampal slices. Eur J Pharmacol 166(2):183–191PubMedCrossRefGoogle Scholar
  67. Bijak M, Misgeld U (1995) Adrenergic modulation of hilar neuron activity and granule cell inhibition in the guinea-pig hippocampal slice. Neuroscience 67(3):541–550PubMedCrossRefGoogle Scholar
  68. Blackshaw S, Eliasson MJ, Sawa A, Watkins CC, Krug D, Gupta A, Arai T, Ferrante RJ, Snyder SH (2003) Species, strain and developmental variations in hippocampal neuronal and endothelial nitric oxide synthase clarify discrepancies in nitric oxide-dependent synaptic plasticity. Neuroscience 119(4):979–990PubMedCrossRefGoogle Scholar
  69. Blandina P, Efoudebe M, Cenni G, Mannaioni P, Passani MB (2004) Acetylcholine, histamine, and cognition: two sides of the same coin. Learn Mem 11(1):1–8.  https://doi.org/10.1101/lm.68004 CrossRefPubMedGoogle Scholar
  70. Blusztajn JK, Rinnofner J (2016) Intrinsic cholinergic neurons in the hippocampus: fact or artifact? Front Synaptic Neurosci 8:6.  https://doi.org/10.3389/fnsyn.2016.00006 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Boden PR, Hill RG (1988) Effects of cholecystokinin and pentagastrin on rat hippocampal neurones maintained in vitro. Neuropeptides 12(2):95–103PubMedCrossRefGoogle Scholar
  72. Boehm S (1999) Presynaptic alpha2-adrenoceptors control excitatory, but not inhibitory, transmission at rat hippocampal synapses. J Physiol 519(Pt 2):439–449PubMedPubMedCentralCrossRefGoogle Scholar
  73. Bohm C, Pangalos M, Schmitz D, Winterer J (2015) Serotonin attenuates feedback excitation onto O-LM interneurons. Cereb Cortex 25(11):4572–4583.  https://doi.org/10.1093/cercor/bhv098 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Bohme GA, Stutzmann JM, Blanchard JC (1988) Excitatory effects of cholecystokinin in rat hippocampus: pharmacological response compatible with ‘central’- or B-type CCK receptors. Brain Res 451(1–2):309–318PubMedCrossRefGoogle Scholar
  75. Bon CL, Garthwaite J (2001) Exogenous nitric oxide causes potentiation of hippocampal synaptic transmission during low-frequency stimulation via the endogenous nitric oxide-cGMP pathway. Eur J Neurosci 14(4):585–594PubMedCrossRefGoogle Scholar
  76. Bonaventure P, Nepomuceno D, Kwok A, Chai W, Langlois X, Hen R, Stark K, Carruthers N, Lovenberg TW (2002) Reconsideration of 5-hydroxytryptamine (5-HT)(7) receptor distribution using [(3)H]5-carboxamidotryptamine and [(3)H]8-hydroxy-2-(di-n-propylamino)tetraline: analysis in brain of 5-HT(1A) knockout and 5-HT(1A/1B) double-knockout mice. J Pharmacol Exp Ther 302(1):240–248PubMedCrossRefGoogle Scholar
  77. Booker SA, Gross A, Althof D, Shigemoto R, Bettler B, Frotscher M, Hearing M, Wickman K, Watanabe M, Kulik A, Vida I (2013) Differential GABAB-receptor-mediated effects in perisomatic- and dendrite-targeting parvalbumin interneurons. J Neurosci 33(18):7961–7974.  https://doi.org/10.1523/JNEUROSCI.1186-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Booker SA, Loreth D, Gee AL, Watanabe M, Kind PC, Wyllie DJA, Kulik A, Vida I (2018) Postsynaptic GABABRs inhibit L-type calcium channels and abolish long-term potentiation in hippocampal somatostatin interneurons. Cell Rep 22(1):36–43.  https://doi.org/10.1016/j.celrep.2017.12.021 CrossRefGoogle Scholar
  79. Borhegyi Z, Leranth C (1997) Substance P innervation of the rat hippocampal formation. J Comp Neurol 384(1):41–58PubMedCrossRefGoogle Scholar
  80. Boschert U, Amara DA, Segu L, Hen R (1994) The mouse 5-hydroxytryptamine1B receptor is localized predominantly on axon terminals. Neuroscience 58(1):167–182PubMedCrossRefGoogle Scholar
  81. Boulton CL, Irving AJ, Southam E, Potier B, Garthwaite J, Collingridge GL (1994) The nitric oxide – cyclic GMP pathway and synaptic depression in rat hippocampal slices. Eur J Neurosci 6(10):1528–1535PubMedCrossRefGoogle Scholar
  82. Bouthenet ML, Ruat M, Sales N, Garbarg M, Schwartz JC (1988) A detailed mapping of histamine H1-receptors in guinea-pig central nervous system established by autoradiography with [125I]iodobolpyramine. Neuroscience 26(2):553–600PubMedCrossRefGoogle Scholar
  83. Bowser DN, Khakh BS (2004) ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci 24(39):8606–8620.  https://doi.org/10.1523/JNEUROSCI.2660-04.2004 CrossRefPubMedGoogle Scholar
  84. Brady LJ, Bartley AF, Li Q, McMeekin LJ, Hablitz JJ, Cowell RM, Dobrunz LE (2016) Transcriptional dysregulation causes altered modulation of inhibition by haloperidol. Neuropharmacology 111:304–313.  https://doi.org/10.1016/j.neuropharm.2016.07.034 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Brazhnik ES, Fox SE (1999) Action potentials and relations to the theta rhythm of medial septal neurons in vivo. Exp Brain Res 127(3):244–258PubMedCrossRefGoogle Scholar
  86. Brown DA, Adams PR (1980) Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283(5748):673–676PubMedCrossRefGoogle Scholar
  87. Brown RE, Haas HL (1999) On the mechanism of histaminergic inhibition of glutamate release in the rat dentate gyrus. J Physiol 515(Pt 3):777–786PubMedPubMedCentralCrossRefGoogle Scholar
  88. Brown RE, Fedorov NB, Haas HL, Reymann KG (1995) Histaminergic modulation of synaptic plasticity in area CA1 of rat hippocampal slices. Neuropharmacology 34(2):181–190PubMedCrossRefGoogle Scholar
  89. Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63(6):637–672PubMedCrossRefGoogle Scholar
  90. Buckley NJ, Bonner TI, Brann MR (1988) Localization of a family of muscarinic receptor mRNAs in rat brain. J Neurosci 8(12):4646–4652PubMedCrossRefGoogle Scholar
  91. Buhler AV, Dunwiddie TV (2001) Regulation of the activity of hippocampal stratum oriens interneurons by alpha7 nicotinic acetylcholine receptors. Neuroscience 106(1):55–67PubMedCrossRefGoogle Scholar
  92. Burban A, Faucard R, Armand V, Bayard C, Vorobjev V, Arrang JM (2010) Histamine potentiates N-methyl-D-aspartate receptors by interacting with an allosteric site distinct from the polyamine binding site. J Pharmacol Exp Ther 332(3):912–921.  https://doi.org/10.1124/jpet.109.158543 CrossRefPubMedGoogle Scholar
  93. Burke SP, Nadler JV (1988) Regulation of glutamate and aspartate release from slices of the hippocampal CA1 area: effects of adenosine and baclofen. J Neurochem 51(5):1541–1551PubMedCrossRefGoogle Scholar
  94. Bushell TJ, Plevin R, Cobb S, Irving AJ (2006) Characterization of proteinase-activated receptor 2 signalling and expression in rat hippocampal neurons and astrocytes. Neuropharmacology 50(6):714–725PubMedCrossRefGoogle Scholar
  95. Cadwell CR, Scala F, Li S, Livrizzi G, Shen S, Sandberg R, Jiang X, Tolias AS (2017) Multimodal profiling of single-cell morphology, electrophysiology, and gene expression using patch-seq. Nat Protoc 12(12):2531–2553PubMedCrossRefPubMedCentralGoogle Scholar
  96. Cai X, Kallarackal AJ, Kvarta MD, Goluskin S, Gaylor K, Bailey AM, Lee HK, Huganir RL, Thompson SM (2013) Local potentiation of excitatory synapses by serotonin and its alteration in rodent models of depression. Nat Neurosci 16(4):464–472.  https://doi.org/10.1038/nn.3355 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Caputi A, Melzer S, Michael M, Monyer H (2013) The long and short of GABAergic neurons. Curr Opin Neurobiol 23(2):179–186.  https://doi.org/10.1016/j.conb.2013.01.021 CrossRefPubMedGoogle Scholar
  98. Castillo PE, Younts TJ, Chavez AE, Hashimotodani Y (2012) Endocannabinoid signaling and synaptic function. Neuron 76(1):70–81.  https://doi.org/10.1016/j.neuron.2012.09.020 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Cea-del Rio CA, Lawrence JJ, Tricoire L, Erdelyi F, Szabo G, McBain CJ (2010) M3 muscarinic acetylcholine receptor expression confers differential cholinergic modulation to neurochemically distinct hippocampal basket cell subtypes. J Neurosci 30(17):6011–6024.  https://doi.org/10.1523/JNEUROSCI.5040-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Cea-del Rio CA, Lawrence JJ, Erdelyi F, Szabo G, McBain CJ (2011) Cholinergic modulation amplifies the intrinsic oscillatory properties of CA1 hippocampal cholecystokinin-positive interneurons. J Physiol 589(Pt 3):609–627.  https://doi.org/10.1113/jphysiol.2010.199422 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Cea-del Rio CA, McBain CJ, Pelkey KA (2012) An update on cholinergic regulation of cholecystokinin-expressing basket cells. J Physiol 590(4):695–702.  https://doi.org/10.1113/jphysiol.2011.225342 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Chafai M, Corbani M, Guillon G, Desarmenien MG (2012) Vasopressin inhibits LTP in the CA2 mouse hippocampal area. PLoS One 7(12):e49708.  https://doi.org/10.1371/journal.pone.0049708 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Chalmers DT, Watson SJ (1991) Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain – a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Res 561(1):51–60PubMedCrossRefPubMedCentralGoogle Scholar
  104. Chameau P, van Hooft JA (2006) Serotonin 5-HT(3) receptors in the central nervous system. Cell Tissue Res 326(2):573–581.  https://doi.org/10.1007/s00441-006-0255-8 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Chang Q, Fischbach GD (2006) An acute effect of neuregulin 1 beta to suppress alpha 7-containing nicotinic acetylcholine receptors in hippocampal interneurons. J Neurosci 26(44):11295–11303.  https://doi.org/10.1523/JNEUROSCI.1794-06.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Chang M, Saito H, Abe K (1998) Histamine H3 receptor-mediated inhibition of excitatory synaptic transmission in the rat dentate gyrus in vivo. Jpn J Pharmacol 77(3):251–255PubMedCrossRefPubMedCentralGoogle Scholar
  107. Chapman CA, Lacaille JC (1999a) Cholinergic induction of theta-frequency oscillations in hippocampal inhibitory interneurons and pacing of pyramidal cell firing. J Neurosci 19(19):8637–8645PubMedCrossRefPubMedCentralGoogle Scholar
  108. Chapman CA, Lacaille JC (1999b) Intrinsic theta-frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum-moleculare. J Neurophysiol 81(3):1296–1307.  https://doi.org/10.1152/jn.1999.81.3.1296 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Chen C, Diaz Brinton RD, Shors TJ, Thompson RF (1993) Vasopressin induction of long-lasting potentiation of synaptic transmission in the dentate gyrus. Hippocampus 3(2):193–203PubMedCrossRefPubMedCentralGoogle Scholar
  110. Chen J, Tan Z, Zeng L, Zhang X, He Y, Gao W, Wu X, Li Y, Bu B, Wang W, Duan S (2013) Heterosynaptic long-term depression mediated by ATP released from astrocytes. Glia 61(2):178–191.  https://doi.org/10.1002/glia.22425 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Chevaleyre V, Castillo PE (2003) Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38(3):461–472PubMedCrossRefPubMedCentralGoogle Scholar
  112. Chiang PH, Yeh WC, Lee CT, Weng JY, Huang YY, Lien CC (2010) M(1)-like muscarinic acetylcholine receptors regulate fast-spiking interneuron excitability in rat dentate gyrus. Neuroscience 169(1):39–51.  https://doi.org/10.1016/j.neuroscience.2010.04.051 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Chittajallu R, Craig MT, McFarland A, Yuan X, Gerfen S, Tricoire L, Erkkila B, Barron SC, Lopez CM, Liang BJ, Jeffries BW, Pelkey KA, McBain CJ (2013) Dual origins of functionally distinct O-LM interneurons revealed by differential 5-HT(3A)R expression. Nat Neurosci 16(11):1598–1607.  https://doi.org/10.1038/nn.3538 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Choi IS, Cho JH, Kim JT, Park EJ, Lee MG, Shin HI, Choi BJ, Jang IS (2007) Serotoninergic modulation of GABAergic synaptic transmission in developing rat CA3 pyramidal neurons. J Neurochem 103(6):2342–2353.  https://doi.org/10.1111/j.1471-4159.2007.04945.x CrossRefPubMedPubMedCentralGoogle Scholar
  115. Cilz NI, Lei S (2017) Histamine facilitates GABAergic transmission in the rat entorhinal cortex: roles of H1 and H2 receptors, Na(+) -permeable cation channels, and inward rectifier K(+) channels. Hippocampus 27(5):613–631.  https://doi.org/10.1002/hipo.22718 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Cilz NI, Kurada L, Hu B, Lei S (2014) Dopaminergic modulation of GABAergic transmission in the entorhinal cortex: concerted roles of alpha1 adrenoreceptors, inward rectifier K(+), and T-type Ca(2)(+) channels. Cereb Cortex 24(12):3195–3208.  https://doi.org/10.1093/cercor/bht177 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Cobb SR, Davies CH (2005) Cholinergic modulation of hippocampal cells and circuits. J Physiol 562(Pt 1):81–88.  https://doi.org/10.1113/jphysiol.2004.076539 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Cole AE, Nicoll RA (1983) Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells. Science 221(4617):1299–1301PubMedCrossRefPubMedCentralGoogle Scholar
  119. Cole AE, Nicoll RA (1984a) Characterization of a slow cholinergic post-synaptic potential recorded in vitro from rat hippocampal pyramidal cells. J Physiol 352:173–188PubMedPubMedCentralCrossRefGoogle Scholar
  120. Cole AE, Nicoll RA (1984b) The pharmacology of cholinergic excitatory responses in hippocampal pyramidal cells. Brain Res 305(2):283–290PubMedCrossRefPubMedCentralGoogle Scholar
  121. Colino A, Halliwell JV (1987) Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Nature 328(6125):73–77.  https://doi.org/10.1038/328073a0 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Colino A, Halliwell JV (1993) Carbachol potentiates Q current and activates a calcium-dependent non-specific conductance in rat hippocampus in vitro. Eur J Neurosci 5(9):1198–1209PubMedCrossRefPubMedCentralGoogle Scholar
  123. Compan V, Zhou M, Grailhe R, Gazzara RA, Martin R, Gingrich J, Dumuis A, Brunner D, Bockaert J, Hen R (2004) Attenuated response to stress and novelty and hypersensitivity to seizures in 5-HT4 receptor knock-out mice. J Neurosci 24(2):412–419.  https://doi.org/10.1523/JNEUROSCI.2806-03.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Cornea-Hebert V, Riad M, Wu C, Singh SK, Descarries L (1999) Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol 409(2):187–209PubMedCrossRefPubMedCentralGoogle Scholar
  125. Corradetti R, Ballerini L, Pugliese AM, Pepeu G (1992) Serotonin blocks the long-term potentiation induced by primed burst stimulation in the CA1 region of rat hippocampal slices. Neuroscience 46(3):511–518PubMedCrossRefPubMedCentralGoogle Scholar
  126. Corradetti R, Laaris N, Hanoun N, Laporte AM, Le Poul E, Hamon M, Lanfumey L (1998) Antagonist properties of (-)-pindolol and WAY 100635 at somatodendritic and postsynaptic 5-HT1A receptors in the rat brain. Br J Pharmacol 123(3):449–462.  https://doi.org/10.1038/sj.bjp.0701632 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Costa L, Trovato C, Musumeci SA, Catania MV, Ciranna L (2012) 5-HT(1A) and 5-HT(7) receptors differently modulate AMPA receptor-mediated hippocampal synaptic transmission. Hippocampus 22(4):790–801.  https://doi.org/10.1002/hipo.20940 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Couey JJ, Meredith RM, Spijker S, Poorthuis RB, Smit AB, Brussaard AB, Mansvelder HD (2007) Distributed network actions by nicotine increase the threshold for spike-timing-dependent plasticity in prefrontal cortex. Neuron 54(1):73–87.  https://doi.org/10.1016/j.neuron.2007.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Cox DJ, Racca C, LeBeau FE (2008) Beta-adrenergic receptors are differentially expressed in distinct interneuron subtypes in the rat hippocampus. J Comp Neurol 509(6):551–565.  https://doi.org/10.1002/cne.21758 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Craig MT, McBain CJ (2015) Fast gamma oscillations are generated intrinsically in CA1 without the involvement of fast-spiking basket cells. J Neurosci 35(8):3616–3624.  https://doi.org/10.1523/JNEUROSCI.4166-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Cunha RA, Milusheva E, Vizi ES, Ribeiro JA, Sebastiao AM (1994) Excitatory and inhibitory effects of A1 and A2A adenosine receptor activation on the electrically evoked [3H]acetylcholine release from different areas of the rat hippocampus. J Neurochem 63(1):207–214PubMedCrossRefPubMedCentralGoogle Scholar
  132. Cunha-Reis D, Sebastiao AM, Wirkner K, Illes P, Ribeiro JA (2004) VIP enhances both pre- and postsynaptic GABAergic transmission to hippocampal interneurons leading to increased excitatory synaptic transmission to CA1 pyramidal cells. Br J Pharmacol 143(6):733–744.  https://doi.org/10.1038/sj.bjp.0705989 sj.bjp.0705989 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  133. Cunha-Reis D, Ribeiro JA, Sebastiao AM (2005) VIP enhances synaptic transmission to hippocampal CA1 pyramidal cells through activation of both VPAC1 and VPAC2 receptors. Brain Res 1049(1):52–60.  https://doi.org/10.1016/j.brainres.2005.04.077 S0006-8993(05)00685-2 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  134. Dai H, Kaneko K, Kato H, Fujii S, Jing Y, Xu A, Sakurai E, Kato M, Okamura N, Kuramasu A, Yanai K (2007) Selective cognitive dysfunction in mice lacking histamine H1 and H2 receptors. Neurosci Res 57(2):306–313.  https://doi.org/10.1016/j.neures.2006.10.020 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Dale E, Pehrson AL, Jeyarajah T, Li Y, Leiser SC, Smagin G, Olsen CK, Sanchez C (2016) Effects of serotonin in the hippocampus: how SSRIs and multimodal antidepressants might regulate pyramidal cell function. CNS Spectr 21(2):143–161.  https://doi.org/10.1017/S1092852915000425 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Dale E, Grunnet M, Pehrson AL, Frederiksen K, Larsen PH, Nielsen J, Stensbol TB, Ebert B, Yin H, Lu D, Liu H, Jensen TN, Yang CR, Sanchez C (2017) The multimodal antidepressant vortioxetine may facilitate pyramidal cell firing by inhibition of 5-HT3 receptor expressing interneurons: an in vitro study in rat hippocampus slices. Brain Res.  https://doi.org/10.1016/j.brainres.2017.12.025 PubMedCrossRefPubMedCentralGoogle Scholar
  137. Dannenberg H, Pabst M, Braganza O, Schoch S, Niediek J, Bayraktar M, Mormann F, Beck H (2015) Synergy of direct and indirect cholinergic septo-hippocampal pathways coordinates firing in hippocampal networks. J Neurosci 35(22):8394–8410.  https://doi.org/10.1523/JNEUROSCI.4460-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Dannenberg H, Hinman JR, Hasselmo ME (2016) Potential roles of cholinergic modulation in the neural coding of location and movement speed. J Physiol Paris 110(1-2):52–64.  https://doi.org/10.1016/j.jphysparis.2016.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Dannenberg H, Young K, Hasselmo M (2017) Modulation of hippocampal circuits by muscarinic and nicotinic receptors. Front Neural Circuits 11:102.  https://doi.org/10.3389/fncir.2017.00102 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Dasari S, Gulledge AT (2011) M1 and M4 receptors modulate hippocampal pyramidal neurons. J Neurophysiol 105(2):779–792.  https://doi.org/10.1152/jn.00686.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Dasari S, Hill C, Gulledge AT (2017) A unifying hypothesis for M1 muscarinic receptor signalling in pyramidal neurons. J Physiol 595(5):1711–1723.  https://doi.org/10.1113/JP273627 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Davies S, Kohler C (1985) The substance P innervation of the rat hippocampal region. Anat Embryol (Berl) 173(1):45–52CrossRefGoogle Scholar
  143. Daw MI, Tricoire L, Erdelyi F, Szabo G, McBain CJ (2009) Asynchronous transmitter release from cholecystokinin-containing inhibitory interneurons is widespread and target-cell independent. J Neurosci 29(36):11112–11122.  https://doi.org/10.1523/JNEUROSCI.5760-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Day HE, Campeau S, Watson SJ Jr, Akil H (1997) Distribution of alpha 1a-, alpha 1b- and alpha 1d-adrenergic receptor mRNA in the rat brain and spinal cord. J Chem Neuroanat 13(2):115–139PubMedCrossRefPubMedCentralGoogle Scholar
  145. de Lecea L, Sutcliffe JG (1996) Peptides, sleep and cortistatin. Mol Psychiatry 1(5):349–351PubMedPubMedCentralGoogle Scholar
  146. de Lecea L, del Rio JA, Criado JR, Alcantara S, Morales M, Danielson PE, Henriksen SJ, Soriano E, Sutcliffe JG (1997) Cortistatin is expressed in a distinct subset of cortical interneurons. J Neurosci 17(15):5868–5880PubMedCrossRefPubMedCentralGoogle Scholar
  147. Degro CE, Kulik A, Booker SA, Vida I (2015) Compartmental distribution of GABAB receptor-mediated currents along the somatodendritic axis of hippocampal principal cells. Front Synaptic Neurosci 7:6.  https://doi.org/10.3389/fnsyn.2015.00006 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Deisseroth K, Feng G, Majewska AK, Miesenbock G, Ting A, Schnitzer MJ (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26(41):10380–10386.  https://doi.org/10.1523/JNEUROSCI.3863-06.2006 26/41/10380 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  149. Deller T, Katona I, Cozzari C, Frotscher M, Freund TF (1999) Cholinergic innervation of mossy cells in the rat fascia dentata. Hippocampus 9(3):314–320. https://doi.org/10.1002/(SICI)1098-1063(1999)9:3<314::AID-HIPO10>3.0.CO;2-7 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Deng PY, Lei S (2008) Serotonin increases GABA release in rat entorhinal cortex by inhibiting interneuron TASK-3 K+ channels. Mol Cell Neurosci 39(2):273–284.  https://doi.org/10.1016/j.mcn.2008.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Deng PY, Porter JE, Shin HS, Lei S (2006) Thyrotropin-releasing hormone increases GABA release in rat hippocampus. J Physiol 577(Pt 2):497–511PubMedPubMedCentralCrossRefGoogle Scholar
  152. Dennis SH, Pasqui F, Colvin EM, Sanger H, Mogg AJ, Felder CC, Broad LM, Fitzjohn SM, Isaac JT, Mellor JR (2016) Activation of muscarinic M1 acetylcholine receptors induces long-term potentiation in the hippocampus. Cereb Cortex 26(1):414–426.  https://doi.org/10.1093/cercor/bhv227 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Dias RB, Ribeiro JA, Sebastiao AM (2012) Enhancement of AMPA currents and GluR1 membrane expression through PKA-coupled adenosine A(2A) receptors. Hippocampus 22(2):276–291.  https://doi.org/10.1002/hipo.20894 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Dias RB, Rombo DM, Ribeiro JA, Henley JM, Sebastiao AM (2013) Adenosine: setting the stage for plasticity. Trends Neurosci 36(4):248–257.  https://doi.org/10.1016/j.tins.2012.12.003 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Dinerman JL, Dawson TM, Schell MJ, Snowman A, Snyder SH (1994) Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. Proc Natl Acad Sci U S A 91(10):4214–4218PubMedPubMedCentralCrossRefGoogle Scholar
  156. Dodd J, Kelly JS (1979) Excitation of CA1 pyramidal neurones of the hippocampus by the tetra- and octapeptide C-terminal fragments of cholecystokinin [proceedings]. J Physiol 295:61P–62PPubMedPubMedCentralGoogle Scholar
  157. Dodd J, Dingledine R, Kelly JS (1981) The excitatory action of acetylcholine on hippocampal neurones of the guinea pig and rat maintained in vitro. Brain Res 207(1):109–127PubMedCrossRefPubMedCentralGoogle Scholar
  158. Domonkos A, Nikitidou Ledri L, Laszlovszky T, Cserep C, Borhegyi Z, Papp E, Nyiri G, Freund TF, Varga V (2016) Divergent in vivo activity of non-serotonergic and serotonergic VGluT3-neurones in the median raphe region. J Physiol 594(13):3775–3790.  https://doi.org/10.1113/JP272036 CrossRefPubMedPubMedCentralGoogle Scholar
  159. Dorostkar MM, Boehm S (2007) Opposite effects of presynaptic 5-HT3 receptor activation on spontaneous and action potential-evoked GABA release at hippocampal synapses. J Neurochem 100(2):395–405.  https://doi.org/10.1111/j.1471-4159.2006.04218.x CrossRefPubMedPubMedCentralGoogle Scholar
  160. Dougherty KD, Milner TA (1999) Cholinergic septal afferent terminals preferentially contact neuropeptide Y-containing interneurons compared to parvalbumin-containing interneurons in the rat dentate gyrus. J Neurosci 19(22):10140–10152PubMedCrossRefPubMedCentralGoogle Scholar
  161. Doze VA, Cohen GA, Madison DV (1991) Synaptic localization of adrenergic disinhibition in the rat hippocampus. Neuron 6(6):889–900PubMedCrossRefPubMedCentralGoogle Scholar
  162. Dreifuss JJ, Raggenbass M (1986) Tachykinins and bombesin excite non-pyramidal neurones in rat hippocampus. J Physiol 379:417–428PubMedPubMedCentralCrossRefGoogle Scholar
  163. Dubrovsky B, Harris J, Gijsbers K, Tatarinov A (2002) Oxytocin induces long-term depression on the rat dentate gyrus: possible ATPase and ectoprotein kinase mediation. Brain Res Bull 58(2):141–147PubMedCrossRefPubMedCentralGoogle Scholar
  164. Dunwiddie TV, Hoffer BJ (1980) Adenine nucleotides and synaptic transmission in the in vitro rat hippocampus. Br J Pharmacol 69(1):59–68PubMedPubMedCentralCrossRefGoogle Scholar
  165. Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55.  https://doi.org/10.1146/annurev.neuro.24.1.31 CrossRefPubMedGoogle Scholar
  166. Durakoglugil M, Irving AJ, Harvey J (2005) Leptin induces a novel form of NMDA receptor-dependent long-term depression. J Neurochem 95(2):396–405.  https://doi.org/10.1111/j.1471-4159.2005.03375.x CrossRefPubMedPubMedCentralGoogle Scholar
  167. Dutar P, Bassant MH, Senut MC, Lamour Y (1995) The septohippocampal pathway: structure and function of a central cholinergic system. Physiol Rev 75(2):393–427.  https://doi.org/10.1152/physrev.1995.75.2.393 CrossRefPubMedGoogle Scholar
  168. Ebihara S, Akaike N (1993) Potassium currents operated by thyrotrophin-releasing hormone in dissociated CA1 pyramidal neurones of rat hippocampus. J Physiol 472:689–710PubMedPubMedCentralCrossRefGoogle Scholar
  169. El-Ghundi M, Fletcher PJ, Drago J, Sibley DR, O'Dowd BF, George SR (1999) Spatial learning deficit in dopamine D(1) receptor knockout mice. Eur J Pharmacol 383(2):95–106PubMedCrossRefGoogle Scholar
  170. Ermine CM, Wright JL, Parish CL, Stanic D, Thompson LH (2016) Combined immunohistochemical and retrograde tracing reveals little evidence of innervation of the rat dentate gyrus by midbrain dopamine neurons. Front Biol.  https://doi.org/10.1007/s11515-016-1404-4 CrossRefGoogle Scholar
  171. Etter G, Krezel W (2014) Dopamine D2 receptor controls hilar mossy cells excitability. Hippocampus 24(7):725–732.  https://doi.org/10.1002/hipo.22280 CrossRefPubMedGoogle Scholar
  172. Fabbri R, Furini CR, Passani MB, Provensi G, Baldi E, Bucherelli C, Izquierdo I, de Carvalho MJ, Blandina P (2016) Memory retrieval of inhibitory avoidance requires histamine H1 receptor activation in the hippocampus. Proc Natl Acad Sci U S A 113(19):E2714–E2720.  https://doi.org/10.1073/pnas.1604841113 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Fabian-Fine R, Skehel P, Errington ML, Davies HA, Sher E, Stewart MG, Fine A (2001) Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci 21(20):7993–8003PubMedCrossRefGoogle Scholar
  174. Fanselow EE, Richardson KA, Connors BW (2008) Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. J Neurophysiol 100(5):2640–2652.  https://doi.org/10.1152/jn.90691.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  175. Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6(3):215–229.  https://doi.org/10.1038/nrn1625 CrossRefPubMedPubMedCentralGoogle Scholar
  176. Feil R, Kleppisch T (2008) NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol 184:529–560CrossRefGoogle Scholar
  177. Ferezou I, Cauli B, Hill EL, Rossier J, Hamel E, Lambolez B (2002) 5-HT3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin interneurons. J Neurosci 22(17):7389–7397PubMedCrossRefGoogle Scholar
  178. Fernandez de Sevilla D, Nunez A, Borde M, Malinow R, Buno W (2008) Cholinergic-mediated IP3-receptor activation induces long-lasting synaptic enhancement in CA1 pyramidal neurons. J Neurosci 28(6):1469–1478.  https://doi.org/10.1523/JNEUROSCI.2723-07.2008 CrossRefPubMedGoogle Scholar
  179. Ferraguti F, Klausberger T, Cobden P, Baude A, Roberts JD, Szucs P, Kinoshita A, Shigemoto R, Somogyi P, Dalezios Y (2005) Metabotropic glutamate receptor 8-expressing nerve terminals target subsets of GABAergic neurons in the hippocampus. J Neurosci 25(45):10520–10536.  https://doi.org/10.1523/JNEUROSCI.2547-05.2005 CrossRefPubMedGoogle Scholar
  180. Ferster D, Jagadeesh B (1992) EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording. J Neurosci 12(4):1262–1274PubMedCrossRefGoogle Scholar
  181. Fester L, Rune GM (2015) Sexual neurosteroids and synaptic plasticity in the hippocampus. Brain Res 1621:162–169.  https://doi.org/10.1016/j.brainres.2014.10.033 CrossRefPubMedGoogle Scholar
  182. Filippov AK, Choi RC, Simon J, Barnard EA, Brown DA (2006) Activation of P2Y1 nucleotide receptors induces inhibition of the M-type K+ current in rat hippocampal pyramidal neurons. J Neurosci 26(36):9340–9348.  https://doi.org/10.1523/JNEUROSCI.2635-06.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  183. Fink KB, Gothert M (2007) 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev 59(4):360–417.  https://doi.org/10.1124/pr.107.07103 CrossRefPubMedGoogle Scholar
  184. Fisahn A, Yamada M, Duttaroy A, Gan JW, Deng CX, McBain CJ, Wess J (2002) Muscarinic induction of hippocampal gamma oscillations requires coupling of the M1 receptor to two mixed cation currents. Neuron 33(4):615–624PubMedCrossRefGoogle Scholar
  185. Foldy C, Neu A, Jones MV, Soltesz I (2006) Presynaptic, activity-dependent modulation of cannabinoid type 1 receptor-mediated inhibition of GABA release. J Neurosci 26(5):1465–1469PubMedCrossRefGoogle Scholar
  186. Foldy C, Lee SY, Szabadics J, Neu A, Soltesz I (2007) Cell type-specific gating of perisomatic inhibition by cholecystokinin. Nat Neurosci 10(9):1128–1130.  https://doi.org/10.1038/nn1952 nn1952 [pii]CrossRefPubMedGoogle Scholar
  187. Foldy C, Darmanis S, Aoto J, Malenka RC, Quake SR, Sudhof TC (2016) Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically defined neurons. Proc Natl Acad Sci U S A 113(35):E5222–E5231PubMedPubMedCentralCrossRefGoogle Scholar
  188. Frade JG, Barbosa RM, Laranjinha J (2008) Stimulation of NMDA and AMPA glutamate receptors elicits distinct concentration dynamics of nitric oxide in rat hippocampal slices. Hippocampus 19(7):603–611CrossRefGoogle Scholar
  189. Francavilla R, Luo X, Magnin E, Tyan L, Topolnik L (2015) Coordination of dendritic inhibition through local disinhibitory circuits. Front Synaptic Neurosci 7:5.  https://doi.org/10.3389/fnsyn.2015.00005 CrossRefPubMedPubMedCentralGoogle Scholar
  190. Fraser DD, MacVicar BA (1996) Cholinergic-dependent plateau potential in hippocampal CA1 pyramidal neurons. J Neurosci 16(13):4113–4128PubMedCrossRefGoogle Scholar
  191. Frazier CJ, Buhler AV, Weiner JL, Dunwiddie TV (1998a) Synaptic potentials mediated via alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons. J Neurosci 18(20):8228–8235PubMedCrossRefGoogle Scholar
  192. Frazier CJ, Rollins YD, Breese CR, Leonard S, Freedman R, Dunwiddie TV (1998b) Acetylcholine activates an alpha-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells. J Neurosci 18(4):1187–1195PubMedCrossRefGoogle Scholar
  193. Fredholm BB, Dunwiddie TV (1988) How does adenosine inhibit transmitter release? Trends Pharmacol Sci 9(4):130–134PubMedCrossRefGoogle Scholar
  194. Freedman R, Wetmore C, Stromberg I, Leonard S, Olson L (1993) Alpha-bungarotoxin binding to hippocampal interneurons: immunocytochemical characterization and effects on growth factor expression. J Neurosci 13(5):1965–1975PubMedCrossRefGoogle Scholar
  195. Freund TF (1989) GABAergic septohippocampal neurons contain parvalbumin. Brain Res 478(2):375–381.  https://doi.org/10.1016/0006-8993(89)91520-5 CrossRefGoogle Scholar
  196. Freund TF, Antal M (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336(6195):170–173. https://doi.org/10.1038/336170a0 CrossRefGoogle Scholar
  197. Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6(4):347–470. https://doi.org/10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I CrossRefGoogle Scholar
  198. Freund TF, Katona I (2007) Perisomatic inhibition. Neuron 56(1):33–42.  https://doi.org/10.1016/j.neuron.2007.09.012 CrossRefPubMedGoogle Scholar
  199. Freund TF, Gulyas AI, Acsady L, Gorcs T, Toth K (1990) Serotonergic control of the hippocampus via local inhibitory interneurons. Proc Natl Acad Sci U S A 87(21):8501–8505PubMedPubMedCentralCrossRefGoogle Scholar
  200. Freund TF, Hajos N, Acsady L, Gorcs TJ, Katona I (1997) Mossy cells of the rat dentate gyrus are immunoreactive for calcitonin gene-related peptide (CGRP). Eur J Neurosci 9(9):1815–1830PubMedCrossRefGoogle Scholar
  201. Frey U, Huang YY, Kandel ER (1993) Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260(5114):1661–1664PubMedCrossRefGoogle Scholar
  202. Frotscher M, Leranth C (1985) Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry: a combined light and electron microscopic study. J Comp Neurol 239(2):237–246.  https://doi.org/10.1002/cne.902390210 CrossRefPubMedPubMedCentralGoogle Scholar
  203. Frotscher M, Schlander M, Leranth C (1986) Cholinergic neurons in the hippocampus. A combined light- and electron-microscopic immunocytochemical study in the rat. Cell Tissue Res 246(2):293–301.  https://doi.org/10.1007/bf00215891 CrossRefPubMedPubMedCentralGoogle Scholar
  204. Frotscher M, Vida I, Bender R (2000) Evidence for the existence of non-GABAergic, cholinergic interneurons in the rodent hippocampus. Neuroscience 96(1):27–31.  https://doi.org/10.1016/s0306-4522(99)00525-4 CrossRefPubMedPubMedCentralGoogle Scholar
  205. Fukudome Y, Ohno-Shosaku T, Matsui M, Omori Y, Fukaya M, Tsubokawa H, Taketo MM, Watanabe M, Manabe T, Kano M (2004) Two distinct classes of muscarinic action on hippocampal inhibitory synapses: M2-mediated direct suppression and M1/M3-mediated indirect suppression through endocannabinoid signalling. Eur J Neurosci 19(10):2682–2692.  https://doi.org/10.1111/j.0953-816X.2004.03384.x CrossRefPubMedPubMedCentralGoogle Scholar
  206. Gangarossa G, Longueville S, De Bundel D, Perroy J, Herve D, Girault JA, Valjent E (2012) Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus. Hippocampus 22(12):2199–2207.  https://doi.org/10.1002/hipo.22044 CrossRefPubMedPubMedCentralGoogle Scholar
  207. Gao WJ, Goldman-Rakic PS (2003) Selective modulation of excitatory and inhibitory microcircuits by dopamine. Proc Natl Acad Sci U S A 100(5):2836–2841.  https://doi.org/10.1073/pnas.262796399 CrossRefPubMedPubMedCentralGoogle Scholar
  208. Gao WJ, Wang Y, Goldman-Rakic PS (2003) Dopamine modulation of perisomatic and peridendritic inhibition in prefrontal cortex. J Neurosci 23(5):1622–1630PubMedCrossRefPubMedCentralGoogle Scholar
  209. Gardier AM (2009) Mutant mouse models and antidepressant drug research: focus on serotonin and brain-derived neurotrophic factor. Behav Pharmacol 20(1):18–32.  https://doi.org/10.1097/FBP.0b013e3283243fcd CrossRefPubMedPubMedCentralGoogle Scholar
  210. Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27(11):2783–2802PubMedPubMedCentralCrossRefGoogle Scholar
  211. Garthwaite J (2016) From synaptically localized to volume transmission by nitric oxide. J Physiol 594(1):9–18.  https://doi.org/10.1113/JP270297 CrossRefPubMedPubMedCentralGoogle Scholar
  212. Garthwaite J, Boulton CL (1995) Nitric oxide signaling in the central nervous system. Annu Rev Physiol 57:683–706PubMedCrossRefPubMedCentralGoogle Scholar
  213. Gasbarri A, Packard MG, Campana E, Pacitti C (1994) Anterograde and retrograde tracing of projections from the ventral tegmental area to the hippocampal formation in the rat. Brain Res Bull 33(4):445–452PubMedCrossRefPubMedCentralGoogle Scholar
  214. Gasbarri A, Sulli A, Innocenzi R, Pacitti C, Brioni JD (1996) Spatial memory impairment induced by lesion of the mesohippocampal dopaminergic system in the rat. Neuroscience 74(4):1037–1044PubMedCrossRefPubMedCentralGoogle Scholar
  215. Gasbarri A, Sulli A, Packard MG (1997) The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog Neuropsychopharmacol Biol Psychiatry 21(1):1–22PubMedCrossRefPubMedCentralGoogle Scholar
  216. Ge S, Dani JA (2005) Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation. J Neurosci 25(26):6084–6091.  https://doi.org/10.1523/JNEUROSCI.0542-05.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  217. Geiger JR, Jonas P (2000) Dynamic control of presynaptic Ca(2+) inflow by fast-inactivating K(+) channels in hippocampal mossy fiber boutons. Neuron 28(3):927–939CrossRefPubMedPubMedCentralGoogle Scholar
  218. Gelinas JN, Nguyen PV (2005) Beta-adrenergic receptor activation facilitates induction of a protein synthesis-dependent late phase of long-term potentiation. J Neurosci 25(13):3294–3303.  https://doi.org/10.1523/JNEUROSCI.4175-04.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  219. Gelinas JN, Tenorio G, Lemon N, Abel T, Nguyen PV (2008) Beta-adrenergic receptor activation during distinct patterns of stimulation critically modulates the PKA-dependence of LTP in the mouse hippocampus. Learn Mem 15(5):281–289.  https://doi.org/10.1101/lm.829208 CrossRefPubMedPubMedCentralGoogle Scholar
  220. Ghadimi BM, Jarolimek W, Misgeld U (1994) Effects of serotonin on hilar neurons and granule cell inhibition in the guinea pig hippocampal slice. Brain Res 633(1-2):27–32PubMedCrossRefPubMedCentralGoogle Scholar
  221. Gibbs ME, Summers RJ (2002) Role of adrenoceptor subtypes in memory consolidation. Prog Neurobiol 67(5):345–391PubMedCrossRefPubMedCentralGoogle Scholar
  222. Gielow MR, Zaborszky L (2017) The input-output relationship of the cholinergic basal forebrain. Cell Rep 18(7):1817–1830.  https://doi.org/10.1016/j.celrep.2017.01.060 CrossRefPubMedPubMedCentralGoogle Scholar
  223. Gingrich MB, Junge CE, Lyuboslavsky P, Traynelis SF (2000) Potentiation of NMDA receptor function by the serine protease thrombin. J Neurosci 20(12):4582–4595PubMedCrossRefPubMedCentralGoogle Scholar
  224. Giocomo LM, Hasselmo ME (2005) Nicotinic modulation of glutamatergic synaptic transmission in region CA3 of the hippocampus. Eur J Neurosci 22(6):1349–1356.  https://doi.org/10.1111/j.1460-9568.2005.04316.x CrossRefPubMedPubMedCentralGoogle Scholar
  225. Giocomo LM, Hasselmo ME (2007) Neuromodulation by glutamate and acetylcholine can change circuit dynamics by regulating the relative influence of afferent input and excitatory feedback. Mol Neurobiol 36(2):184–200.  https://doi.org/10.1007/s12035-007-0032-z CrossRefPubMedPubMedCentralGoogle Scholar
  226. Glickfeld LL, Scanziani M (2006) Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells. Nat Neurosci 9(6):807–815.  https://doi.org/10.1038/nn1688 CrossRefPubMedPubMedCentralGoogle Scholar
  227. Glickfeld LL, Atallah BV, Scanziani M (2008) Complementary modulation of somatic inhibition by opioids and cannabinoids. J Neurosci 28(8):1824–1832.  https://doi.org/10.1523/JNEUROSCI.4700-07.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  228. Gloveli T, Dugladze T, Saha S, Monyer H, Heinemann U, Traub RD, Whittington MA, Buhl EH (2005) Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro. J Physiol 562(Pt 1):131–147.  https://doi.org/10.1113/jphysiol.2004.073007 CrossRefPubMedPubMedCentralGoogle Scholar
  229. Goldsmith SK, Joyce JN (1994) Dopamine D2 receptor expression in hippocampus and parahippocampal cortex of rat, cat, and human in relation to tyrosine hydroxylase-immunoreactive fibers. Hippocampus 4(3):354–373.  https://doi.org/10.1002/hipo.450040318 CrossRefPubMedPubMedCentralGoogle Scholar
  230. Gondard E, Anaclet C, Akaoka H, Guo RX, Zhang M, Buda C, Franco P, Kotani H, Lin JS (2013) Enhanced histaminergic neurotransmission and sleep-wake alterations, a study in histamine H3-receptor knock-out mice. Neuropsychopharmacology 38(6):1015–1031.  https://doi.org/10.1038/npp.2012.266 CrossRefPubMedPubMedCentralGoogle Scholar
  231. Gong S, Doughty M, Harbaugh CR, Cummins A, Hatten ME, Heintz N, Gerfen CR (2007) Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci 27(37):9817–9823.  https://doi.org/10.1523/JNEUROSCI.2707-07.2007 27/37/9817 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  232. Gonzalez-Burgos G, Kroener S, Seamans JK, Lewis DA, Barrionuevo G (2005) Dopaminergic modulation of short-term synaptic plasticity in fast-spiking interneurons of primate dorsolateral prefrontal cortex. J Neurophysiol 94(6):4168–4177.  https://doi.org/10.1152/jn.00698.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  233. Gorelova N, Seamans JK, Yang CR (2002) Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. J Neurophysiol 88(6):3150–3166.  https://doi.org/10.1152/jn.00335.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  234. Granger AJ, Mulder N, Saunders A, Sabatini BL (2016) Cotransmission of acetylcholine and GABA. Neuropharmacology 100:40–46.  https://doi.org/10.1016/j.neuropharm.2015.07.031 CrossRefPubMedPubMedCentralGoogle Scholar
  235. Gras C, Herzog E, Bellenchi GC, Bernard V, Ravassard P, Pohl M, Gasnier B, Giros B, El Mestikawy S (2002) A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci 22(13):5442–5451PubMedCrossRefPubMedCentralGoogle Scholar
  236. Gray R, Johnston D (1987) Noradrenaline and beta-adrenoceptor agonists increase activity of voltage-dependent calcium channels in hippocampal neurons. Nature 327(6123):620–622.  https://doi.org/10.1038/327620a0 CrossRefPubMedPubMedCentralGoogle Scholar
  237. Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383(6602):713–716.  https://doi.org/10.1038/383713a0 CrossRefPubMedPubMedCentralGoogle Scholar
  238. Greene RW, Haas HL (1990) Effects of histamine on dentate granule cells in vitro. Neuroscience 34(2):299–303PubMedCrossRefPubMedCentralGoogle Scholar
  239. Gribkoff VK, Ashe JH (1984) Modulation by dopamine of population responses and cell membrane properties of hippocampal CA1 neurons in vitro. Brain Res 292(2):327–338PubMedCrossRefPubMedCentralGoogle Scholar
  240. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73(5):862–885.  https://doi.org/10.1016/j.neuron.2012.02.011 CrossRefPubMedPubMedCentralGoogle Scholar
  241. Grybko MJ, Hahm ET, Perrine W, Parnes JA, Chick WS, Sharma G, Finger TE, Vijayaraghavan S (2011) A transgenic mouse model reveals fast nicotinic transmission in hippocampal pyramidal neurons. Eur J Neurosci 33(10):1786–1798.  https://doi.org/10.1111/j.1460-9568.2011.07671.x CrossRefPubMedPubMedCentralGoogle Scholar
  242. Gu Z, Yakel JL (2011) Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron 71(1):155–165.  https://doi.org/10.1016/j.neuron.2011.04.026 CrossRefPubMedPubMedCentralGoogle Scholar
  243. Guimond D, Diabira D, Porcher C, Bader F, Ferrand N, Zhu M, Appleyard SM, Wayman GA, Gaiarsa JL (2014) Leptin potentiates GABAergic synaptic transmission in the developing rodent hippocampus. Front Cell Neurosci 8:235.  https://doi.org/10.3389/fncel.2014.00235 CrossRefPubMedPubMedCentralGoogle Scholar
  244. Gulledge AT, Kawaguchi Y (2007) Phasic cholinergic signaling in the hippocampus: functional homology with the neocortex? Hippocampus 17(5):327–332.  https://doi.org/10.1002/hipo.20279 CrossRefPubMedPubMedCentralGoogle Scholar
  245. Gulledge AT, Bucci DJ, Zhang SS, Matsui M, Yeh HH (2009) M1 receptors mediate cholinergic modulation of excitability in neocortical pyramidal neurons. J Neurosci 29(31):9888–9902.  https://doi.org/10.1523/JNEUROSCI.1366-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  246. Gulyas AI, Acsady L, Freund TF (1999) Structural basis of the cholinergic and serotonergic modulation of GABAergic neurons in the hippocampus. Neurochem Int 34(5):359–372PubMedCrossRefPubMedCentralGoogle Scholar
  247. Gustafson EL, Durkin MM, Bard JA, Zgombick J, Branchek TA (1996) A receptor autoradiographic and in situ hybridization analysis of the distribution of the 5-ht7 receptor in rat brain. Br J Pharmacol 117(4):657–666PubMedPubMedCentralCrossRefGoogle Scholar
  248. Guzman SJ, Gerevich Z (2016) P2Y receptors in synaptic transmission and plasticity: therapeutic potential in cognitive dysfunction. Neural Plast 2016:1207393.  https://doi.org/10.1155/2016/1207393 CrossRefPubMedPubMedCentralGoogle Scholar
  249. Haam J, Yakel JL (2017) Cholinergic modulation of the hippocampal region and memory function. J Neurochem 142(Suppl 2):111–121.  https://doi.org/10.1111/jnc.14052 CrossRefPubMedPubMedCentralGoogle Scholar
  250. Haas HL, Gahwiler BH (1992) Vasoactive intestinal polypeptide modulates neuronal excitability in hippocampal slices of the rat. Neuroscience 47(2):273–277 0306-4522(92)90243-U [pii]PubMedCrossRefPubMedCentralGoogle Scholar
  251. Haas HL, Greene RW (1986) Effects of histamine on hippocampal pyramidal cells of the rat in vitro. Exp Brain Res 62(1):123–130PubMedCrossRefPubMedCentralGoogle Scholar
  252. Haas HL, Konnerth A (1983) Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells. Nature 302(5907):432–434PubMedCrossRefPubMedCentralGoogle Scholar
  253. Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4(2):121–130.  https://doi.org/10.1038/nrn1034 CrossRefPubMedPubMedCentralGoogle Scholar
  254. Haas HL, Rose GM (1987) Noradrenaline blocks potassium conductance in rat dentate granule cells in vitro. Neurosci Lett 78(2):171–174PubMedCrossRefPubMedCentralGoogle Scholar
  255. Haas HL, Hermann A, Greene RW, Chan-Palay V (1987) Action and location of neuropeptide tyrosine (Y) on hippocampal neurons of the rat in slice preparations. J Comp Neurol 257(2):208–215PubMedCrossRefPubMedCentralGoogle Scholar
  256. Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88(3):1183–1241.  https://doi.org/10.1152/physrev.00043.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  257. Habib D, Dringenberg HC (2009) Alternating low frequency stimulation of medial septal and commissural fibers induces NMDA-dependent, long-lasting potentiation of hippocampal synapses in urethane-anesthetized rats. Hippocampus 19(3):299–307.  https://doi.org/10.1002/hipo.20507 CrossRefPubMedPubMedCentralGoogle Scholar
  258. Hajos N, Papp EC, Acsady L, Levey AI, Freund TF (1998) Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus. Neuroscience 82(2):355–376PubMedCrossRefPubMedCentralGoogle Scholar
  259. Haley JE, Schaible E, Pavlidis P, Murdock A, Madison DV (1996) Basal and apical synapses of CA1 pyramidal cells employ different LTP induction mechanisms. Learn Mem 3(4):289–295PubMedCrossRefPubMedCentralGoogle Scholar
  260. Hallbeck M, Hermanson O, Blomqvist A (1999) Distribution of preprovasopressin mRNA in the rat central nervous system. J Comp Neurol 411(2):181–200PubMedCrossRefPubMedCentralGoogle Scholar
  261. Halliwell JV (1990) Physiological mechanisms of cholinergic action in the hippocampus. Prog Brain Res 84:255–272PubMedCrossRefPubMedCentralGoogle Scholar
  262. Halliwell JV, Adams PR (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 250(1):71–92PubMedCrossRefPubMedCentralGoogle Scholar
  263. Hammad H, Wagner JJ (2006) Dopamine-mediated disinhibition in the CA1 region of rat hippocampus via D3 receptor activation. J Pharmacol Exp Ther 316(1):113–120.  https://doi.org/10.1124/jpet.105.091579 CrossRefPubMedPubMedCentralGoogle Scholar
  264. Hangya B, Ranade SP, Lorenc M, Kepecs A (2015) Central cholinergic neurons are rapidly recruited by reinforcement feedback. Cell 162(5):1155–1168.  https://doi.org/10.1016/j.cell.2015.07.057 CrossRefPubMedPubMedCentralGoogle Scholar
  265. Harley CW (2007) Norepinephrine and the dentate gyrus. Prog Brain Res 163:299–318.  https://doi.org/10.1016/S0079-6123(07)63018-0 CrossRefPubMedPubMedCentralGoogle Scholar
  266. Harvey J (2007) Leptin: a diverse regulator of neuronal function. J Neurochem 100(2):307–313PubMedCrossRefPubMedCentralGoogle Scholar
  267. Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16(6):710–715.  https://doi.org/10.1016/j.conb.2006.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  268. Hasselmo ME, Schnell E (1994) Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology. J Neurosci 14(6):3898–3914PubMedCrossRefPubMedCentralGoogle Scholar
  269. Haug T, Storm JF (2000) Protein kinase A mediates the modulation of the slow Ca(2+)-dependent K(+) current, I(sAHP), by the neuropeptides CRF, VIP, and CGRP in hippocampal pyramidal neurons. J Neurophysiol 83(4):2071–2079PubMedCrossRefPubMedCentralGoogle Scholar
  270. Hefft S, Hulo S, Bertrand D, Muller D (1999) Synaptic transmission at nicotinic acetylcholine receptors in rat hippocampal organotypic cultures and slices. J Physiol Lond 515(3):769–776.  https://doi.org/10.1111/j.1469-7793.1999.769ab.x CrossRefPubMedPubMedCentralGoogle Scholar
  271. Henny P, Jones BE (2008) Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. Eur J Neurosci 27(3):654–670.  https://doi.org/10.1111/j.1460-9568.2008.06029.x CrossRefPubMedPubMedCentralGoogle Scholar
  272. Henstridge CM, Balenga NA, Ford LA, Ross RA, Waldhoer M, Irving AJ (2009) The GPR55 ligand L-alpha-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation. FASEB J 23(1):183–193PubMedCrossRefPubMedCentralGoogle Scholar
  273. Hillman KL, Knudson CA, Carr PA, Doze VA, Porter JE (2005) Adrenergic receptor characterization of CA1 hippocampal neurons using real time single cell RT-PCR. Brain Res Mol Brain Res 139(2):267–276.  https://doi.org/10.1016/j.molbrainres.2005.05.033 CrossRefPubMedPubMedCentralGoogle Scholar
  274. Hillman KL, Lei S, Doze VA, Porter JE (2009) Alpha-1A adrenergic receptor activation increases inhibitory tone in CA1 hippocampus. Epilepsy Res 84(2-3):97–109.  https://doi.org/10.1016/j.eplepsyres.2008.12.007 CrossRefPubMedPubMedCentralGoogle Scholar
  275. Hioki H, Nakamura H, Ma YF, Konno M, Hayakawa T, Nakamura KC, Fujiyama F, Kaneko T (2010) Vesicular glutamate transporter 3-expressing nonserotonergic projection neurons constitute a subregion in the rat midbrain raphe nuclei. J Comp Neurol 518(5):668–686.  https://doi.org/10.1002/cne.22237 CrossRefPubMedPubMedCentralGoogle Scholar
  276. Hippenmeyer S, Vrieseling E, Sigrist M, Portmann T, Laengle C, Ladle DR, Arber S (2005) A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol 3(5):e159.  https://doi.org/10.1371/journal.pbio.0030159 CrossRefPubMedPubMedCentralGoogle Scholar
  277. Hollins C, Stone TW (1980) Adenosine inhibition of gamma-aminobutyric acid release from slices of rat cerebral cortex. Br J Pharmacol 69(1):107–112PubMedPubMedCentralCrossRefGoogle Scholar
  278. Holscher C, Anwyl R, Rowan MJ (1997) Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo. J Neurosci 17(16):6470–6477PubMedCrossRefPubMedCentralGoogle Scholar
  279. Hopkins WF, Johnston D (1984) Frequency-dependent noradrenergic modulation of long-term potentiation in the hippocampus. Science 226(4672):350–352PubMedCrossRefPubMedCentralGoogle Scholar
  280. Hopkins WF, Johnston D (1988) Noradrenergic enhancement of long-term potentiation at mossy fiber synapses in the hippocampus. J Neurophysiol 59(2):667–687.  https://doi.org/10.1152/jn.1988.59.2.667 CrossRefPubMedPubMedCentralGoogle Scholar
  281. Hsu KS (1996) Characterization of dopamine receptors mediating inhibition of excitatory synaptic transmission in the rat hippocampal slice. J Neurophysiol 76(3):1887–1895.  https://doi.org/10.1152/jn.1996.76.3.1887 CrossRefPubMedPubMedCentralGoogle Scholar
  282. Hu H, Real E, Takamiya K, Kang MG, Ledoux J, Huganir RL, Malinow R (2007) Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell 131(1):160–173.  https://doi.org/10.1016/j.cell.2007.09.017 CrossRefPubMedPubMedCentralGoogle Scholar
  283. Huang YY, Kandel ER (1995) D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc Natl Acad Sci U S A 92(7):2446–2450PubMedPubMedCentralCrossRefGoogle Scholar
  284. Huang YY, Kandel ER (1996) Modulation of both the early and the late phase of mossy fiber LTP by the activation of beta-adrenergic receptors. Neuron 16(3):611–617PubMedCrossRefPubMedCentralGoogle Scholar
  285. Huerta PT, Lisman JE (1993) Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature 364(6439):723–725.  https://doi.org/10.1038/364723a0 CrossRefPubMedPubMedCentralGoogle Scholar
  286. Huh CY, Goutagny R, Williams S (2010) Glutamatergic neurons of the mouse medial septum and diagonal band of Broca synaptically drive hippocampal pyramidal cells: relevance for hippocampal theta rhythm. J Neurosci 30(47):15951–15961.  https://doi.org/10.1523/JNEUROSCI.3663-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  287. Hummos A, Nair SS (2017) An integrative model of the intrinsic hippocampal theta rhythm. PLoS One 12(8):e0182648.  https://doi.org/10.1371/journal.pone.0182648 CrossRefPubMedPubMedCentralGoogle Scholar
  288. Hurst K, Badgley C, Ellsworth T, Bell S, Friend L, Prince B, Welch J, Cowan Z, Williamson R, Lyon C, Anderson B, Poole B, Christensen M, McNeil M, Call J, Edwards JG (2017) A putative lysophosphatidylinositol receptor GPR55 modulates hippocampal synaptic plasticity. Hippocampus 27(9):985–998.  https://doi.org/10.1002/hipo.22747 CrossRefPubMedPubMedCentralGoogle Scholar
  289. Hyman JM, Wyble BP, Goyal V, Rossi CA, Hasselmo ME (2003) Stimulation in hippocampal region CA1 in behaving rats yields long-term potentiation when delivered to the peak of theta and long-term depression when delivered to the trough. J Neurosci 23(37):11725–11731PubMedCrossRefGoogle Scholar
  290. Ihalainen JA, Riekkinen P Jr, Feenstra MG (1999) Comparison of dopamine and noradrenaline release in mouse prefrontal cortex, striatum and hippocampus using microdialysis. Neurosci Lett 277(2):71–74PubMedCrossRefGoogle Scholar
  291. Ihara N, Ueda S, Kawata M, Sano Y (1988) Immunohistochemical demonstration of serotonin-containing nerve fibers in the mammalian hippocampal formation. Acta Anat (Basel) 132(4):335–346CrossRefGoogle Scholar
  292. Ikeuchi Y, Nishizaki T, Okada Y (1996) Repetitive applications of ATP potentiate potassium current by Ca2+/calmodulin kinase in cultured rat hippocampal neurons. Neurosci Lett 203(2):115–118PubMedCrossRefGoogle Scholar
  293. Illes P, Nieber K, Norenberg W (1996) Electrophysiological effects of ATP on brain neurones. J Auton Pharmacol 16(6):407–411PubMedCrossRefGoogle Scholar
  294. Inagaki N, Yamatodani A, Ando-Yamamoto M, Tohyama M, Watanabe T, Wada H (1988) Organization of histaminergic fibers in the rat brain. J Comp Neurol 273(3):283–300.  https://doi.org/10.1002/cne.902730302 CrossRefPubMedPubMedCentralGoogle Scholar
  295. Inoue K, Koizumi S, Ueno S, Kita A, Tsuda M (1999) The functions of ATP receptors in the synaptic transmission in the hippocampus. Prog Brain Res 120:193–206PubMedCrossRefGoogle Scholar
  296. Irving AJ, Harvey J (2014) Leptin regulation of hippocampal synaptic function in health and disease. Philos Trans R Soc Lond B Biol Sci 369(1633):20130155.  https://doi.org/10.1098/rstb.2013.0155 CrossRefPubMedPubMedCentralGoogle Scholar
  297. Ishihara K, Katsuki H, Sugimura M, Satoh M (1992) YM-14673, a new thyrotropin-releasing hormone analog, augments long-term potentiation in the mossy fiber-CA3 system of guinea pig hippocampal slices. J Pharmacobiodyn 15(2):75–78PubMedCrossRefPubMedCentralGoogle Scholar
  298. Ito HT, Schuman EM (2007) Frequency-dependent gating of synaptic transmission and plasticity by dopamine. Front Neural Circuits 1:1.  https://doi.org/10.3389/neuro.04.001.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  299. Jackman SL, Beneduce BM, Drew IR, Regehr WG (2014) Achieving high-frequency optical control of synaptic transmission. J Neurosci 34(22):7704–7714.  https://doi.org/10.1523/JNEUROSCI.4694-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  300. Jagadeesh B, Gray CM, Ferster D (1992) Visually evoked oscillations of membrane potential in cells of cat visual cortex. Science 257(5069):552–554PubMedCrossRefGoogle Scholar
  301. Jahnsen H (1980) The action of 5-hydroxytryptamine on neuronal membranes and synaptic transmission in area CA1 of the hippocampus in vitro. Brain Res 197(1):83–94PubMedCrossRefGoogle Scholar
  302. Jia Y, Yamazaki Y, Nakauchi S, Sumikawa K (2009) Alpha2 nicotine receptors function as a molecular switch to continuously excite a subset of interneurons in rat hippocampal circuits. Eur J Neurosci 29(8):1588–1603.  https://doi.org/10.1111/j.1460-9568.2009.06706.x CrossRefPubMedPubMedCentralGoogle Scholar
  303. Jimenez JC, Su K, Goldberg AR, Luna VM, Biane JS, Ordek G, Zhou P, Ong SK, Wright MA, Zweifel L, Paninski L, Hen R, Kheirbek MA (2018) Anxiety cells in a hippocampal-hypothalamic circuit. Neuron 97(3):670–683e676.  https://doi.org/10.1016/j.neuron.2018.01.016 CrossRefPubMedPubMedCentralGoogle Scholar
  304. Johnston A, McBain CJ, Fisahn A (2014) 5-Hydroxytryptamine1A receptor-activation hyperpolarizes pyramidal cells and suppresses hippocampal gamma oscillations via Kir3 channel activation. J Physiol 592(19):4187–4199.  https://doi.org/10.1113/jphysiol.2014.279083 CrossRefPubMedPubMedCentralGoogle Scholar
  305. Jones BE (2004) Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex. In: Acetylcholine in the cerebral cortex. Progress in Brain Research, pp 157–169.  https://doi.org/10.1016/s0079-6123(03)45011-5 Google Scholar
  306. Jones S, Yakel JL (1997) Functional nicotinic ACh receptors on interneurones in the rat hippocampus. J Physiol 504(Pt 3):603–610PubMedPubMedCentralCrossRefGoogle Scholar
  307. Jones JD, Carney ST, Vrana KE, Norford DC, Howlett AC (2008) Cannabinoid receptor-mediated translocation of NO-sensitive guanylyl cyclase and production of cyclic GMP in neuronal cells. Neuropharmacology 54(1):23–30PubMedCrossRefPubMedCentralGoogle Scholar
  308. Kahle JS, Cotman CW (1989) Carbachol depresses synaptic responses in the medial but not the lateral perforant path. Brain Res 482(1):159–163PubMedPubMedCentralCrossRefGoogle Scholar
  309. Kaiser T, Ting JT, Monteiro P, Feng G (2016) Transgenic labeling of parvalbumin-expressing neurons with tdTomato. Neuroscience 321:236–245.  https://doi.org/10.1016/j.neuroscience.2015.08.036 CrossRefPubMedPubMedCentralGoogle Scholar
  310. Kajimoto T, Okada T, Yu H, Goparaju SK, Jahangeer S, Nakamura S (2007) Involvement of sphingosine-1-phosphate in glutamate secretion in hippocampal neurons. Mol Cell Biol 27(9):3429–3440PubMedPubMedCentralCrossRefGoogle Scholar
  311. Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89(1):309–380PubMedCrossRefPubMedCentralGoogle Scholar
  312. Karson MA, Whittington KC, Alger BE (2008) Cholecystokinin inhibits endocannabinoid-sensitive hippocampal IPSPs and stimulates others. Neuropharmacology 54(1):117–128PubMedCrossRefPubMedCentralGoogle Scholar
  313. Karunakaran S, Chowdhury A, Donato F, Quairiaux C, Michel CM, Caroni P (2016) PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation. Nat Neurosci 19(3):454–464.  https://doi.org/10.1038/nn.4231 CrossRefPubMedPubMedCentralGoogle Scholar
  314. Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K, Freund TF (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19(11):4544–4558CrossRefGoogle Scholar
  315. Katona I, Urban GM, Wallace M, Ledent C, Jung KM, Piomelli D, Mackie K, Freund TF (2006) Molecular composition of the endocannabinoid system at glutamatergic synapses. J Neurosci 26(21):5628–5637PubMedPubMedCentralCrossRefGoogle Scholar
  316. Katsurabayashi S, Kubota H, Tokutomi N, Akaike N (2003) A distinct distribution of functional presynaptic 5-HT receptor subtypes on GABAergic nerve terminals projecting to single hippocampal CA1 pyramidal neurons. Neuropharmacology 44(8):1022–1030PubMedCrossRefPubMedCentralGoogle Scholar
  317. Katz PS, Frost WN (1996) Intrinsic neuromodulation: altering neuronal circuits from within. Trends Neurosci 19(2):54–61.  https://doi.org/10.1016/0166-2236(96)89621-4 CrossRefPubMedPubMedCentralGoogle Scholar
  318. Kawa K (1994) Distribution and functional properties of 5-HT3 receptors in the rat hippocampal dentate gyrus: a patch-clamp study. J Neurophysiol 71(5):1935–1947.  https://doi.org/10.1152/jn.1994.71.5.1935 CrossRefPubMedPubMedCentralGoogle Scholar
  319. Kawaguchi Y (1997) Selective cholinergic modulation of cortical GABAergic cell subtypes. J Neurophysiol 78(3):1743–1747.  https://doi.org/10.1152/jn.1997.78.3.1743 CrossRefPubMedPubMedCentralGoogle Scholar
  320. Kawamura M, Gachet C, Inoue K, Kato F (2004) Direct excitation of inhibitory interneurons by extracellular ATP mediated by P2Y1 receptors in the hippocampal slice. J Neurosci 24(48):10835–10845.  https://doi.org/10.1523/JNEUROSCI.3028-04.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  321. Kearns IR, Morton RA, Bulters DO, Davies CH (2001) Opioid receptor regulation of muscarinic acetylcholine receptor-mediated synaptic responses in the hippocampus. Neuropharmacology 41(5):565–573PubMedCrossRefPubMedCentralGoogle Scholar
  322. Kempadoo KA, Mosharov EV, Choi SJ, Sulzer D, Kandel ER (2016) Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc Natl Acad Sci U S A 113(51):14835–14840.  https://doi.org/10.1073/pnas.1616515114 CrossRefPubMedPubMedCentralGoogle Scholar
  323. Kepecs A, Fishell G (2014) Interneuron cell types are fit to function. Nature 505(7483):318–326.  https://doi.org/10.1038/nature12983 CrossRefPubMedPubMedCentralGoogle Scholar
  324. Khakh BS (2009) ATP-gated P2X receptors on excitatory nerve terminals onto interneurons initiate a form of asynchronous glutamate release. Neuropharmacology 56(1):216–222PubMedCrossRefPubMedCentralGoogle Scholar
  325. Khakh BS, Gittermann D, Cockayne DA, Jones A (2003) ATP modulation of excitatory synapses onto interneurons. J Neurosci 23(19):7426–7437PubMedCrossRefPubMedCentralGoogle Scholar
  326. Khan ZU, Gutierrez A, Martin R, Penafiel A, Rivera A, De La Calle A (1998) Differential regional and cellular distribution of dopamine D2-like receptors: an immunocytochemical study of subtype-specific antibodies in rat and human brain. J Comp Neurol 402(3):353–371PubMedCrossRefPubMedCentralGoogle Scholar
  327. Kim J, Isokawa M, Ledent C, Alger BE (2002) Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus. J Neurosci 22(23):10182–10191PubMedCrossRefPubMedCentralGoogle Scholar
  328. King B, Rizwan AP, Asmara H, Heath NC, Engbers JD, Dykstra S, Bartoletti TM, Hameed S, Zamponi GW, Turner RW (2015) IKCa channels are a critical determinant of the slow AHP in CA1 pyramidal neurons. Cell Rep 11(2):175–182.  https://doi.org/10.1016/j.celrep.2015.03.026 CrossRefPubMedPubMedCentralGoogle Scholar
  329. Kirby MT, Hampson RE, Deadwyler SA (2000) Cannabinoid receptor activation in CA1 pyramidal cells in adult rat hippocampus. Brain Res 863(1-2):120–131PubMedCrossRefPubMedCentralGoogle Scholar
  330. Kitamura K, Judkewitz B, Kano M, Denk W, Hausser M (2008) Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat Methods 5(1):61–67.  https://doi.org/10.1038/nmeth1150 nmeth1150 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  331. Klapstein GJ, Colmers WF (1993) On the sites of presynaptic inhibition by neuropeptide Y in rat hippocampus in vitro. Hippocampus 3(1):103–111PubMedCrossRefPubMedCentralGoogle Scholar
  332. Klausberger T (2009) GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur J Neurosci 30(6):947–957.  https://doi.org/10.1111/j.1460-9568.2009.06913.x CrossRefGoogle Scholar
  333. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321(5885):53–57.  https://doi.org/10.1126/science.1149381 CrossRefPubMedPubMedCentralGoogle Scholar
  334. Klausberger T, Magill PJ, Marton LF, Roberts JD, Cobden PM, Buzsaki G, Somogyi P (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421(6925):844–848CrossRefGoogle Scholar
  335. Kobayashi K, Suzuki H (2007) Dopamine selectively potentiates hippocampal mossy fiber to CA3 synaptic transmission. Neuropharmacology 52(2):552–561.  https://doi.org/10.1016/j.neuropharm.2006.08.026 CrossRefPubMedPubMedCentralGoogle Scholar
  336. Kobayashi K, Ikeda Y, Haneda E, Suzuki H (2008) Chronic fluoxetine bidirectionally modulates potentiating effects of serotonin on the hippocampal mossy fiber synaptic transmission. J Neurosci 28(24):6272–6280.  https://doi.org/10.1523/JNEUROSCI.1656-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  337. Kocsis B, Varga V, Dahan L, Sik A (2006) Serotonergic neuron diversity: identification of raphe neurons with discharges time-locked to the hippocampal theta rhythm. Proc Natl Acad Sci U S A 103(4):1059–1064.  https://doi.org/10.1073/pnas.0508360103 CrossRefPubMedPubMedCentralGoogle Scholar
  338. Kojima T, Matsumoto M, Togashi H, Tachibana K, Kemmotsu O, Yoshioka M (2003) Fluvoxamine suppresses the long-term potentiation in the hippocampal CA1 field of anesthetized rats: an effect mediated via 5-HT1A receptors. Brain Res 959(1):165–168PubMedCrossRefPubMedCentralGoogle Scholar
  339. Kouznetsova M, Nistri A (1998) Modulation by substance P of synaptic transmission in the mouse hippocampal slice. Eur J Neurosci 10(10):3076–3084PubMedCrossRefPubMedCentralGoogle Scholar
  340. Kremin T, Hasselmo ME (2007) Cholinergic suppression of glutamatergic synaptic transmission in hippocampal region CA3 exhibits laminar selectivity: implication for hippocampal network dynamics. Neuroscience 149(4):760–767.  https://doi.org/10.1016/j.neuroscience.2007.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  341. Kremin T, Gerber D, Giocomo LM, Huang SY, Tonegawa S, Hasselmo ME (2006) Muscarinic suppression in stratum radiatum of CA1 shows dependence on presynaptic M1 receptors and is not dependent on effects at GABA(B) receptors. Neurobiol Learn Mem 85(2):153–163.  https://doi.org/10.1016/j.nlm.2005.09.005 CrossRefPubMedPubMedCentralGoogle Scholar
  342. Kroner S, Krimer LS, Lewis DA, Barrionuevo G (2007) Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type-specific modulation of interneurons. Cereb Cortex 17(5):1020–1032.  https://doi.org/10.1093/cercor/bhl012 CrossRefPubMedPubMedCentralGoogle Scholar
  343. Krook-Magnuson E, Luu L, Lee SH, Varga C, Soltesz I (2011) Ivy and neurogliaform interneurons are a major target of mu-opioid receptor modulation. J Neurosci 31(42):14861–14870.  https://doi.org/10.1523/JNEUROSCI.2269-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  344. Kulik A, Vida I, Fukazawa Y, Guetg N, Kasugai Y, Marker CL, Rigato F, Bettler B, Wickman K, Frotscher M, Shigemoto R (2006) Compartment-dependent colocalization of Kir3.2-containing K+ channels and GABAB receptors in hippocampal pyramidal cells. J Neurosci 26(16):4289–4297.  https://doi.org/10.1523/JNEUROSCI.4178-05.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  345. Lacaille JC, Schwartzkroin PA (1988) Intracellular responses of rat hippocampal granule cells in vitro to discrete applications of norepinephrine. Neurosci Lett 89(2):176–181PubMedCrossRefPubMedCentralGoogle Scholar
  346. Lambert NA, Teyler TJ (1991) Adenosine depresses excitatory but not fast inhibitory synaptic transmission in area CA1 of the rat hippocampus. Neurosci Lett 122(1):50–52PubMedCrossRefPubMedCentralGoogle Scholar
  347. Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci U S A 105(7):2699–2704PubMedPubMedCentralCrossRefGoogle Scholar
  348. Lawrence JJ (2007) Homosynaptic and heterosynaptic modes of endocannabinoid action at hippocampal CCK+ basket cell synapses. J Physiol 578(Pt 1):3–4.  https://doi.org/10.1113/jphysiol.2006.123802 CrossRefPubMedPubMedCentralGoogle Scholar
  349. Lawrence JJ (2008) Cholinergic control of GABA release: emerging parallels between neocortex and hippocampus. Trends Neurosci 31(7):317–327.  https://doi.org/10.1016/j.tins.2008.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  350. Lawrence JJ, Grinspan ZM, Statland JM, McBain CJ (2006a) Muscarinic receptor activation tunes mouse stratum oriens interneurones to amplify spike reliability. J Physiol 571(Pt 3):555–562.  https://doi.org/10.1113/jphysiol.2005.103218 CrossRefPubMedPubMedCentralGoogle Scholar
  351. Lawrence JJ, Saraga F, Churchill JF, Statland JM, Travis KE, Skinner FK, McBain CJ (2006b) Somatodendritic Kv7/KCNQ/M channels control interspike interval in hippocampal interneurons. J Neurosci 26(47):12325–12338.  https://doi.org/10.1523/JNEUROSCI.3521-06.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  352. Lawrence JJ, Statland JM, Grinspan ZM, McBain CJ (2006c) Cell type-specific dependence of muscarinic signalling in mouse hippocampal stratum oriens interneurones. J Physiol 570(Pt 3):595–610.  https://doi.org/10.1113/jphysiol.2005.100875 CrossRefPubMedPubMedCentralGoogle Scholar
  353. Lawrence JJ, Haario H, Stone EF (2015) Presynaptic cholinergic neuromodulation alters the temporal dynamics of short-term depression at parvalbumin-positive basket cell synapses from juvenile CA1 mouse hippocampus. J Neurophysiol 113(7):2408–2419.  https://doi.org/10.1152/jn.00167.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  354. Leao RN, Mikulovic S, Leao KE, Munguba H, Gezelius H, Enjin A, Patra K, Eriksson A, Loew LM, Tort AB, Kullander K (2012) OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons. Nat Neurosci 15(11):1524–1530.  https://doi.org/10.1038/nn.3235 CrossRefPubMedPubMedCentralGoogle Scholar
  355. Lebois EP, Thorn C, Edgerton JR, Popiolek M, Xi S (2017) Muscarinic receptor subtype distribution in the central nervous system and relevance to aging and Alzheimer’s disease. Neuropharmacology.  https://doi.org/10.1016/j.neuropharm.2017.11.018 PubMedCrossRefPubMedCentralGoogle Scholar
  356. Ledri M, Sorensen AT, Erdelyi F, Szabo G, Kokaia M (2011) Tuning afferent synapses of hippocampal interneurons by neuropeptide Y. Hippocampus 21(2):198–211.  https://doi.org/10.1002/hipo.20740 CrossRefPubMedPubMedCentralGoogle Scholar
  357. Lee MG, Chrobak JJ, Sik A, Wiley RG, Buzsaki G (1994) Hippocampal theta activity following selective lesion of the septal cholinergic system. Neuroscience 62(4):1033–1047.  https://doi.org/10.1016/0306-4522(94)90341-7 CrossRefPubMedPubMedCentralGoogle Scholar
  358. Lee K, Dixon AK, Gonzalez I, Stevens EB, McNulty S, Oles R, Richardson PJ, Pinnock RD, Singh L (1999a) Bombesin-like peptides depolarize rat hippocampal interneurones through interaction with subtype 2 bombesin receptors. J Physiol 518(Pt 3):791–802PubMedPubMedCentralCrossRefGoogle Scholar
  359. Lee K, Dixon AK, Pinnock RD (1999b) Serotonin depolarizes hippocampal interneurones in the rat stratum oriens by interaction with 5HT2 receptors. Neurosci Lett 270(1):56–58PubMedCrossRefPubMedCentralGoogle Scholar
  360. Lee MG, Hassani OK, Alonso A, Jones BE (2005) Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J Neurosci 25(17):4365–4369.  https://doi.org/10.1523/JNEUROSCI.0178-05.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  361. Lee SY, Foldy C, Szabadics J, Soltesz I (2011) Cell-type-specific CCK2 receptor signaling underlies the cholecystokinin-mediated selective excitation of hippocampal parvalbumin-positive fast-spiking basket cells. J Neurosci 31(30):10993–11002.  https://doi.org/10.1523/JNEUROSCI.1970-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  362. Lemercier CE, Schulz SB, Heidmann KE, Kovacs R, Gerevich Z (2015) Dopamine D3 receptors inhibit hippocampal gamma oscillations by disturbing CA3 pyramidal cell firing synchrony. Front Pharmacol 6:297.  https://doi.org/10.3389/fphar.2015.00297 CrossRefPubMedPubMedCentralGoogle Scholar
  363. Leranth C, Frotscher M (1987) Cholinergic innervation of hippocampal GAD- and somatostatin-immunoreactive commissural neurons. J Comp Neurol 261(1):33–47.  https://doi.org/10.1002/cne.902610104 CrossRefPubMedPubMedCentralGoogle Scholar
  364. Levey AI (1996) Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. Proc Natl Acad Sci 93(24):13541–13546.  https://doi.org/10.1073/pnas.93.24.13541 CrossRefPubMedPubMedCentralGoogle Scholar
  365. Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ (1995) Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci 15(5 Pt 2):4077–4092PubMedCrossRefPubMedCentralGoogle Scholar
  366. Levkovitz Y, Segal M (1997) Serotonin 5-HT1A receptors modulate hippocampal reactivity to afferent stimulation. J Neurosci 17(14):5591–5598PubMedCrossRefPubMedCentralGoogle Scholar
  367. Li S, Cullen WK, Anwyl R, Rowan MJ (2003) Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat Neurosci 6(5):526–531.  https://doi.org/10.1038/nn1049 CrossRefPubMedPubMedCentralGoogle Scholar
  368. Li QH, Nakadate K, Tanaka-Nakadate S, Nakatsuka D, Cui Y, Watanabe Y (2004) Unique expression patterns of 5-HT2A and 5-HT2C receptors in the rat brain during postnatal development: Western blot and immunohistochemical analyses. J Comp Neurol 469(1):128–140.  https://doi.org/10.1002/cne.11004 CrossRefPubMedPubMedCentralGoogle Scholar
  369. Li Y, Zhong W, Wang D, Feng Q, Liu Z, Zhou J, Jia C, Hu F, Zeng J, Guo Q, Fu L, Luo M (2016) Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat Commun 7:10503.  https://doi.org/10.1038/ncomms10503 CrossRefPubMedPubMedCentralGoogle Scholar
  370. Li Q, Bartley AF, Dobrunz LE (2017) Endogenously released neuropeptide Y suppresses hippocampal short-term facilitation and is impaired by stress-induced anxiety. J Neurosci 37(1):23–37.  https://doi.org/10.1523/JNEUROSCI.2599-16.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  371. Lidov HG, Grzanna R, Molliver ME (1980) The serotonin innervation of the cerebral cortex in the rat – an immunohistochemical analysis. Neuroscience 5(2):207–227PubMedCrossRefPubMedCentralGoogle Scholar
  372. Lin YT, Huang CC, Hsu KS (2012) Oxytocin promotes long-term potentiation by enhancing epidermal growth factor receptor-mediated local translation of protein kinase Mzeta. J Neurosci 32(44):15476–15488.  https://doi.org/10.1523/JNEUROSCI.2429-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  373. Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46(5):703–713.  https://doi.org/10.1016/j.neuron.2005.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  374. Lopes LV, Cunha RA, Kull B, Fredholm BB, Ribeiro JA (2002) Adenosine A(2A) receptor facilitation of hippocampal synaptic transmission is dependent on tonic A(1) receptor inhibition. Neuroscience 112(2):319–329PubMedCrossRefPubMedCentralGoogle Scholar
  375. Lopez-Bendito G, Sturgess K, Erdelyi F, Szabo G, Molnar Z, Paulsen O (2004) Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb Cortex 14(10):1122–1133.  https://doi.org/10.1093/cercor/bhh072 CrossRefPubMedPubMedCentralGoogle Scholar
  376. Lorincz ML, Adamantidis AR (2017) Monoaminergic control of brain states and sensory processing: existing knowledge and recent insights obtained with optogenetics. Prog Neurobiol 151:237–253.  https://doi.org/10.1016/j.pneurobio.2016.09.003 CrossRefPubMedPubMedCentralGoogle Scholar
  377. Lovett-Barron M, Kaifosh P, Kheirbek MA, Danielson N, Zaremba JD, Reardon TR, Turi GF, Hen R, Zemelman BV, Losonczy A (2014) Dendritic inhibition in the hippocampus supports fear learning. Science 343(6173):857–863.  https://doi.org/10.1126/science.1247485 CrossRefPubMedPubMedCentralGoogle Scholar
  378. Loy R, Koziell DA, Lindsey JD, Moore RY (1980) Noradrenergic innervation of the adult rat hippocampal formation. J Comp Neurol 189(4):699–710.  https://doi.org/10.1002/cne.901890406 CrossRefPubMedPubMedCentralGoogle Scholar
  379. Lucas-Meunier E, Fossier P, Baux G, Amar M (2003) Cholinergic modulation of the cortical neuronal network. Pflugers Arch 446(1):17–29.  https://doi.org/10.1007/s00424-002-0999-2 CrossRefPubMedPubMedCentralGoogle Scholar
  380. Luo X, McGregor G, Irving AJ, Harvey J (2015) Leptin induces a novel form of NMDA receptor-dependent LTP at hippocampal temporoammonic-CA1 synapses. eNeuro 2(3).  https://doi.org/10.1523/ENEURO.0007-15.2015
  381. Luscher C, Jan LY, Stoffel M, Malenka RC, Nicoll RA (1997) G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19(3):687–695PubMedCrossRefPubMedCentralGoogle Scholar
  382. Lynch MA, Bliss TV (1986) Noradrenaline modulates the release of [14C]glutamate from dentate but not from CA1/CA3 slices of rat hippocampus. Neuropharmacology 25(5):493–498PubMedCrossRefPubMedCentralGoogle Scholar
  383. Maccaferri G (2005) Stratum oriens horizontal interneurone diversity and hippocampal network dynamics. J Physiol 562(Pt 1):73–80.  https://doi.org/10.1113/jphysiol.2004.077081 CrossRefPubMedPubMedCentralGoogle Scholar
  384. Maccaferri G, Lacaille JC (2003) Interneuron diversity series: hippocampal interneuron classifications – making things as simple as possible, not simpler. Trends Neurosci 26(10):564–571.  https://doi.org/10.1016/j.tins.2003.08.002 CrossRefGoogle Scholar
  385. Maccaferri G, McBain CJ (1996) The hyperpolarization-activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus interneurones. J Physiol 497(Pt 1):119–130PubMedPubMedCentralCrossRefGoogle Scholar
  386. Maccaferri G, Toth K, McBain CJ (1998) Target-specific expression of presynaptic mossy fiber plasticity. Science 279(5355):1368–1370.  https://doi.org/10.1126/science.279.5355.1368 CrossRefGoogle Scholar
  387. MacVicar BA, Kerrin JP, Davison JS (1987) Inhibition of synaptic transmission in the hippocampus by cholecystokinin (CCK) and its antagonism by a CCK analog (CCK27-33). Brain Res 406(1-2):130–135PubMedCrossRefPubMedCentralGoogle Scholar
  388. Madison DV, McQuiston AR (2006) Toward a unified hypothesis of interneuronal modulation. J Physiol 570(Pt 3):435.  https://doi.org/10.1113/jphysiol.2005.103937 CrossRefPubMedPubMedCentralGoogle Scholar
  389. Madison DV, Nicoll RA (1982) Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299(5884):636–638PubMedCrossRefPubMedCentralGoogle Scholar
  390. Madison DV, Nicoll RA (1986) Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal neurones, in vitro. J Physiol 372:221–244PubMedPubMedCentralCrossRefGoogle Scholar
  391. Madison DV, Nicoll RA (1988a) Enkephalin hyperpolarizes interneurones in the rat hippocampus. J Physiol 398:123–130PubMedPubMedCentralCrossRefGoogle Scholar
  392. Madison DV, Nicoll RA (1988b) Norepinephrine decreases synaptic inhibition in the rat hippocampus. Brain Res 442(1):131–138PubMedCrossRefPubMedCentralGoogle Scholar
  393. Madison DV, Lancaster B, Nicoll RA (1987) Voltage clamp analysis of cholinergic action in the hippocampus. J Neurosci 7(3):733–741PubMedCrossRefPubMedCentralGoogle Scholar
  394. Maeda T, Kaneko S, Satoh M (1994) Inhibitory influence via 5-HT3 receptors on the induction of LTP in mossy fiber-CA3 system of guinea-pig hippocampal slices. Neurosci Res 18(4):277–282PubMedCrossRefPubMedCentralGoogle Scholar
  395. Magloczky Z, Acsady L, Freund TF (1994) Principal cells are the postsynaptic targets of supramammillary afferents in the hippocampus of the rat. Hippocampus 4(3):322–334.  https://doi.org/10.1002/hipo.450040316 CrossRefPubMedPubMedCentralGoogle Scholar
  396. Maity S, Rah S, Sonenberg N, Gkogkas CG, Nguyen PV (2015) Norepinephrine triggers metaplasticity of LTP by increasing translation of specific mRNAs. Learn Mem 22(10):499–508.  https://doi.org/10.1101/lm.039222.115 CrossRefPubMedPubMedCentralGoogle Scholar
  397. Maity S, Jarome TJ, Blair J, Lubin FD, Nguyen PV (2016) Noradrenaline goes nuclear: epigenetic modifications during long-lasting synaptic potentiation triggered by activation of beta-adrenergic receptors. J Physiol 594(4):863–881.  https://doi.org/10.1113/JP271432 CrossRefPubMedPubMedCentralGoogle Scholar
  398. Makara JK, Katona I, Nyiri G, Nemeth B, Ledent C, Watanabe M, de Vente J, Freund TF, Hajos N (2007) Involvement of nitric oxide in depolarization-induced suppression of inhibition in hippocampal pyramidal cells during activation of cholinergic receptors. J Neurosci 27(38):10211–10222PubMedCrossRefPubMedCentralGoogle Scholar
  399. Malenka RC, Nicoll RA (1986) Dopamine decreases the calcium-activated afterhyperpolarization in hippocampal CA1 pyramidal cells. Brain Res 379(2):210–215PubMedCrossRefPubMedCentralGoogle Scholar
  400. Manaker S, Winokur A, Rostene WH, Rainbow TC (1985) Autoradiographic localization of thyrotropin-releasing hormone receptors in the rat central nervous system. J Neurosci 5(1):167–174PubMedCrossRefPubMedCentralGoogle Scholar
  401. Manseau F, Goutagny R, Danik M, Williams S (2008) The hippocamposeptal pathway generates rhythmic firing of GABAergic neurons in the medial septum and diagonal bands: an investigation using a complete septohippocampal preparation in vitro. J Neurosci 28(15):4096–4107.  https://doi.org/10.1523/JNEUROSCI.0247-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  402. Marder E (2012) Neuromodulation of neuronal circuits: back to the future. Neuron 76(1):1–11.  https://doi.org/10.1016/j.neuron.2012.09.010 CrossRefPubMedPubMedCentralGoogle Scholar
  403. Markram H, Segal M (1990a) Acetylcholine potentiates responses to N-methyl-D-aspartate in the rat hippocampus. Neurosci Lett 113(1):62–65PubMedCrossRefPubMedCentralGoogle Scholar
  404. Markram H, Segal M (1990b) Long-lasting facilitation of excitatory postsynaptic potentials in the rat hippocampus by acetylcholine. J Physiol 427:381–393PubMedPubMedCentralCrossRefGoogle Scholar
  405. Maroso M, Szabo GG, Kim HK, Alexander A, Bui AD, Lee SH, Lutz B, Soltesz I (2016) Cannabinoid control of learning and memory through HCN channels. Neuron 89(5):1059–1073.  https://doi.org/10.1016/j.neuron.2016.01.023 CrossRefPubMedPubMedCentralGoogle Scholar
  406. Marsicano G, Lutz B (1999) Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 11(12):4213–4225PubMedCrossRefPubMedCentralGoogle Scholar
  407. Martin LA, Wei DS, Alger BE (2001) Heterogeneous susceptibility of GABA(A) receptor-mediated IPSCs to depolarization-induced suppression of inhibition in rat hippocampus. J Physiol 532(Pt 3):685–700PubMedPubMedCentralCrossRefGoogle Scholar
  408. Martinez-Mir MI, Pollard H, Moreau J, Arrang JM, Ruat M, Traiffort E, Schwartz JC, Palacios JM (1990) Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res 526(2):322–327PubMedCrossRefPubMedCentralGoogle Scholar
  409. Matsumoto M, Kojima T, Togashi H, Mori K, Ohashi S, Ueno K, Yoshioka M (2002) Differential characteristics of endogenous serotonin-mediated synaptic transmission in the hippocampal CA1 and CA3 fields of anaesthetized rats. Naunyn Schmiedebergs Arch Pharmacol 366(6):570–577.  https://doi.org/10.1007/s00210-002-0634-y CrossRefPubMedPubMedCentralGoogle Scholar
  410. Matthes H, Boschert U, Amlaiky N, Grailhe R, Plassat JL, Muscatelli F, Mattei MG, Hen R (1993) Mouse 5-hydroxytryptamine5A and 5-hydroxytryptamine5B receptors define a new family of serotonin receptors: cloning, functional expression, and chromosomal localization. Mol Pharmacol 43(3):313–319PubMedPubMedCentralGoogle Scholar
  411. Mattis J, Brill J, Evans S, Lerner TN, Davidson TJ, Hyun M, Ramakrishnan C, Deisseroth K, Huguenard JR (2014) Frequency-dependent, cell type-divergent signaling in the hippocamposeptal projection. J Neurosci 34(35):11769–11780.  https://doi.org/10.1523/JNEUROSCI.5188-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  412. McCormick DA, Williamson A (1991) Modulation of neuronal firing mode in cat and guinea pig LGNd by histamine: possible cellular mechanisms of histaminergic control of arousal. J Neurosci 11(10):3188–3199PubMedCrossRefPubMedCentralGoogle Scholar
  413. McDermott CM, Schrader LA (2011) Activation of kappa opioid receptors increases intrinsic excitability of dentate gyrus granule cells. J Physiol 589(Pt 14):3517–3532.  https://doi.org/10.1113/jphysiol.2011.211623 CrossRefPubMedPubMedCentralGoogle Scholar
  414. McMahon LL, Kauer JA (1997) Hippocampal interneurons are excited via serotonin-gated ion channels. J Neurophysiol 78(5):2493–2502.  https://doi.org/10.1152/jn.1997.78.5.2493 CrossRefPubMedPubMedCentralGoogle Scholar
  415. McNamara CG, Dupret D (2017) Two sources of dopamine for the hippocampus. Trends Neurosci 40(7):383–384.  https://doi.org/10.1016/j.tins.2017.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  416. McQuiston AR (2014a) Acetylcholine release and inhibitory interneuron activity in hippocampal CA1. Front Synaptic Neurosci 6:20.  https://doi.org/10.3389/fnsyn.2014.00020 CrossRefPubMedPubMedCentralGoogle Scholar
  417. McQuiston AR (2014b) Slow synaptic transmission in the central nervous system. In: Nicotinic receptors. pp 201–215.  https://doi.org/10.1007/978-1-4939-1167-7_10 Google Scholar
  418. McQuiston AR, Madison DV (1999a) Muscarinic receptor activity has multiple effects on the resting membrane potentials of CA1 hippocampal interneurons. J Neurosci 19(14):5693–5702PubMedCrossRefPubMedCentralGoogle Scholar
  419. McQuiston AR, Madison DV (1999b) Muscarinic receptor activity induces an afterdepolarization in a subpopulation of hippocampal CA1 interneurons. J Neurosci 19(14):5703–5710PubMedCrossRefPubMedCentralGoogle Scholar
  420. McQuiston AR, Madison DV (1999c) Nicotinic receptor activation excites distinct subtypes of interneurons in the rat hippocampus. J Neurosci 19(8):2887–2896PubMedCrossRefPubMedCentralGoogle Scholar
  421. McQuiston AR, Petrozzino JJ, Connor JA, Colmers WF (1996) Neuropeptide Y1 receptors inhibit N-type calcium currents and reduce transient calcium increases in rat dentate granule cells. J Neurosci 16(4):1422–1429PubMedCrossRefPubMedCentralGoogle Scholar
  422. Melzer S, Michael M, Caputi A, Eliava M, Fuchs EC, Whittington MA, Monyer H (2012) Long-range-projecting GABAergic neurons modulate inhibition in hippocampus and entorhinal cortex. Science 335(6075):1506–1510.  https://doi.org/10.1126/science.1217139 CrossRefGoogle Scholar
  423. Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Trayhurn P (1996) Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett 387(2-3):113–116PubMedCrossRefPubMedCentralGoogle Scholar
  424. Miettinen R, Freund TF (1992) Neuropeptide Y-containing interneurons in the hippocampus receive synaptic input from median raphe and GABAergic septal afferents. Neuropeptides 22(3):185–193PubMedCrossRefPubMedCentralGoogle Scholar
  425. Mikulovic S, Restrepo CE, Hilscher MM, Kullander K, Leao RN (2015) Novel markers for OLM interneurons in the hippocampus. Front Cell Neurosci 9:201.  https://doi.org/10.3389/fncel.2015.00201 CrossRefPubMedPubMedCentralGoogle Scholar
  426. Miller KK, Hoffer A, Svoboda KR, Lupica CR (1997) Cholecystokinin increases GABA release by inhibiting a resting K+ conductance in hippocampal interneurons. J Neurosci 17(13):4994–5003PubMedCrossRefPubMedCentralGoogle Scholar
  427. Milligan G (2007) G protein-coupled receptor dimerisation: molecular basis and relevance to function. Biochim Biophys Acta 1768(4):825–835.  https://doi.org/10.1016/j.bbamem.2006.09.021 CrossRefPubMedPubMedCentralGoogle Scholar
  428. Milner TA, Bacon CE (1989a) GABAergic neurons in the rat hippocampal formation: ultrastructure and synaptic relationships with catecholaminergic terminals. J Neurosci 9(10):3410–3427PubMedCrossRefPubMedCentralGoogle Scholar
  429. Milner TA, Bacon CE (1989b) Ultrastructural localization of tyrosine hydroxylase-like immunoreactivity in the rat hippocampal formation. J Comp Neurol 281(3):479–495.  https://doi.org/10.1002/cne.902810311 CrossRefPubMedPubMedCentralGoogle Scholar
  430. Milner TA, Lee A, Aicher SA, Rosin DL (1998) Hippocampal alpha2a-adrenergic receptors are located predominantly presynaptically but are also found postsynaptically and in selective astrocytes. J Comp Neurol 395(3):310–327PubMedCrossRefPubMedCentralGoogle Scholar
  431. Milner TA, Shah P, Pierce JP (2000) beta-adrenergic receptors primarily are located on the dendrites of granule cells and interneurons but also are found on astrocytes and a few presynaptic profiles in the rat dentate gyrus. Synapse 36(3):178–193. https://doi.org/10.1002/(SICI)1098-2396(20000601)36:3<178::AID-SYN3>3.0.CO;2-6 CrossRefPubMedPubMedCentralGoogle Scholar
  432. Mitchell JB, Miller K, Dunwiddie TV (1993) Adenosine-induced suppression of synaptic responses and the initiation and expression of long-term potentiation in the CA1 region of the hippocampus. Hippocampus 3(1):77–86.  https://doi.org/10.1002/hipo.450030108 CrossRefPubMedPubMedCentralGoogle Scholar
  433. Miyoshi G, Fishell G (2006) Directing neuron-specific transgene expression in the mouse CNS. Curr Opin Neurobiol 16(5):577–584.  https://doi.org/10.1016/j.conb.2006.08.013 S0959-4388(06)00118-8 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  434. Mlinar B, Corradetti R (2017) Differential modulation of CA1 impulse flow by endogenous serotonin along the hippocampal longitudinal axis. Hippocampus 28:217–225.  https://doi.org/10.1002/hipo.22825 CrossRefGoogle Scholar
  435. Mlinar B, Mascalchi S, Mannaioni G, Morini R, Corradetti R (2006) 5-HT4 receptor activation induces long-lasting EPSP-spike potentiation in CA1 pyramidal neurons. Eur J Neurosci 24(3):719–731.  https://doi.org/10.1111/j.1460-9568.2006.04949.x CrossRefPubMedPubMedCentralGoogle Scholar
  436. Mochizuki T, Okakura-Mochizuki K, Horii A, Yamamoto Y, Yamatodani A (1994) Histaminergic modulation of hippocampal acetylcholine release in vivo. J Neurochem 62(6):2275–2282PubMedCrossRefPubMedCentralGoogle Scholar
  437. Monday HR, Castillo PE (2017) Closing the gap: long-term presynaptic plasticity in brain function and disease. Curr Opin Neurobiol 45:106–112.  https://doi.org/10.1016/j.conb.2017.05.011 CrossRefPubMedPubMedCentralGoogle Scholar
  438. Monday HR, Younts TJ, Castillo PE (2018) Long-term plasticity of neurotransmitter release: emerging mechanisms and contributions to brain function and disease. Annu Rev Neurosci 41:299–322.  https://doi.org/10.1146/annurev-neuro-080317-062155 CrossRefPubMedPubMedCentralGoogle Scholar
  439. Monyer H, Markram H (2004) Interneuron diversity series: molecular and genetic tools to study GABAergic interneuron diversity and function. Trends Neurosci 27(2):90–97.  https://doi.org/10.1016/j.tins.2003.12.008 CrossRefGoogle Scholar
  440. Moore RY, Halaris AE (1975) Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat. J Comp Neurol 164(2):171–183.  https://doi.org/10.1002/cne.901640203 CrossRefPubMedPubMedCentralGoogle Scholar
  441. Moore SD, Madamba SG, Joels M, Siggins GR (1988) Somatostatin augments the M-current in hippocampal neurons. Science 239(4837):278–280PubMedCrossRefPubMedCentralGoogle Scholar
  442. Moore SD, Madamba SG, Schweitzer P, Siggins GR (1994) Voltage-dependent effects of opioid peptides on hippocampal CA3 pyramidal neurons in vitro. J Neurosci 14(2):809–820PubMedCrossRefPubMedCentralGoogle Scholar
  443. Morales M, Backman C (2002) Coexistence of serotonin 3 (5-HT3) and CB1 cannabinoid receptors in interneurons of hippocampus and dentate gyrus. Hippocampus 12(6):756–764.  https://doi.org/10.1002/hipo.10025 CrossRefPubMedPubMedCentralGoogle Scholar
  444. Morales M, Bloom FE (1997) The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J Neurosci 17(9):3157–3167PubMedCrossRefPubMedCentralGoogle Scholar
  445. Morales M, Battenberg E, de Lecea L, Bloom FE (1996) The type 3 serotonin receptor is expressed in a subpopulation of GABAergic neurons in the rat neocortex and hippocampus. Brain Res 731(1–2):199–202PubMedCrossRefPubMedCentralGoogle Scholar
  446. Morales M, Hein K, Vogel Z (2008) Hippocampal interneurons co-express transcripts encoding the alpha7 nicotinic receptor subunit and the cannabinoid receptor 1. Neuroscience 152(1):70–81.  https://doi.org/10.1016/j.neuroscience.2007.12.019 CrossRefPubMedPubMedCentralGoogle Scholar
  447. Mori M, Heuss C, Gahwiler BH, Gerber U (2001) Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures. J Physiol 535(Pt 1):115–123PubMedPubMedCentralCrossRefGoogle Scholar
  448. Morton RA, Davies CH (1997) Regulation of muscarinic acetylcholine receptor-mediated synaptic responses by adenosine receptors in the rat hippocampus. J Physiol 502(Pt 1):75–90PubMedPubMedCentralCrossRefGoogle Scholar
  449. Morton RA, Manuel NA, Bulters DO, Cobb SR, Davies CH (2001) Regulation of muscarinic acetylcholine receptor-mediated synaptic responses by GABA(B) receptors in the rat hippocampus. J Physiol 535(Pt 3):757–766PubMedPubMedCentralCrossRefGoogle Scholar
  450. Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS (1996) Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature 381(6579):245–248.  https://doi.org/10.1038/381245a0 CrossRefPubMedPubMedCentralGoogle Scholar
  451. Muhlethaler M, Charpak S, Dreifuss JJ (1984) Contrasting effects of neurohypophysial peptides on pyramidal and non-pyramidal neurones in the rat hippocampus. Brain Res 308(1):97–107PubMedCrossRefPubMedCentralGoogle Scholar
  452. Muller C, Remy S (2017) Septo-hippocampal interaction. Cell Tissue Res.  https://doi.org/10.1007/s00441-017-2745-2 PubMedPubMedCentralCrossRefGoogle Scholar
  453. Murchison CF, Zhang XY, Zhang WP, Ouyang M, Lee A, Thomas SA (2004) A distinct role for norepinephrine in memory retrieval. Cell 117(1):131–143PubMedCrossRefPubMedCentralGoogle Scholar
  454. Muzzio IA, Kentros C, Kandel E (2009) What is remembered? Role of attention on the encoding and retrieval of hippocampal representations. J Physiol 587(Pt 12):2837–2854.  https://doi.org/10.1113/jphysiol.2009.172445 CrossRefPubMedPubMedCentralGoogle Scholar
  455. Nagode DA, Tang AH, Karson MA, Klugmann M, Alger BE (2011) Optogenetic release of ACh induces rhythmic bursts of perisomatic IPSCs in hippocampus. PLoS One 6(11):e27691.  https://doi.org/10.1371/journal.pone.0027691 CrossRefPubMedPubMedCentralGoogle Scholar
  456. Neu A, Foldy C, Soltesz I (2007) Postsynaptic origin of CB1-dependent tonic inhibition of GABA release at cholecystokinin-positive basket cell to pyramidal cell synapses in the CA1 region of the rat hippocampus. J Physiol 578(Pt 1):233–247.  https://doi.org/10.1113/jphysiol.2006.115691 CrossRefPubMedPubMedCentralGoogle Scholar
  457. Nicholas AP, Hokfelt T, Pieribone VA (1996) The distribution and significance of CNS adrenoceptors examined with in situ hybridization. Trends Pharmacol Sci 17(7):245–255PubMedCrossRefPubMedCentralGoogle Scholar
  458. Nicoll RA (1988) The coupling of neurotransmitter receptors to ion channels in the brain. Science 241(4865):545–551PubMedCrossRefPubMedCentralGoogle Scholar
  459. Nicoll RA, Malenka RC, Kauer JA (1990) Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol Rev 70(2):513–565.  https://doi.org/10.1152/physrev.1990.70.2.513 CrossRefPubMedPubMedCentralGoogle Scholar
  460. Nieto-Alamilla G, Marquez-Gomez R, Garcia-Galvez AM, Morales-Figueroa GE, Arias-Montano JA (2016) The Histamine H3 receptor: structure, pharmacology, and function. Mol Pharmacol 90(5):649–673.  https://doi.org/10.1124/mol.116.104752 CrossRefPubMedPubMedCentralGoogle Scholar
  461. Nobili A, Latagliata EC, Viscomi MT, Cavallucci V, Cutuli D, Giacovazzo G, Krashia P, Rizzo FR, Marino R, Federici M, De Bartolo P, Aversa D, Dell'Acqua MC, Cordella A, Sancandi M, Keller F, Petrosini L, Puglisi-Allegra S, Mercuri NB, Coccurello R, Berretta N, D’Amelio M (2017) Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat Commun 8:14727.  https://doi.org/10.1038/ncomms14727 CrossRefPubMedPubMedCentralGoogle Scholar
  462. Noriyama Y, Ogawa Y, Yoshino H, Yamashita M, Kishimoto T (2006) Dopamine profoundly suppresses excitatory transmission in neonatal rat hippocampus via phosphatidylinositol-linked D1-like receptor. Neuroscience 138(2):475–485.  https://doi.org/10.1016/j.neuroscience.2005.11.032 CrossRefPubMedPubMedCentralGoogle Scholar
  463. Nozaki K, Kubo R, Furukawa Y (2016) Serotonin modulates the excitatory synaptic transmission in the dentate granule cells. J Neurophysiol 115(6):2997–3007.  https://doi.org/10.1152/jn.00064.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  464. Ogier R, Raggenbass M (2003) Action of tachykinins in the rat hippocampus: modulation of inhibitory synaptic transmission. Eur J Neurosci 17(12):2639–2647PubMedCrossRefPubMedCentralGoogle Scholar
  465. Ogier R, Wrobel LJ, Raggenbass M (2008) Action of tachykinins in the hippocampus: facilitation of inhibitory drive to GABAergic interneurons. Neuroscience 156(3):527–536.  https://doi.org/10.1016/j.neuroscience.2008.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  466. Ohno-Shosaku T, Tsubokawa H, Mizushima I, Yoneda N, Zimmer A, Kano M (2002) Presynaptic cannabinoid sensitivity is a major determinant of depolarization-induced retrograde suppression at hippocampal synapses. J Neurosci 22(10):3864–3872PubMedCrossRefPubMedCentralGoogle Scholar
  467. Oka S, Nakajima K, Yamashita A, Kishimoto S, Sugiura T (2007) Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem Biophys Res Commun 362(4):928–934.  https://doi.org/10.1016/j.bbrc.2007.08.078 CrossRefPubMedPubMedCentralGoogle Scholar
  468. Okuhara DY, Beck SG (1994) 5-HT1A receptor linked to inward-rectifying potassium current in hippocampal CA3 pyramidal cells. J Neurophysiol 71(6):2161–2167.  https://doi.org/10.1152/jn.1994.71.6.2161 CrossRefPubMedPubMedCentralGoogle Scholar
  469. Oleskevich S, Descarries L (1990) Quantified distribution of the serotonin innervation in adult rat hippocampus. Neuroscience 34(1):19–33PubMedCrossRefPubMedCentralGoogle Scholar
  470. Oleskevich S, Descarries L, Lacaille JC (1989) Quantified distribution of the noradrenaline innervation in the hippocampus of adult rat. J Neurosci 9(11):3803–3815PubMedCrossRefPubMedCentralGoogle Scholar
  471. Oleskevich S, Descarries L, Watkins KC, Seguela P, Daszuta A (1991) Ultrastructural features of the serotonin innervation in adult rat hippocampus: an immunocytochemical description in single and serial thin sections. Neuroscience 42(3):777–791PubMedCrossRefPubMedCentralGoogle Scholar
  472. Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA, Myers L, Mora Z, Tagliaferro P, Gardner E, Brusco A, Akinshola BE, Liu QR, Hope B, Iwasaki S, Arinami T, Teasenfitz L, Uhl GR (2006) Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 1074:514–536PubMedCrossRefPubMedCentralGoogle Scholar
  473. Otis TS, De Koninck Y, Mody I (1993) Characterization of synaptically elicited GABAB responses using patch-clamp recordings in rat hippocampal slices. J Physiol 463:391–407PubMedPubMedCentralCrossRefGoogle Scholar
  474. Otmakhova NA, Lisman JE (1996) D1/D5 dopamine receptor activation increases the magnitude of early long-term potentiation at CA1 hippocampal synapses. J Neurosci 16(23):7478–7486PubMedCrossRefPubMedCentralGoogle Scholar
  475. Otmakhova NA, Lisman JE (1998) D1/D5 dopamine receptors inhibit depotentiation at CA1 synapses via cAMP-dependent mechanism. J Neurosci 18(4):1270–1279PubMedCrossRefPubMedCentralGoogle Scholar
  476. Otmakhova NA, Lisman JE (1999) Dopamine selectively inhibits the direct cortical pathway to the CA1 hippocampal region. J Neurosci 19(4):1437–1445PubMedPubMedCentralCrossRefGoogle Scholar
  477. Otmakhova NA, Lisman JE (2000) Dopamine, serotonin, and noradrenaline strongly inhibit the direct perforant path-CA1 synaptic input, but have little effect on the Schaffer collateral input. Ann N Y Acad Sci 911:462–464PubMedCrossRefPubMedCentralGoogle Scholar
  478. Otmakhova NA, Lewey J, Asrican B, Lisman JE (2005) Inhibition of perforant path input to the CA1 region by serotonin and noradrenaline. J Neurophysiol 94(2):1413–1422.  https://doi.org/10.1152/jn.00217.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  479. Overstreet-Wadiche L, McBain CJ (2015) Neurogliaform cells in cortical circuits. Nat Rev Neurosci 16(8):458–468.  https://doi.org/10.1038/nrn3969 CrossRefPubMedPubMedCentralGoogle Scholar
  480. Owen SF, Tuncdemir SN, Bader PL, Tirko NN, Fishell G, Tsien RW (2013) Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature 500(7463):458–462.  https://doi.org/10.1038/nature12330 CrossRefPubMedPubMedCentralGoogle Scholar
  481. Pabst M, Braganza O, Dannenberg H, Hu W, Pothmann L, Rosen J, Mody I, van Loo K, Deisseroth K, Becker AJ, Schoch S, Beck H (2016) Astrocyte intermediaries of septal cholinergic modulation in the hippocampus. Neuron 90(4):853–865.  https://doi.org/10.1016/j.neuron.2016.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  482. Packard MG, Cahill L, McGaugh JL (1994) Amygdala modulation of hippocampal-dependent and caudate nucleus-dependent memory processes. Proc Natl Acad Sci U S A 91(18):8477–8481PubMedPubMedCentralCrossRefGoogle Scholar
  483. Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R (2006) The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 27(1):73–100PubMedCrossRefPubMedCentralGoogle Scholar
  484. Palacios JM, Wamsley JK, Kuhar MJ (1981) The distribution of histamine H1-receptors in the rat brain: an autoradiographic study. Neuroscience 6(1):15–37PubMedCrossRefPubMedCentralGoogle Scholar
  485. Pankratov Y, Castro E, Miras-Portugal MT, Krishtal O (1998) A purinergic component of the excitatory postsynaptic current mediated by P2X receptors in the CA1 neurons of the rat hippocampus. Eur J Neurosci 10(12):3898–3902PubMedCrossRefPubMedCentralGoogle Scholar
  486. Pankratov YV, Lalo UV, Krishtal OA (2002) Role for P2X receptors in long-term potentiation. J Neurosci 22(19):8363–8369PubMedCrossRefPubMedCentralGoogle Scholar
  487. Pankratov Y, Lalo U, Verkhratsky A, North RA (2006) Vesicular release of ATP at central synapses. Pflugers Arch 452(5):589–597.  https://doi.org/10.1007/s00424-006-0061-x CrossRefPubMedPubMedCentralGoogle Scholar
  488. Pankratov Y, Lalo U, Krishtal OA, Verkhratsky A (2009) P2X receptors and synaptic plasticity. Neuroscience 158(1):137–148.  https://doi.org/10.1016/j.neuroscience.2008.03.076 CrossRefPubMedPubMedCentralGoogle Scholar
  489. Panula P, Nuutinen S (2013) The histaminergic network in the brain: basic organization and role in disease. Nat Rev Neurosci 14(7):472–487.  https://doi.org/10.1038/nrn3526 CrossRefPubMedPubMedCentralGoogle Scholar
  490. Panula P, Yang HY, Costa E (1984) Histamine-containing neurons in the rat hypothalamus. Proc Natl Acad Sci U S A 81(8):2572–2576PubMedPubMedCentralCrossRefGoogle Scholar
  491. Panula P, Pirvola U, Auvinen S, Airaksinen MS (1989) Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience 28(3):585–610PubMedCrossRefPubMedCentralGoogle Scholar
  492. Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WL, Stark H, Thurmond RL, Haas HL (2015) International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol Rev 67(3):601–655.  https://doi.org/10.1124/pr.114.010249 CrossRefPubMedPubMedCentralGoogle Scholar
  493. Papay R, Gaivin R, Jha A, McCune DF, McGrath JC, Rodrigo MC, Simpson PC, Doze VA, Perez DM (2006) Localization of the mouse alpha1A-adrenergic receptor (AR) in the brain: alpha1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. J Comp Neurol 497(2):209–222.  https://doi.org/10.1002/cne.20992 CrossRefPubMedPubMedCentralGoogle Scholar
  494. Parfitt KD, Hoffer BJ, Browning MD (1991) Norepinephrine and isoproterenol increase the phosphorylation of synapsin I and synapsin II in dentate slices of young but not aged Fisher 344 rats. Proc Natl Acad Sci U S A 88(6):2361–2365PubMedPubMedCentralCrossRefGoogle Scholar
  495. Parfitt KD, Doze VA, Madison DV, Browning MD (1992) Isoproterenol increases the phosphorylation of the synapsins and increases synaptic transmission in dentate gyrus, but not in area CA1, of the hippocampus. Hippocampus 2(1):59–64.  https://doi.org/10.1002/hipo.450020108 CrossRefPubMedPubMedCentralGoogle Scholar
  496. Parra P, Gulyás AI, Miles R (1998) How many subtypes of inhibitory cells in the hippocampus? Neuron 20(5):983–993.  https://doi.org/10.1016/s0896-6273(00)80479-1 CrossRefPubMedPubMedCentralGoogle Scholar
  497. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310(5745):113–116.  https://doi.org/10.1126/science.1116916 CrossRefPubMedPubMedCentralGoogle Scholar
  498. Passani MB, Giannoni P, Bucherelli C, Baldi E, Blandina P (2007) Histamine in the brain: beyond sleep and memory. Biochem Pharmacol 73(8):1113–1122.  https://doi.org/10.1016/j.bcp.2006.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  499. Paukert M, Agarwal A, Cha J, Doze VA, Kang JU, Bergles DE (2014) Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 82(6):1263–1270.  https://doi.org/10.1016/j.neuron.2014.04.038 CrossRefPubMedPubMedCentralGoogle Scholar
  500. Pavlides C, Greenstein YJ, Grudman M, Winson J (1988) Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of theta-rhythm. Brain Res 439(1–2):383–387PubMedCrossRefPubMedCentralGoogle Scholar
  501. Pedarzani P, Storm JF (1993) PKA mediates the effects of monoamine transmitters on the K+ current underlying the slow spike frequency adaptation in hippocampal neurons. Neuron 11(6):1023–1035PubMedCrossRefPubMedCentralGoogle Scholar
  502. Pedarzani P, Storm JF (1995) Dopamine modulates the slow Ca(2+)-activated K+ current IAHP via cyclic AMP-dependent protein kinase in hippocampal neurons. J Neurophysiol 74(6):2749–2753.  https://doi.org/10.1152/jn.1995.74.6.2749 CrossRefPubMedPubMedCentralGoogle Scholar
  503. Pedarzani P, Storm JF (1996) Interaction between alpha- and beta-adrenergic receptor agonists modulating the slow Ca(2+)-activated K+ current IAHP in hippocampal neurons. Eur J Neurosci 8(10):2098–2110PubMedCrossRefPubMedCentralGoogle Scholar
  504. Peddie CJ, Davies HA, Colyer FM, Stewart MG, Rodriguez JJ (2008) Dendritic colocalisation of serotonin1B receptors and the glutamate NMDA receptor subunit NR1 within the hippocampal dentate gyrus: an ultrastructural study. J Chem Neuroanat 36(1):17–26.  https://doi.org/10.1016/j.jchemneu.2008.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  505. Pehrson AL, Sanchez C (2014) Serotonergic modulation of glutamate neurotransmission as a strategy for treating depression and cognitive dysfunction. CNS Spectr 19(2):121–133.  https://doi.org/10.1017/S1092852913000540 CrossRefPubMedPubMedCentralGoogle Scholar
  506. Pernia-Andrade AJ, Jonas P (2014) Theta-gamma-modulated synaptic currents in hippocampal granule cells in vivo define a mechanism for network oscillations. Neuron 81(1):140–152.  https://doi.org/10.1016/j.neuron.2013.09.046 CrossRefPubMedPubMedCentralGoogle Scholar
  507. Petersen AV, Jensen CS, Crepel V, Falkerslev M, Perrier JF (2017) Serotonin regulates the firing of principal cells of the subiculum by inhibiting a T-type Ca(2+) current. Front Cell Neurosci 11:60.  https://doi.org/10.3389/fncel.2017.00060 CrossRefPubMedPubMedCentralGoogle Scholar
  508. Petilla Interneuron Nomenclature Group, Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, Burkhalter A, Buzsaki G, Cauli B, Defelipe J, Fairen A, Feldmeyer D, Fishell G, Fregnac Y, Freund TF, Gardner D, Gardner EP, Goldberg JH, Helmstaedter M, Hestrin S, Karube F, Kisvarday ZF, Lambolez B, Lewis DA, Marin O, Markram H, Munoz A, Packer A, Petersen CC, Rockland KS, Rossier J, Rudy B, Somogyi P, Staiger JF, Tamas G, Thomson AM, Toledo-Rodriguez M, Wang Y, West DC, Yuste R (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9(7):557–568.  https://doi.org/10.1038/nrn2402 CrossRefGoogle Scholar
  509. Piguet P, Galvan M (1994) Transient and long-lasting actions of 5-HT on rat dentate gyrus neurones in vitro. J Physiol 481(Pt 3):629–639PubMedPubMedCentralCrossRefGoogle Scholar
  510. Pillot C, Heron A, Cochois V, Tardivel-Lacombe J, Ligneau X, Schwartz JC, Arrang JM (2002) A detailed mapping of the histamine H(3) receptor and its gene transcripts in rat brain. Neuroscience 114(1):173–193PubMedCrossRefPubMedCentralGoogle Scholar
  511. Pinault D (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J Neurosci Methods 65(2):113–136 0165027095001441 [pii]PubMedCrossRefPubMedCentralGoogle Scholar
  512. Pitler TA, Alger BE (1992a) Cholinergic excitation of GABAergic interneurons in the rat hippocampal slice. J Physiol 450:127–142PubMedPubMedCentralCrossRefGoogle Scholar
  513. Pitler TA, Alger BE (1992b) Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. J Neurosci 12(10):4122–4132PubMedCrossRefPubMedCentralGoogle Scholar
  514. Pittman QJ, Siggins GR (1981) Somatostatin hyperpolarizes hippocampal pyramidal cells in vitro. Brain Res 221(2):402–408 0006-8993(81)90791-5 [pii]PubMedCrossRefPubMedCentralGoogle Scholar
  515. Pollard H, Moreau J, Arrang JM, Schwartz JC (1993) A detailed autoradiographic mapping of histamine H3 receptors in rat brain areas. Neuroscience 52(1):169–189PubMedCrossRefPubMedCentralGoogle Scholar
  516. Pompeiano M, Palacios JM, Mengod G (1992) Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J Neurosci 12(2):440–453PubMedCrossRefPubMedCentralGoogle Scholar
  517. Porter JT, Cauli B, Tsuzuki K, Lambolez B, Rossier J, Audinat E (1999) Selective excitation of subtypes of neocortical interneurons by nicotinic receptors. J Neurosci 19(13):5228–5235PubMedCrossRefPubMedCentralGoogle Scholar
  518. Power JM, Sah P (2002) Nuclear calcium signaling evoked by cholinergic stimulation in hippocampal CA1 pyramidal neurons. J Neurosci 22(9):3454–3462 20026335PubMedCrossRefPubMedCentralGoogle Scholar
  519. Pugliese AM, Passani MB, Corradetti R (1998) Effect of the selective 5-HT1A receptor antagonist WAY 100635 on the inhibition of e.p.s.ps produced by 5-HT in the CA1 region of rat hippocampal slices. Br J Pharmacol 124(1):93–100.  https://doi.org/10.1038/sj.bjp.0701807 CrossRefPubMedPubMedCentralGoogle Scholar
  520. Puighermanal E, Biever A, Espallergues J, Gangarossa G, De Bundel D, Valjent E (2015) drd2-cre:ribotag mouse line unravels the possible diversity of dopamine d2 receptor-expressing cells of the dorsal mouse hippocampus. Hippocampus 25(7):858–875.  https://doi.org/10.1002/hipo.22408 CrossRefPubMedPubMedCentralGoogle Scholar
  521. Puighermanal E, Cutando L, Boubaker-Vitre J, Honore E, Longueville S, Herve D, Valjent E (2017) Anatomical and molecular characterization of dopamine D1 receptor-expressing neurons of the mouse CA1 dorsal hippocampus. Brain Struct Funct 222(4):1897–1911.  https://doi.org/10.1007/s00429-016-1314-x CrossRefPubMedPubMedCentralGoogle Scholar
  522. Qian J, Saggau P (1997) Presynaptic inhibition of synaptic transmission in the rat hippocampus by activation of muscarinic receptors: involvement of presynaptic calcium influx. Br J Pharmacol 122(3):511–519.  https://doi.org/10.1038/sj.bjp.0701400 CrossRefPubMedPubMedCentralGoogle Scholar
  523. Qiu C, Zeyda T, Johnson B, Hochgeschwender U, de Lecea L, Tallent MK (2008) Somatostatin receptor subtype 4 couples to the M-current to regulate seizures. J Neurosci 28(14):3567–3576.  https://doi.org/10.1523/JNEUROSCI.4679-07.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  524. Radcliffe KA, Dani JA (1998) Nicotinic stimulation produces multiple forms of increased glutamatergic synaptic transmission. J Neurosci 18(18):7075–7083PubMedCrossRefPubMedCentralGoogle Scholar
  525. Raggenbass M (2001) Vasopressin- and oxytocin-induced activity in the central nervous system: electrophysiological studies using in-vitro systems. Prog Neurobiol 64(3):307–326PubMedCrossRefPubMedCentralGoogle Scholar
  526. Ramanathan G, Cilz NI, Kurada L, Hu B, Wang X, Lei S (2012) Vasopressin facilitates GABAergic transmission in rat hippocampus via activation of V(1A) receptors. Neuropharmacology 63(7):1218–1226.  https://doi.org/10.1016/j.neuropharm.2012.07.043 CrossRefPubMedPubMedCentralGoogle Scholar
  527. Rancz EA, Ishikawa T, Duguid I, Chadderton P, Mahon S, Hausser M (2007) High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature 450(7173):1245–1248.  https://doi.org/10.1038/nature05995 nature05995 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  528. Raza SA, Albrecht A, Caliskan G, Muller B, Demiray YE, Ludewig S, Meis S, Faber N, Hartig R, Schraven B, Lessmann V, Schwegler H, Stork O (2017) HIPP neurons in the dentate gyrus mediate the cholinergic modulation of background context memory salience. Nat Commun 8(1):189.  https://doi.org/10.1038/s41467-017-00205-3 CrossRefPubMedPubMedCentralGoogle Scholar
  529. Reece LJ, Schwartzkroin PA (1991) Effects of cholinergic agonists on two non-pyramidal cell types in rat hippocampal slices. Brain Res 566(1–2):115–126PubMedCrossRefPubMedCentralGoogle Scholar
  530. Rezai X, Kieffer BL, Roux MJ, Massotte D (2013) Delta opioid receptors regulate temporoammonic-activated feedforward inhibition to the mouse CA1 hippocampus. PLoS One 8(11):e79081.  https://doi.org/10.1371/journal.pone.0079081 CrossRefPubMedPubMedCentralGoogle Scholar
  531. Richter-Levin G, Segal M (1996) Serotonin, aging and cognitive functions of the hippocampus. Rev Neurosci 7(2):103–113PubMedCrossRefPubMedCentralGoogle Scholar
  532. Roerig B, Nelson DA, Katz LC (1997) Fast synaptic signaling by nicotinic acetylcholine and serotonin 5-HT3 receptors in developing visual cortex. J Neurosci 17(21):8353–8362PubMedCrossRefPubMedCentralGoogle Scholar
  533. Rombo DM, Dias RB, Duarte ST, Ribeiro JA, Lamsa KP, Sebastiao AM (2016a) Adenosine A1 receptor suppresses Tonic GABAA receptor currents in hippocampal pyramidal cells and in a defined subpopulation of interneurons. Cereb Cortex 26(3):1081–1095.  https://doi.org/10.1093/cercor/bhu288 CrossRefPubMedPubMedCentralGoogle Scholar
  534. Rombo DM, Ribeiro JA, Sebastiao AM (2016b) Hippocampal GABAergic transmission: a new target for adenosine control of excitability. J Neurochem 139(6):1056–1070.  https://doi.org/10.1111/jnc.13872 CrossRefPubMedPubMedCentralGoogle Scholar
  535. Romo-Parra H, Aceves J, Gutierrez R (2005) Tonic modulation of inhibition by dopamine D4 receptors in the rat hippocampus. Hippocampus 15(2):254–259.  https://doi.org/10.1002/hipo.20049 CrossRefPubMedPubMedCentralGoogle Scholar
  536. Ropert N, Guy N (1991) Serotonin facilitates GABAergic transmission in the CA1 region of rat hippocampus in vitro. J Physiol 441:121–136PubMedPubMedCentralCrossRefGoogle Scholar
  537. Rosen ZB, Cheung S, Siegelbaum SA (2015) Midbrain dopamine neurons bidirectionally regulate CA3-CA1 synaptic drive. Nat Neurosci 18(12):1763–1771.  https://doi.org/10.1038/nn.4152 CrossRefPubMedPubMedCentralGoogle Scholar
  538. Rouse ST, Marino MJ, Potter LT, Conn PJ, Levey AI (1999) Muscarinic receptor subtypes involved in hippocampal circuits. Life Sci 64(6-7):501–509.  https://doi.org/10.1016/s0024-3205(98)00594-3 CrossRefPubMedPubMedCentralGoogle Scholar
  539. Rowan MJM, Christie JM (2017) Rapid state-dependent alteration in Kv3 channel availability drives flexible synaptic signaling dependent on somatic subthreshold depolarization. Cell Rep 18(8):2018–2029.  https://doi.org/10.1016/j.celrep.2017.01.068 CrossRefPubMedPubMedCentralGoogle Scholar
  540. Ruat M, Traiffort E, Arrang JM, Tardivel-Lacombe J, Diaz J, Leurs R, Schwartz JC (1993) A novel rat serotonin (5-HT6) receptor: molecular cloning, localization and stimulation of cAMP accumulation. Biochem Biophys Res Commun 193(1):268–276PubMedCrossRefPubMedCentralGoogle Scholar
  541. Rudy B, Fishell G, Lee S, Hjerling-Leffler J (2011) Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol 71(1):45–61.  https://doi.org/10.1002/dneu.20853 CrossRefPubMedPubMedCentralGoogle Scholar
  542. Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152(7):1092–1101PubMedPubMedCentralCrossRefGoogle Scholar
  543. Sakurai O, Kosaka T (2007) Nonprincipal neurons and CA2 pyramidal cells, but not mossy cells are immunoreactive for calcitonin gene-related peptide in the mouse hippocampus. Brain Res 1186:129–143PubMedCrossRefPubMedCentralGoogle Scholar
  544. Samuels BA, Anacker C, Hu A, Levinstein MR, Pickenhagen A, Tsetsenis T, Madronal N, Donaldson ZR, Drew LJ, Dranovsky A, Gross CT, Tanaka KF, Hen R (2015) 5-HT1A receptors on mature dentate gyrus granule cells are critical for the antidepressant response. Nat Neurosci 18(11):1606–1616.  https://doi.org/10.1038/nn.4116 CrossRefPubMedPubMedCentralGoogle Scholar
  545. Sanchez G, Alvares Lde O, Oberholzer MV, Genro B, Quillfeldt J, da Costa JC, Cervenansky C, Jerusalinsky D, Kornisiuk E (2009) M4 muscarinic receptors are involved in modulation of neurotransmission at synapses of Schaffer collaterals on CA1 hippocampal neurons in rats. J Neurosci Res 87(3):691–700.  https://doi.org/10.1002/jnr.21876 CrossRefPubMedPubMedCentralGoogle Scholar
  546. Sanford L, Palmer A (2017) Recent advances in development of genetically encoded fluorescent sensors. Methods Enzymol 589:1–49.  https://doi.org/10.1016/bs.mie.2017.01.019 CrossRefPubMedPubMedCentralGoogle Scholar
  547. Sanna MD, Ghelardini C, Thurmond RL, Masini E, Galeotti N (2017) Behavioural phenotype of histamine H4 receptor knockout mice: focus on central neuronal functions. Neuropharmacology 114:48–57.  https://doi.org/10.1016/j.neuropharm.2016.11.023 CrossRefPubMedPubMedCentralGoogle Scholar
  548. Sarter M, Hasselmo ME, Bruno JP, Givens B (2005) Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Brain Res Rev 48(1):98–111.  https://doi.org/10.1016/j.brainresrev.2004.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  549. Saunders A, Granger AJ, Sabatini BL (2015) Corelease of acetylcholine and GABA from cholinergic forebrain neurons. Elife 4.  https://doi.org/10.7554/eLife.06412
  550. Scanziani M, Gahwiler BH, Thompson SM (1993) Presynaptic inhibition of excitatory synaptic transmission mediated by alpha adrenergic receptors in area CA3 of the rat hippocampus in vitro. J Neurosci 13(12):5393–5401PubMedCrossRefPubMedCentralGoogle Scholar
  551. Scatton B, Simon H, Le Moal M, Bischoff S (1980) Origin of dopaminergic innervation of the rat hippocampal formation. Neurosci Lett 18(2):125–131PubMedCrossRefPubMedCentralGoogle Scholar
  552. Scheiderer CL, McCutchen E, Thacker EE, Kolasa K, Ward MK, Parsons D, Harrell LE, Dobrunz LE, McMahon LL (2006) Sympathetic sprouting drives hippocampal cholinergic reinnervation that prevents loss of a muscarinic receptor-dependent long-term depression at CA3-CA1 synapses. J Neurosci 26(14):3745–3756.  https://doi.org/10.1523/JNEUROSCI.5507-05.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  553. Scheiderer CL, Smith CC, McCutchen E, McCoy PA, Thacker EE, Kolasa K, Dobrunz LE, McMahon LL (2008) Coactivation of M(1) muscarinic and alpha1 adrenergic receptors stimulates extracellular signal-regulated protein kinase and induces long-term depression at CA3-CA1 synapses in rat hippocampus. J Neurosci 28(20):5350–5358.  https://doi.org/10.1523/JNEUROSCI.5058-06.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  554. Schmitz D, Empson RM, Heinemann U (1995) Serotonin and 8-OH-DPAT reduce excitatory transmission in rat hippocampal area CA1 via reduction in presumed presynaptic Ca2+ entry. Brain Res 701(1–2):249–254 0006-8993(95)01005-5 [pii]PubMedCrossRefPubMedCentralGoogle Scholar
  555. Schneider EH, Seifert R (2016) The histamine H4-receptor and the central and peripheral nervous system: a critical analysis of the literature. Neuropharmacology 106:116–128.  https://doi.org/10.1016/j.neuropharm.2015.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  556. Schuman EM, Madison DV (1991) A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254(5037):1503–1506PubMedCrossRefPubMedCentralGoogle Scholar
  557. Schuman EM, Madison DV (1994) Nitric oxide and synaptic function. Annu Rev Neurosci 17:153–183PubMedCrossRefPubMedCentralGoogle Scholar
  558. Schweitzer P (2000) Cannabinoids decrease the K(+) M-current in hippocampal CA1 neurons. J Neurosci 20(1):51–58PubMedCrossRefPubMedCentralGoogle Scholar
  559. Schweitzer P, Madamba S, Siggins GR (1990) Arachidonic acid metabolites as mediators of somatostatin-induced increase of neuronal M-current. Nature 346(6283):464–467.  https://doi.org/10.1038/346464a0 CrossRefPubMedPubMedCentralGoogle Scholar
  560. Schweitzer P, Madamba SG, Siggins GR (2003) The sleep-modulating peptide cortistatin augments the h-current in hippocampal neurons. J Neurosci 23(34):10884–10891PubMedCrossRefPubMedCentralGoogle Scholar
  561. Seeger T, Alzheimer C (2001) Muscarinic activation of inwardly rectifying K(+) conductance reduces EPSPs in rat hippocampal CA1 pyramidal cells. J Physiol 535(Pt 2):383–396PubMedPubMedCentralCrossRefGoogle Scholar
  562. Seeger T, Fedorova I, Zheng F, Miyakawa T, Koustova E, Gomeza J, Basile AS, Alzheimer C, Wess J (2004) M2 muscarinic acetylcholine receptor knock-out mice show deficits in behavioral flexibility, working memory, and hippocampal plasticity. J Neurosci 24(45):10117–10127.  https://doi.org/10.1523/JNEUROSCI.3581-04.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  563. Seeman P, Van Tol HH (1994) Dopamine receptor pharmacology. Trends Pharmacol Sci 15(7):264–270PubMedCrossRefPubMedCentralGoogle Scholar
  564. Segal M (1980) The action of serotonin in the rat hippocampal slice preparation. J Physiol 303:423–439PubMedPubMedCentralCrossRefGoogle Scholar
  565. Segal M (1981) Histamine modulates reactivity of hippocampal CA3 neurons to afferent stimulation in vitro. Brain Res 213(2):443–448PubMedCrossRefPubMedCentralGoogle Scholar
  566. Sekulic V, Skinner FK (2017) Computational models of O-LM cells are recruited by low or high theta frequency inputs depending on h-channel distributions. Elife:6.  https://doi.org/10.7554/eLife.22962
  567. Selbach O, Brown RE, Haas HL (1997) Long-term increase of hippocampal excitability by histamine and cyclic AMP. Neuropharmacology 36(11–12):1539–1548PubMedCrossRefPubMedCentralGoogle Scholar
  568. Sengupta A, Bocchio M, Bannerman DM, Sharp T, Capogna M (2017) Control of amygdala circuits by 5-HT neurons via 5-HT and glutamate cotransmission. J Neurosci 37(7):1785–1796.  https://doi.org/10.1523/JNEUROSCI.2238-16.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  569. Shakesby AC, Anwyl R, Rowan MJ (2002) Overcoming the effects of stress on synaptic plasticity in the intact hippocampus: rapid actions of serotonergic and antidepressant agents. J Neurosci 22(9):3638–3644PubMedCrossRefPubMedCentralGoogle Scholar
  570. Shanley LJ, Irving AJ, Harvey J (2001) Leptin enhances NMDA receptor function and modulates hippocampal synaptic plasticity. J Neurosci 21(24):RC186PubMedCrossRefPubMedCentralGoogle Scholar
  571. Sharma G, Vijayaraghavan S (2003) Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 38(6):929–939PubMedCrossRefPubMedCentralGoogle Scholar
  572. Sharma G, Grybko M, Vijayaraghavan S (2008) Action potential-independent and nicotinic receptor-mediated concerted release of multiple quanta at hippocampal CA3-mossy fiber synapses. J Neurosci 28(10):2563–2575.  https://doi.org/10.1523/JNEUROSCI.5407-07.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  573. Shen RY, Andrade R (1998) 5-Hydroxytryptamine2 receptor facilitates GABAergic neurotransmission in rat hippocampus. J Pharmacol Exp Ther 285(2):805–812PubMedPubMedCentralGoogle Scholar
  574. Shen M, Piser TM, Seybold VS, Thayer SA (1996) Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J Neurosci 16(14):4322–4334PubMedCrossRefPubMedCentralGoogle Scholar
  575. Shen JX, Tu B, Yakel JL (2009) Inhibition of alpha 7-containing nicotinic ACh receptors by muscarinic M1 ACh receptors in rat hippocampal CA1 interneurones in slices. J Physiol 587(Pt 5):1033–1042.  https://doi.org/10.1113/jphysiol.2008.167593 CrossRefPubMedPubMedCentralGoogle Scholar
  576. Shen Y, Fu WY, Cheng EY, Fu AK, Ip NY (2013) Melanocortin-4 receptor regulates hippocampal synaptic plasticity through a protein kinase A-dependent mechanism. J Neurosci 33(2):464–472.  https://doi.org/10.1523/JNEUROSCI.3282-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  577. Shigemoto R, Kulik A, Roberts JD, Ohishi H, Nusser Z, Kaneko T, Somogyi P (1996) Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone. Nature 381(6582):523–525.  https://doi.org/10.1038/381523a0 CrossRefPubMedPubMedCentralGoogle Scholar
  578. Shinoe T, Matsui M, Taketo MM, Manabe T (2005) Modulation of synaptic plasticity by physiological activation of M1 muscarinic acetylcholine receptors in the mouse hippocampus. J Neurosci 25(48):11194–11200.  https://doi.org/10.1523/JNEUROSCI.2338-05.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  579. Shinohara S, Kawasaki K (1997) Electrophysiological changes in rat hippocampal pyramidal neurons produced by cholecystokinin octapeptide. Neuroscience 78(4):1005–1016PubMedCrossRefPubMedCentralGoogle Scholar
  580. Smith CC, Greene RW (2012) CNS dopamine transmission mediated by noradrenergic innervation. J Neurosci 32(18):6072–6080.  https://doi.org/10.1523/JNEUROSCI.6486-11.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  581. Smith WB, Starck SR, Roberts RW, Schuman EM (2005) Dopaminergic stimulation of local protein synthesis enhances surface expression of GluR1 and synaptic transmission in hippocampal neurons. Neuron 45(5):765–779.  https://doi.org/10.1016/j.neuron.2005.01.015 CrossRefPubMedPubMedCentralGoogle Scholar
  582. Smith MO, Ball J, Holloway BB, Erdelyi F, Szabo G, Stone E, Graham J, Lawrence JJ (2015) Measuring aggregation of events about a mass using spatial point pattern methods. Spat Stat 13:76–89.  https://doi.org/10.1016/j.spasta.2015.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  583. Sodickson DL, Bean BP (1998) Neurotransmitter activation of inwardly rectifying potassium current in dissociated hippocampal CA3 neurons: interactions among multiple receptors. J Neurosci 18(20):8153–8162PubMedCrossRefPubMedCentralGoogle Scholar
  584. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698–702.  https://doi.org/10.1038/nature07991 CrossRefPubMedPubMedCentralGoogle Scholar
  585. Solt K, Ruesch D, Forman SA, Davies PA, Raines DE (2007) Differential effects of serotonin and dopamine on human 5-HT3A receptor kinetics: interpretation within an allosteric kinetic model. J Neurosci 27(48):13151–13160.  https://doi.org/10.1523/JNEUROSCI.3772-07.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  586. Son H, Hawkins RD, Martin K, Kiebler M, Huang PL, Fishman MC, Kandel ER (1996) Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87(6):1015–1023PubMedCrossRefPubMedCentralGoogle Scholar
  587. Sos KE, Mayer MI, Cserep C, Takacs FS, Szonyi A, Freund TF, Nyiri G (2017) Cellular architecture and transmitter phenotypes of neurons of the mouse median raphe region. Brain Struct Funct 222(1):287–299.  https://doi.org/10.1007/s00429-016-1217-x CrossRefPubMedPubMedCentralGoogle Scholar
  588. Sotty F, Danik M, Manseau F, Laplante F, Quirion R, Williams S (2003) Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: novel implications for hippocampal rhythmicity. J Physiol 551(Pt 3):927–943.  https://doi.org/10.1113/jphysiol.2003.046847 CrossRefPubMedPubMedCentralGoogle Scholar
  589. Spangler SM, Bruchas MR (2017) Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits. Curr Opin Pharmacol 32:56–70.  https://doi.org/10.1016/j.coph.2016.11.001 CrossRefPubMedPubMedCentralGoogle Scholar
  590. Sperk G, Hamilton T, Colmers WF (2007) Neuropeptide Y in the dentate gyrus. Prog Brain Res 163:285–297PubMedCrossRefPubMedCentralGoogle Scholar
  591. Springfield SA, Geller HM (1988) Histamine modulates local inhibition in the rat hippocampal slice. Cell Mol Neurobiol 8(4):431–445PubMedCrossRefPubMedCentralGoogle Scholar
  592. Stanzione P, Calabresi P, Mercuri N, Bernardi G (1984) Dopamine modulates CA1 hippocampal neurons by elevating the threshold for spike generation: an in vitro study. Neuroscience 13(4):1105–1116PubMedCrossRefPubMedCentralGoogle Scholar
  593. Staubli U, Xu FB (1995) Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J Neurosci 15(3 Pt 2):2445–2452PubMedCrossRefPubMedCentralGoogle Scholar
  594. Stella N, Schweitzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388(6644):773–778PubMedCrossRefPubMedCentralGoogle Scholar
  595. Stempel AV, Stumpf A, Zhang HY, Ozdogan T, Pannasch U, Theis AK, Otte DM, Wojtalla A, Racz I, Ponomarenko A, Xi ZX, Zimmer A, Schmitz D (2016) Cannabinoid type 2 receptors mediate a cell type-specific plasticity in the hippocampus. Neuron 90(4):795–809.  https://doi.org/10.1016/j.neuron.2016.03.034 CrossRefPubMedPubMedCentralGoogle Scholar
  596. Stocca G, Nistri A (1996) The neuropeptide thyrotropin-releasing hormone modulates GABAergic synaptic transmission on pyramidal neurones of the rat hippocampal slice. Peptides 17(7):1197–1202PubMedCrossRefPubMedCentralGoogle Scholar
  597. Stone E, Haario H, Lawrence JJ (2014) A kinetic model for the frequency dependence of cholinergic modulation at hippocampal GABAergic synapses. Math Biosci 258:162–175.  https://doi.org/10.1016/j.mbs.2014.09.013 CrossRefPubMedPubMedCentralGoogle Scholar
  598. Sudweeks SN, Hooft JA, Yakel JL (2002) Serotonin 5-HT(3) receptors in rat CA1 hippocampal interneurons: functional and molecular characterization. J Physiol 544(Pt 3):715–726PubMedPubMedCentralCrossRefGoogle Scholar
  599. Sugita S, Shen KZ, North RA (1992) 5-hydroxytryptamine is a fast excitatory transmitter at 5-HT3 receptors in rat amygdala. Neuron 8(1):199–203PubMedCrossRefPubMedCentralGoogle Scholar
  600. Surmeier DJ (2007) Dopamine and working memory mechanisms in prefrontal cortex. J Physiol 581(Pt 3):885.  https://doi.org/10.1113/jphysiol.2007.134502 CrossRefPubMedPubMedCentralGoogle Scholar
  601. Swanson LW, Köhler C, Björklund A (1987) The limbic region, I: the septohippocampal system. In: Björklund A, Hökfelt T, Swanson LW (eds) Handbook of chemical neuroanatomy, integrated systems of the CNS, vol 5. Elsevier, Amsterdam, pp 125–277Google Scholar
  602. Swant J, Stramiello M, Wagner JJ (2008) Postsynaptic dopamine D3 receptor modulation of evoked IPSCs via GABA(A) receptor endocytosis in rat hippocampus. Hippocampus 18(5):492–502.  https://doi.org/10.1002/hipo.20408 CrossRefPubMedPubMedCentralGoogle Scholar
  603. Sylantyev S, Jensen TP, Ross RA, Rusakov DA (2013) Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci U S A 110(13):5193–5198.  https://doi.org/10.1073/pnas.1211204110 CrossRefPubMedPubMedCentralGoogle Scholar
  604. Szabadits E, Cserep C, Ludanyi A, Katona I, Gracia-Llanes J, Freund TF, Nyiri G (2007) Hippocampal GABAergic synapses possess the molecular machinery for retrograde nitric oxide signaling. J Neurosci 27(30):8101–8111PubMedCrossRefPubMedCentralGoogle Scholar
  605. Szabadits E, Cserep C, Szonyi A, Fukazawa Y, Shigemoto R, Watanabe M, Itohara S, Freund TF, Nyiri G (2011) NMDA receptors in hippocampal GABAergic synapses and their role in nitric oxide signaling. J Neurosci 31(16):5893–5904.  https://doi.org/10.1523/JNEUROSCI.5938-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  606. Szabo SI, Zelles T, Vizi ES, Lendvai B (2008) The effect of nicotine on spiking activity and Ca2+ dynamics of dendritic spines in rat CA1 pyramidal neurons. Hippocampus 18(4):376–385.  https://doi.org/10.1002/hipo.20401 CrossRefPubMedPubMedCentralGoogle Scholar
  607. Szabo GG, Holderith N, Gulyas AI, Freund TF, Hajos N (2010) Distinct synaptic properties of perisomatic inhibitory cell types and their different modulation by cholinergic receptor activation in the CA3 region of the mouse hippocampus. Eur J Neurosci 31(12):2234–2246.  https://doi.org/10.1111/j.1460-9568.2010.07292.x CrossRefPubMedPubMedCentralGoogle Scholar
  608. Takagi H, Morishima Y, Matsuyama T, Hayashi H, Watanabe T, Wada H (1986) Histaminergic axons in the neostriatum and cerebral cortex of the rat: a correlated light and electron microscopic immunocytochemical study using histidine decarboxylase as a marker. Brain Res 364(1):114–123PubMedCrossRefPubMedCentralGoogle Scholar
  609. Takacs VT, Cserep C, Schlingloff D, Posfai B, Szonyi A, Sos KE, Kornyei Z, Denes A, Gulyas AI, Freund TF, Nyiri G (2018) Co-transmission of acetylcholine and GABA regulates hippocampal states. Nat Commun 9(1):2848PubMedPubMedCentralCrossRefGoogle Scholar
  610. Takeshita Y, Watanabe T, Sakata T, Munakata M, Ishibashi H, Akaike N (1998) Histamine modulates high-voltage-activated calcium channels in neurons dissociated from the rat tuberomammillary nucleus. Neuroscience 87(4):797–805PubMedCrossRefGoogle Scholar
  611. Takeuchi T, Duszkiewicz AJ, Sonneborn A, Spooner PA, Yamasaki M, Watanabe M, Smith CC, Fernandez G, Deisseroth K, Greene RW, Morris RG (2016) Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 537(7620):357–362.  https://doi.org/10.1038/nature19325 CrossRefPubMedPubMedCentralGoogle Scholar
  612. Tallent MK, Qiu C (2008) Somatostatin: an endogenous antiepileptic. Mol Cell Endocrinol 286(1–2):96–103.  https://doi.org/10.1016/j.mce.2007.12.004 S0303-7207(07)00452-2 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  613. Tallent MK, Siggins GR (1997) Somatostatin depresses excitatory but not inhibitory neurotransmission in rat CA1 hippocampus. J Neurophysiol 78(6):3008–3018PubMedCrossRefPubMedCentral