Advertisement

Synaptic Plasticity at Hippocampal Synapses: Experimental Background

  • Jack MellorEmail author
Chapter
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)

Abstract

Glutamatergic synapses in the hippocampus undergo activity-dependent bidirectional persistent changes in synaptic strength known as long-term potentiation (LTP) and long-term depression (LTD). This bidirectionality is important for the maintenance of equilibrium within a neuronal network, and distinct activity patterns need to be sensed by the synapse to initiate either LTP or LTD. Donald Hebb originally proposed that coincident firing of inputs onto a neuron or coincident firing of the presynaptic and postsynaptic neurons would strengthen synaptic connections. This theory is broadly correct for associative or Hebbian LTP and has been modified to include a description of LTD induction by uncorrelated firing patterns. However, it does not apply to non-associative or non-Hebbian synaptic plasticity which requires activity in only one neuron. In addition, these theories do not incorporate the role of homeostatic or heterosynaptic plasticity. Glutamatergic synapses in the hippocampus also undergo transient changes in synaptic strength known as short-term potentiation (STP) and short-term depression (STD), which operate on timescales of generally less than a second. Short-term changes in synaptic strength are important for the processing of information in the hippocampus, although their role in learning and memory may be primarily through their impact on long-term forms of synaptic plasticity.

Keywords

Hippocampus Synaptic plasticity Long-term potentiation Long-term depression Spike-timing-dependent plasticity 

Notes

Acknowledgements

Thank you to Tim Bliss for critical reading and comments.

References

  1. Abraham WC, Christie BR, Logan B, Lawlor P, Dragunow M (1994) Immediate early gene expression associated with the persistence of heterosynaptic long-term depression in the hippocampus. Proc Natl Acad Sci U S A 91:10049–10053PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alle H, Jonas P, Geiger JR (2001) PTP and LTP at a hippocampal mossy fiber-interneuron synapse. Proc Natl Acad Sci U S A 98:14708–14713PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bashir ZI, Bortolotto ZA, Davies CH, Berretta N, Irving AJ, Seal AJ, Henley JM, Jane DE, Watkins JC, Collingridge GL (1993) Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363:347–350PubMedCrossRefGoogle Scholar
  4. Basu J, Zaremba JD, Cheung SK, Hitti FL, Zemelman BV, Losonczy A, Siegelbaum SA (2016) Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition. Science 351:aaa5694PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bear MF, Cooper LN, Ebner FF (1987) A physiological-basis for a theory of synapse modification. Science 237:42–48PubMedCrossRefGoogle Scholar
  6. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472PubMedCrossRefGoogle Scholar
  7. Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity – orientation specificity and binocular interaction in visual-cortex. J Neurosci 2:32–48PubMedCrossRefGoogle Scholar
  8. Bittner KC, Grienberger C, Vaidya SP, Milstein AD, Macklin JJ, Suh J, Tonegawa S, Magee JC (2015) Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat Neurosci 18:1133–1142PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39PubMedCrossRefGoogle Scholar
  10. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bloodgood BL, Sabatini BL (2007) Nonlinear regulation of unitary synaptic signals by CaV(2.3) voltage-sensitive calcium channels located in dendritic spines. Neuron 53:249–260PubMedCrossRefGoogle Scholar
  12. Buchanan KA, Mellor JR (2007) The development of synaptic plasticity induction rules and the requirement for postsynaptic spikes in rat hippocampal CA1 pyramidal neurones. J Physiol Lond 585:429–445PubMedPubMedCentralCrossRefGoogle Scholar
  13. Burrone J, O'Byrne M, Murthy VN (2002) Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420:414–418PubMedCrossRefGoogle Scholar
  14. Caillard O, Ben-Ari Y, Gaiarsa JL (1999) Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus. J Physiol 518(Pt 1):109–119PubMedPubMedCentralCrossRefGoogle Scholar
  15. Carta M, Lanore F, Rebola N, Szabo Z, Da Silva SV, Lourenco J, Verraes A, Nadler A, Schultz C, Blanchet C, Mulle C (2014) Membrane lipids tune synaptic transmission by direct modulation of presynaptic potassium channels. Neuron 81:787–799PubMedCrossRefGoogle Scholar
  16. Castillo PE, Weisskopf MG, Nicoll RA (1994) The role of Ca2+ channels in hippocampal mossy fiber synaptic transmission and long-term potentiation. Neuron 12:261–269PubMedCrossRefGoogle Scholar
  17. Chevaleyre V, Castillo PE (2003) Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38:997–997, pg 461CrossRefGoogle Scholar
  18. Chevaleyre V, Siegelbaum SA (2010) Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop. Neuron 66:560–572PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cho K, Aggleton JP, Brown MW, Bashir ZI (2001) An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat. J Physiol Lond 532:459–466PubMedPubMedCentralCrossRefGoogle Scholar
  20. Christie BR, Abraham WC (1992) Priming of associative long-term depression in the dentate gyrus by theta frequency synaptic activity. Neuron 9:79–84PubMedCrossRefGoogle Scholar
  21. Cohen AS, Abraham WC (1996) Facilitation of long-term potentiation by prior activation of metabotropic glutamate receptors. J Neurophysiol 76:953–962PubMedCrossRefGoogle Scholar
  22. Colino A, Malenka RC (1993) Mechanisms underlying induction of long-term potentiation in rat medial and lateral perforant paths in vitro. J Neurophysiol 69:1150–1159PubMedCrossRefGoogle Scholar
  23. Contractor A, Rogers C, Maron C, Henkemeyer M, Swanson GT, Heinemann SF (2002) Trans-synaptic Eph receptor-ephrin signaling in hippocampal mossy fiber LTP. Science 296:1864–1869PubMedCrossRefGoogle Scholar
  24. Cormier RJ, Greenwood AC, Connor JA (2001) Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. J Neurophysiol 85:399–406PubMedCrossRefGoogle Scholar
  25. Davies CH, Starkey SJ, Pozza MF, Collingridge GL (1991) GABA autoreceptors regulate the induction of LTP. Nature 349:609–611PubMedCrossRefGoogle Scholar
  26. Daw MI, Chittajallu R, Bortolotto ZA, Dev KK, Duprat F, Henley JM, Collingridge GL, Isaac JTR (2000) PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 28:873–886PubMedCrossRefGoogle Scholar
  27. Debanne D, Gahwiler BH, Thompson SM (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol Lond 507:237–247PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dobrunz LE, Stevens CF (1999) Response of hippocampal synapses to natural stimulation patterns. Neuron 22:157–166PubMedCrossRefGoogle Scholar
  29. Doyere V, Srebro B, Laroche S (1997) Heterosynaptic LTD and depotentiation in the medial perforant path of the dentate gyrus in the freely moving rat. J Neurophysiol 77:571–578PubMedCrossRefGoogle Scholar
  30. Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A 89:4363–4367PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dudek SM, Bear MF (1993) Bidirectional long-term modification of synaptic effectiveness in the adult and immature Hippocampus. J Neurosci 13:2910–2918PubMedCrossRefPubMedCentralGoogle Scholar
  32. Dudman JT, Tsay D, Siegelbaum SA (2007) A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. Neuron 56:866–879PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dunwiddie T, Lynch G (1978) Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency. J Physiol 276:353–367PubMedPubMedCentralCrossRefGoogle Scholar
  34. Frick A, Magee J, Johnston D (2004) LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nat Neurosci 7:126–135PubMedCrossRefPubMedCentralGoogle Scholar
  35. Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416:433–438PubMedCrossRefGoogle Scholar
  36. Froemke RC, Tsay IA, Raad M, Long JD, Dan Y (2006) Contribution of individual spikes in burst-induced long-term synaptic modification. J Neurophysiol 95:1620–1629PubMedCrossRefGoogle Scholar
  37. Gall D, Prestori F, Sola E, D'Errico A, Roussel C, Forti L, Rossi P, D'Angelo E (2005) Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage. J Neurosci 25:4813–4822PubMedCrossRefGoogle Scholar
  38. Geiger JRP, Jonas P (2000) Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28:927–939PubMedCrossRefPubMedCentralGoogle Scholar
  39. Gisabella B, Rowan MJ, Anwyl R (2003) Mechanisms underlying the inhibition of long-term potentiation by preconditioning stimulation in the hippocampus in vitro. Neuroscience 121:297–305PubMedCrossRefGoogle Scholar
  40. Golding NL, Staff NP, Spruston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418:326–331PubMedCrossRefPubMedCentralGoogle Scholar
  41. Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N (2005) Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol 568:69–82PubMedPubMedCentralCrossRefGoogle Scholar
  42. Golowasch J, Casey M, Abbott LF, Marder E (1999) Network stability from activity-dependent regulation of neuronal conductances. Neural Comput 11:1079–1096PubMedCrossRefPubMedCentralGoogle Scholar
  43. Gruart A, Munoz MD, Delgado-Garcia JM (2006) Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. J Neurosci 26:1077–1087PubMedCrossRefPubMedCentralGoogle Scholar
  44. Gundlfinger A, Leibold C, Gebert K, Moisel M, Schmitz D, Kempter R (2007) Differential modulation of short-term synaptic dynamics by long-term potentiation at mouse hippocampal mossy fibre synapses. J Physiol 585:853–865PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hangya B, Ranade SP, Lorenc M, Kepecs A (2015) Central cholinergic neurons are rapidly recruited by reinforcement feedback. Cell 162:1155–1168PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hansel C, Artola A, Singer W (1996) Different threshold levels of postsynaptic [Ca2+]i have to be reached to induce LTP and LTD in neocortical pyramidal cells. J Physiol Paris 90:317–319PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hansel C, Artola A, Singer W (1997) Relation between dendritic Ca2+ levels and the polarity of synaptic long-term modifications in rat visual cortex neurons. Eur J Neurosci 9:2309–2322PubMedCrossRefPubMedCentralGoogle Scholar
  48. Harnett MT, Makara JK, Spruston N, Kath WL, Magee JC (2012) Synaptic amplification by dendritic spines enhances input cooperativity. Nature 491:599–602PubMedPubMedCentralCrossRefGoogle Scholar
  49. Harris EW, Cotman CW (1986) Long-term potentiation of Guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists. Neurosci Lett 70:132–137PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hebb D (1949) The organisation of behaviour. Wiley, New YorkGoogle Scholar
  51. Henze DA, Wittner L, Buzsaki G (2002) Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nat Neurosci 5:790–795PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA, Kapoor V, Zou P, Kralj JM, Maclaurin D, Smedemark-Margulies N et al (2014) All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods 11:825–833PubMedPubMedCentralCrossRefGoogle Scholar
  53. Huang YY, Colino A, Selig DK, Malenka RC (1992) The influence of prior synaptic activity on the induction of long-term potentiation. Science 255:730–733PubMedCrossRefPubMedCentralGoogle Scholar
  54. Huerta PT, Lisman JE (1993) Heightened synaptic plasticity of hippocampal Ca1 neurons during a cholinergically induced rhythmic state. Nature 364:723–725PubMedCrossRefPubMedCentralGoogle Scholar
  55. Huerta PT, Lisman JE (1995) Bidirectional synaptic plasticity induced by a single burst during cholinergic Theta-oscillation in Ca1 in-vitro. Neuron 15:1053–1063PubMedCrossRefPubMedCentralGoogle Scholar
  56. Isaac JT, Nicoll RA, Malenka RC (1995) Evidence for silent synapses: implications for the expression of LTP. Neuron 15:427–434PubMedCrossRefPubMedCentralGoogle Scholar
  57. Isaac JT, Buchanan KA, Muller RU, Mellor JR (2009) Hippocampal place cell firing patterns can induce long-term synaptic plasticity in vitro. J Neurosci 29:6840–6850PubMedPubMedCentralCrossRefGoogle Scholar
  58. Ismailov I, Kalikulov D, Inoue T, Friedlander MJ (2004) The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J Neurosci 24:9847–9861PubMedCrossRefPubMedCentralGoogle Scholar
  59. Jahr CE, Stevens CF (1990) A quantitative description of NMDA receptor-channel kinetic behavior. J Neurosci 10:1830–1837PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kampa BM, Clements J, Jonas P, Stuart GJ (2004) Kinetics of Mg2+ unblock of NMDA receptors: implications for spike-timing dependent synaptic plasticity. J Physiol 556:337–345PubMedPubMedCentralCrossRefGoogle Scholar
  61. Karmarkar UR, Buonomano DV (2002) A model of spike-timing dependent plasticity: one or two coincidence detectors? J Neurophysiol 88:507–513PubMedCrossRefPubMedCentralGoogle Scholar
  62. Keck T, Keller GB, Jacobsen RI, Eysel UT, Bonhoeffer T, Hubener M (2013) Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo. Neuron 80:327–334PubMedCrossRefPubMedCentralGoogle Scholar
  63. Keller DX, Franks KM, Bartol TM Jr, Sejnowski TJ (2008) Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines. PLoS One 3:e2045PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kemp N, McQueen J, Faulkes S, Bashir ZI (2000) Different forms of LTD in the CA1 region of the hippocampus: role of age and stimulus protocol. Eur J Neurosci 12:360–366PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kobayashi K, Poo MM (2004) Spike train timing-dependent associative modification of hippocampal CA3 recurrent synapses by mossy fibers. Neuron 41:445–454PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kobayashi K, Manabe T, Takahashi T (1996) Presynaptic long-term depression at the hippocampal mossy fiber-CA3 synapse. Science 273:648–650PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kobayashi K, Manabe T, Takahashi T (1999) Calcium-dependent mechanisms involved in presynaptic long-term depression at the hippocampal mossy fibre-CA3 synapse. Eur J Neurosci 11:1633–1638PubMedCrossRefPubMedCentralGoogle Scholar
  68. Kohl MM, Shipton OA, Deacon RM, Rawlins JN, Deisseroth K, Paulsen O (2011) Hemisphere-specific optogenetic stimulation reveals left-right asymmetry of hippocampal plasticity. Nat Neurosci 14:1413–1415PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kwag J, Paulsen O (2009) The timing of external input controls the sign of plasticity at local synapses. Nat Neurosci 12:1219–1221PubMedCrossRefPubMedCentralGoogle Scholar
  70. Kwon HB, Castillo PE (2008) Long-term potentiation selectively expressed by NMDA receptors at hippocampal mossy fiber synapses. Neuron 57:108–120PubMedPubMedCentralCrossRefGoogle Scholar
  71. Laezza F, Doherty JJ, Dingledine R (1999) Long-term depression in hippocampal interneurons: joint requirement for pre- and postsynaptic events. Science 285:1411–1414PubMedCrossRefGoogle Scholar
  72. Lamsa K, Heeroma JH, Kullmann DM (2005) Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination. Nat Neurosci 8:916–924PubMedCrossRefGoogle Scholar
  73. Lamsa KP, Heeroma JH, Somogyi P, Rusakov DA, Kullmann DM (2007) Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit. Science 315:1262–1266PubMedPubMedCentralCrossRefGoogle Scholar
  74. Langmead CJ, Austin NE, Branch CL, Brown JT, Buchanan KA, Davies CH, Forbes IT, Fry VA, Hagan JJ, Herdon HJ et al (2008) Characterization of a CNS penetrant, selective M1 muscarinic receptor agonist, 77-LH-28-1. Br J Pharmacol 154:1104–1115PubMedPubMedCentralCrossRefGoogle Scholar
  75. Larson J, Wong D, Lynch G (1986) Patterned stimulation at the theta-frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res 368:347–350PubMedCrossRefGoogle Scholar
  76. Lee AK, Manns ID, Sakmann B, Brecht M (2006) Whole-cell recordings in freely moving rats. Neuron 51:399–407PubMedCrossRefGoogle Scholar
  77. Lei S, McBain CJ (2002) Distinct NMDA receptors provide differential modes of transmission at mossy fiber-interneuron synapses. Neuron 33:921–933PubMedCrossRefGoogle Scholar
  78. Lei S, Pelkey KA, Topolnik L, Congar P, Lacaille JC, McBain CJ (2003) Depolarization-induced long-term depression at hippocampal mossy fiber-CA3 pyramidal neuron synapses. J Neurosci 23:9786–9795PubMedCrossRefGoogle Scholar
  79. Letzkus JJ, Kampa BM, Stuart GJ (2006) Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J Neurosci 26:10420–10429PubMedCrossRefGoogle Scholar
  80. Levy WB, Steward O (1979) Synapses as associative memory elements in the hippocampal formation. Brain Res 175:233–245PubMedCrossRefGoogle Scholar
  81. Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci U S A 86:9574–9578PubMedPubMedCentralCrossRefGoogle Scholar
  82. Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50:291–307PubMedCrossRefGoogle Scholar
  83. Lovett-Barron M, Kaifosh P, Kheirbek MA, Danielson N, Zaremba JD, Reardon TR, Turi GF, Hen R, Zemelman BV, Losonczy A (2014) Dendritic inhibition in the hippocampus supports fear learning. Science 343:857–863PubMedPubMedCentralCrossRefGoogle Scholar
  84. Maccaferri G, Toth K, McBain CJ (1998) Target-specific expression of presynaptic mossy fiber plasticity. Science 279:1368–1370PubMedCrossRefGoogle Scholar
  85. Maccaferri G, Roberts JD, Szucs P, Cottingham CA, Somogyi P (2000) Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro. J Physiol 524(Pt 1):91–116PubMedPubMedCentralCrossRefGoogle Scholar
  86. Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209–213PubMedCrossRefGoogle Scholar
  87. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21PubMedCrossRefGoogle Scholar
  88. Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215PubMedCrossRefGoogle Scholar
  89. McBain CJ, Mayer ML (1994) N-methyl-D-aspartic acid receptor structure and function. Physiol Rev 74:723–760PubMedCrossRefGoogle Scholar
  90. McHugh TJ, Blum KI, Tsien JZ, Tonegawa S, Wilson MA (1996) Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell 87:1339–1349PubMedCrossRefGoogle Scholar
  91. McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK, Lowell BB, Fanselow MS, Wilson MA, Tonegawa S (2007) Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317:94–99PubMedCrossRefPubMedCentralGoogle Scholar
  92. McMahon LL, Kauer JA (1997) Hippocampal interneurons express a novel form of synaptic plasticity. Neuron 18:295–305PubMedCrossRefGoogle Scholar
  93. McNaughton BL, Douglas RM, Goddard GV (1978) Synaptic enhancement in fascia dentata: cooperativity among coactive afferents. Brain Res 157:277–293PubMedCrossRefGoogle Scholar
  94. Mellor J, Nicoll RA (2001) Hippocampal mossy fiber LTP is independent of postsynaptic calcium. Nat Neurosci 4:125–126PubMedCrossRefGoogle Scholar
  95. Meredith RM, Floyer-Lea AM, Paulsen O (2003) Maturation of long-term potentiation induction rules in rodent hippocampus: role of GABAergic inhibition. J Neurosci 23:11142–11146PubMedCrossRefGoogle Scholar
  96. Miller KD (1996) Synaptic economics: competition and cooperation in synaptic plasticity. Neuron 17:371–374PubMedCrossRefGoogle Scholar
  97. Mistry R, Dennis S, Frerking M, Mellor JR (2011) Dentate gyrus granule cell firing patterns can induce mossy fiber long-term potentiation in vitro. Hippocampus 21:1157–1168PubMedCrossRefGoogle Scholar
  98. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540PubMedCrossRefGoogle Scholar
  99. Morris RGM, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, Ap5. Nature 319:774–776PubMedCrossRefGoogle Scholar
  100. Mulkey RM, Malenka RC (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9:967–975PubMedCrossRefGoogle Scholar
  101. Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA, Johnston D, Wilson MA, Tonegawa S (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297:211–218PubMedPubMedCentralCrossRefGoogle Scholar
  102. Nevian T, Sakmann B (2006) Spine Ca2+ signaling in spike-timing-dependent plasticity. J Neurosci 26:11001–11013PubMedCrossRefGoogle Scholar
  103. Nicoll RA, Kauer JA, Malenka RC (1988) The current excitement in long-term potentiation. Neuron 1:97–103PubMedCrossRefGoogle Scholar
  104. Nishiyama M, Hong K, Mikoshiba K, Poo M, Kato K (2000) Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408:584–588PubMedCrossRefGoogle Scholar
  105. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurons. Nature 307:462–465PubMedCrossRefGoogle Scholar
  106. O’Brien RJ, Kamboj S, Ehlers MD, Rosen KR, Fischbach GD, Huganir RL (1998) Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21:1067–1078PubMedCrossRefGoogle Scholar
  107. Palmer LM, Stuart GJ (2009) Membrane potential changes in dendritic spines during action potentials and synaptic input. J Neurosci 29:6897–6903PubMedCrossRefGoogle Scholar
  108. Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313:1141–1144PubMedCrossRefGoogle Scholar
  109. Patneau DK, Mayer ML (1990) Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J Neurosci 10:2385–2399PubMedCrossRefGoogle Scholar
  110. Pike FG, Meredith RM, Olding AWA, Paulsen O (1999) Postsynaptic bursting is essential for ‘Hebbian’ induction of associative long-term potentiation at excitatory synapses in rat hippocampus. J Physiol Lond 518:571–576PubMedPubMedCentralCrossRefGoogle Scholar
  111. Rebola N, Lujan R, Cunha RA, Mulle C (2008) Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57:121–134PubMedCrossRefGoogle Scholar
  112. Rebola N, Carta M, Lanore F, Blanchet C, Mulle C (2011) NMDA receptor-dependent metaplasticity at hippocampal mossy fiber synapses. Nat Neurosci 14:691–693PubMedCrossRefGoogle Scholar
  113. Regehr WG, Tank DW (1991) The maintenance of LTP at hippocampal mossy fiber synapses is independent of sustained presynaptic calcium. Neuron 7:451–459PubMedCrossRefGoogle Scholar
  114. Rose GM, Dunwiddie TV (1986) Induction of hippocampal long-term potentiation using physiologically patterned stimulation. Neurosci Lett 69:244–248PubMedCrossRefGoogle Scholar
  115. Sadowski JH, Jones MW, Mellor JR (2016) Sharp-wave ripples orchestrate the induction of synaptic plasticity during reactivation of place cell firing patterns in the hippocampus. Cell Rep 14:1916–1929PubMedPubMedCentralCrossRefGoogle Scholar
  116. Salin PA, Scanziani M, Malenka RC, Nicoll RA (1996) Distinct short-term plasticity at two excitatory synapses in the hippocampus. Proc Natl Acad Sci U S A 93:13304–13309PubMedPubMedCentralCrossRefGoogle Scholar
  117. Schmitz D, Mellor J, Breustedt J, Nicoll RA (2003) Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation. Nat Neurosci 6:1058–1063PubMedCrossRefGoogle Scholar
  118. Seol GH, Ziburkus J, Huang S, Song L, Kim IT, Takamiya K, Huganir RL, Lee HK, Kirkwood A (2007) Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron 55:919–929PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sheffield ME, Dombeck DA (2015) Calcium transient prevalence across the dendritic arbour predicts place field properties. Nature 517:200–204PubMedCrossRefGoogle Scholar
  120. Shew T, Yip S, Sastry BR (2000) Mechanisms involved in tetanus-induced potentiation of fast IPSCs in rat hippocampal CA1 neurons. J Neurophysiol 83:3388–3401PubMedCrossRefGoogle Scholar
  121. Shouval HZ, Kalantzis G (2005) Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. J Neurophysiol 93:1069–1073PubMedCrossRefGoogle Scholar
  122. Silver RA, Traynelis SF, Cull-Candy SG (1992) Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature 355:163–166PubMedCrossRefGoogle Scholar
  123. Sjostrom PJ, Hausser M (2006) A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51:227–238PubMedCrossRefGoogle Scholar
  124. Sjostrom PJ, Nelson SB (2002) Spike timing, calcium signals and synaptic plasticity. Curr Opin Neurobiol 12:305–314PubMedCrossRefGoogle Scholar
  125. Sjostrom PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32:1149–1164PubMedCrossRefGoogle Scholar
  126. Sjostrom PJ, Turrigiano GG, Nelson SB (2003) Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39:641–654PubMedCrossRefGoogle Scholar
  127. Spruston N, Schiller Y, Stuart G, Sakmann B (1995) Activity-dependent action-potential invasion and calcium influx into hippocampal Ca1 dendrites. Science 268:297–300PubMedCrossRefGoogle Scholar
  128. Tigaret CM, Olivo V, Sadowski JH, Ashby MC, Mellor JR (2016) Coordinated activation of distinct Ca(2+) sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity. Nat Commun 7:10289PubMedPubMedCentralCrossRefGoogle Scholar
  129. Tonnesen J, Katona G, Rozsa B, Nagerl UV (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17:678–685PubMedCrossRefGoogle Scholar
  130. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892–896PubMedCrossRefGoogle Scholar
  131. Tzounopoulos T, Janz R, Südhof TC, Nicoll RA, Malenka RC (1998) A role for cAMP in long-term depression at hippocampal mossy fiber synapses. Neuron 21:837–845PubMedCrossRefGoogle Scholar
  132. Weisskopf MG, Zalutsky RA, Nicoll RA (1993) The opioid peptide dynorphin mediates heterosynaptic depression of hippocampal mossy fibre synapses and modulates long-term potentiation. Nature 365:188PubMedCrossRefPubMedCentralGoogle Scholar
  133. Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097PubMedCrossRefPubMedCentralGoogle Scholar
  134. Wigstrom H, Gustafsson B (1983) Facilitated induction of hippocampal long-lasting potentiation during blockade of inhibition. Nature 301:603–604PubMedCrossRefPubMedCentralGoogle Scholar
  135. Wittenberg GM, Wang SSH (2006) Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse. J Neurosci 26:6610–6617PubMedCrossRefPubMedCentralGoogle Scholar
  136. Woodin MA, Ganguly K, Poo MM (2003) Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl- transporter activity. Neuron 39:807–820PubMedCrossRefGoogle Scholar
  137. Wozny C, Maier N, Schmitz D, Behr J (2008) Two different forms of long-term potentiation at CA1-subiculum synapses. J Physiol 586:2725–2734PubMedPubMedCentralCrossRefGoogle Scholar
  138. Yeckel MF, Kapur A, Johnston D (1999) Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nat Neurosci 2:625–633PubMedPubMedCentralCrossRefGoogle Scholar
  139. Zalutsky RA, Nicoll RA (1990) Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248:1619–1624PubMedCrossRefPubMedCentralGoogle Scholar
  140. Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Centre for Synaptic Plasticity, School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK

Personalised recommendations