Advertisement

Physiological Properties of Hippocampal Neurons

  • Marco MartinaEmail author
  • Cheng-Chang Lien
Chapter
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)

Abstract

Neurons are the basic computational units of the nervous system. Information processing in the brain is critically dependent on the electrophysiological properties of individual neurons, which are determined by the presence and distribution of many functionally and pharmacologically different ion channels. The parameters that define the functional roles of individual neurons can be grouped into two major groups: on one side are cellular morphology and topology, which dictate the connectivity of each neuron; on the other side are the different electrophysiological properties of each cell type, which are defined by the combined effects of neuronal active and passive properties and shape the integrative function of each individual cell. The type and timing of neuronal responses to synaptic inputs depend on the firing pattern of each neuron, which in turn is set by the interplay of intrinsic and synaptic electrophysiological properties. In recent years it has also become clear that within each individual neuron the electrophysiological properties are not homogeneous but vary in the various cellular compartments. In particular, it has been shown that dendrites, far from being simple cellular antennas that passively conduct synaptic inputs toward the soma and the axon, are very active structures capable of actively boost synaptic inputs and, at least in some neurons, of generating action potentials that effectively propagate to the soma (Llinás and Sugimori, J Physiol 305:197–213, 1980; Stuart and Sakmann, Nature 367:69–72, 1994; Häusser et al., Neuron 15:637–647, 1995; Spruston et al., Science 268:297–300, 1995; Martina et al., Science 287:295–300, 2000). Thus, the different voltage-gated ion channels expressed by each neuron and in each cellular compartment within individual neurons play a fundamental role in shaping the electrical response of individual neurons to synaptic stimulation and ultimately in dictating the role of each neuron within the hippocampal network. This chapter will focus on the properties and distribution of voltage-gated ion channels in some of the major neuronal types in the hippocampus and dentate gyrus.

Keywords

Electrophysiology Voltage-gated ion channels Resting membrane potential Input resistance Response 

Further Reading

  1. Alle H, Kubota H, Geiger JR (2011) Sparse but highly efficient Kv3 outpace BKCa channels in action potential repolarization at hippocampal mossy fiber boutons. J Neurosci 31(22):8001–8012PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aponte Y, Lien CC, Reisinger E, Jonas P (2006) Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus. J Physiol 574(Pt 1):229–243PubMedPubMedCentralCrossRefGoogle Scholar
  3. Atherton JF, Bevan MD (2005) Ionic mechanisms underlying autonomous action potential generation in the somata and dendrites of GABAergic substantia nigra pars reticulata neurons in vitro. J Neurosci 25(36):8272–8281PubMedCrossRefGoogle Scholar
  4. Avery RB, Johnston D (1996) Multiple channel types contribute to the low-voltage-activated calcium current in hippocampal CA3 pyramidal neurons. J Neurosci 16(18):5567–5582PubMedCrossRefGoogle Scholar
  5. Baker BJ, Kosmidis EK, Vucinic D, Falk CX, Cohen LB, Djurisic M, Zecevic D (2005) Imaging brain activity with voltage- and calcium-sensitive dyes. Cell Mol Neurobiol 25(2):245–282PubMedCrossRefGoogle Scholar
  6. Baldwin TJ, Tsaur ML, Lopez GA, Jan YN, Jan LY (1991) Characterization of a mammalian cDNA for an inactivating voltage-sensitive K+ channel. Neuron 7(3):471–483PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bartos M, Vida I, Frotscher M, Geiger JR, Jonas P (2001) Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J Neurosci 21(8):2687–2698PubMedCrossRefGoogle Scholar
  8. Beck H, Ficker E, Heinemann U (1992) Properties of two voltage-activated potassium currents in acutely isolated juvenile rat dentate gyrus granule cells. J Neurophysiol 68(6):2086–2099PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bischofberger J, Geiger JR, Jonas P (2002) Timing and efficacy of Ca2+ channel activation in hippocampal mossy fiber boutons. J Neurosci 22:10593–10602PubMedCrossRefGoogle Scholar
  10. Blaxter TJ, Carlen PL, Niesen C (1989) Pharmacological and anatomical separation of calcium currents in rat dentate granule neurones in vitro. J Physiol 412:93–112PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bloodgood BL, Sabatini BL (2007) Nonlinear regulation of unitary synaptic signals by CaV(2.3) voltage-sensitive calcium channels located in dendritic spines. Neuron 53(2):249–260CrossRefGoogle Scholar
  12. Bossu JL, Capogna M, Debanne D, RA MK, Gähwiler BH (1996) Somatic voltage-gated potassium currents of rat hippocampal pyramidal cells in organotypic slice cultures. J Physiol 495:367–381PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bowden SE, Fletcher S, Loane DJ, Marrion NV (2001) Somatic colocalization of rat SK1 and D class (CA(v)1.2) L-type calcium channels in rat CA1 hippocampal pyramidal neurons. J Neurosci 21(20):RC175PubMedCrossRefGoogle Scholar
  14. Bullis JB, Jones TD, Poolos NP (2007) Reversed somatodendritic I(h) gradient in a class of rat hippocampal neurons with pyramidal morphology. J Physiol 579(Pt 2):431–443PubMedCrossRefGoogle Scholar
  15. Callaway EM, Katz LC (1993) Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci U S A 90:7661–7665PubMedPubMedCentralCrossRefGoogle Scholar
  16. Charpak S, Gähwiler BH, Do KQ, Knöpfel T (1990) Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature 347(6295):765–767PubMedCrossRefGoogle Scholar
  17. Chen X, Johnston D (2004) Properties of single voltage-dependent K+ channels in dendrites of CA1 pyramidal neurones of rat hippocampus. J Physiol 559:187–203PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen S, Yaari Y (2008) Spike Ca2+ influx upmodulates the spike afterdepolarization and bursting via intracellular inhibition of KV7/M channels. J Physiol 586:1351–1363PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chevaleyre V, Siegelbaum SA (2010) Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop. Neuron 66:560–572PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chikwendu A, McBain CJ (1996) Two temporally overlapping “delayed-rectifiers” determine the voltage-dependent potassium current phenotype in cultured hippocampal interneurons. J Neurophysiol 76:1477–1490PubMedCrossRefGoogle Scholar
  21. Christie BR, Eliot LS, Ito K, Miyakawa H, Johnston D (1995) Different Ca2+ channels in soma and dendrites of hippocampal pyramidal neurons mediate spike-induced Ca2+ influx. J Neurophysiol 73(6):2553–2557PubMedCrossRefGoogle Scholar
  22. Chung YH, Shin C, Park KH, Cha CI (2000) Immunohistochemical study on the distribution of the voltage-gated calcium channel alpha(1B) subunit in the mature rat brain. Brain Res 866(1–2):274–280PubMedCrossRefPubMedCentralGoogle Scholar
  23. Colbert CM, Johnston D (1996) Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J Neurosci 16(21):6676–6686PubMedCrossRefPubMedCentralGoogle Scholar
  24. Colbert CM, Pan E (2002) Ion channel properties underlying axonal action potential initiation in pyramidal neurons. Nat Neurosci 5:533–538PubMedCrossRefPubMedCentralGoogle Scholar
  25. Colbert CM, Magee JC, Hoffman DA, Johnston D (1997) Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons. J Neurosci 17(17):6512–6521PubMedCrossRefPubMedCentralGoogle Scholar
  26. Day NC, Shaw PJ, AL MC, Craig PJ, Smith W, Beattie R, Williams TL, Ellis SB, Ince PG, Harpold MM, Lodge D, Volsen SG (1996) Distribution of alpha 1A, alpha 1B and alpha 1E voltage-dependent calcium channel subunits in the human hippocampus and parahippocampal gyrus. Neuroscience 71(4):1013–1024PubMedCrossRefPubMedCentralGoogle Scholar
  27. Deisseroth K (2010) Controlling the brain with light. Sci Am 303:48–55PubMedCrossRefPubMedCentralGoogle Scholar
  28. Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29PubMedCrossRefPubMedCentralGoogle Scholar
  29. Devaux JJ, Kleopa KA, Cooper EC, Scherer SS (2004) KCNQ2 is a nodal K+ channel. J Neurosci 24:1236–1244PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dietrich D, Kirschstein T, Kukley M, Pereverzev A, von der Brelie C, Schneider T, Beck H (2003) Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron 39(3):483–496PubMedCrossRefPubMedCentralGoogle Scholar
  31. Du J, Haak LL, Phillips-Tansey E, Russell JT, CJ MB (2000) Frequency-dependent regulation of rat hippocampal somato-dendritic excitability by the K+ channel subunit Kv2.1. J Physiol 522(Pt 1):19–31PubMedPubMedCentralCrossRefGoogle Scholar
  32. Elgueta C, Köhler J, Bartos M (2015) Persistent discharges in dentate gyrus perisoma-inhibiting interneurons require hyperpolarization-activated cyclic nucleotide-gated channel activation. J Neurosci 35(10):4131–4139PubMedCrossRefPubMedCentralGoogle Scholar
  33. Eliot LS, Johnston D (1994) Multiple components of calcium current in acutely dissociated dentate gyrus granule neurons. J Neurophysiol 72(2):762–777PubMedCrossRefPubMedCentralGoogle Scholar
  34. Ellerkmann RK, Riazanski V, Elger CE, Urban BW, Beck H (2001) Slow recovery from inactivation regulates the availability of voltage-dependent Na(+) channels in hippocampal granule cells, hilar neurons and basket cells. J Physiol 532(Pt 2):385–397PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ellerkmann RK, Remy S, Chen J, Sochivko D, Elger CE, Urban BW, Becker A, Beck H (2003) Molecular and functional changes in voltage-dependent Na(+) channels following pilocarpine-induced status epilepticus in rat dentate granule cells. Neuroscience 119(2):323–333PubMedCrossRefPubMedCentralGoogle Scholar
  36. Engel D, Jonas P (2005) Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons. Neuron 45(3):405–417PubMedCrossRefPubMedCentralGoogle Scholar
  37. Felts PA, Yokoyama S, Dib-Hajj S, Black JA, Waxman SG (1997) Sodium channel alpha-subunit mRNAs I, II, III, NaG, Na6 and hNE (PN1): different expression patterns in developing rat nervous system. Brain Res Mol Brain Res 45:71–82PubMedCrossRefPubMedCentralGoogle Scholar
  38. Fernandez FR, Morales E, Rashid AJ, Dunn RJ, Turner RW (2003) Inactivation of Kv3.3 potassium channels in heterologous expression systems. J Biol Chem 278(42):40890–40898PubMedCrossRefPubMedCentralGoogle Scholar
  39. Fisher RE, Gray R, Johnston D (1990) Properties and distribution of single voltage-gated calcium channels in adult hippocampal neurons. J Neurophysiol 64(1):91–104PubMedCrossRefPubMedCentralGoogle Scholar
  40. Franz O, Liss B, Neu A, Roeper J (2000) Single-cell mRNA expression of HCN1 correlates with a fast gating phenotype of hyperpolarization-activated cyclic nucleotide-gated ion channels (Ih) in central neurons. Eur J Neurosci 12:2685–2693PubMedCrossRefPubMedCentralGoogle Scholar
  41. Fraser DD, MacVicar BA (1991) Low-threshold transient calcium current in rat hippocampal lacunosum-moleculare interneurons: kinetics and modulation by neurotransmitters. J Neurosci 11(9):2812–2820PubMedCrossRefPubMedCentralGoogle Scholar
  42. Freund TF, Buzsáki G (1996) Interneurons of the hippocampus. Hippocampus 6(4):347–470CrossRefGoogle Scholar
  43. Fricker D, Verheugen JA, Miles R (1999) Cell-attached measurements of the firing threshold of rat hippocampal neurones. J Physiol 517(Pt 3):791–804PubMedPubMedCentralCrossRefGoogle Scholar
  44. Frotscher M, Seress L, Schwerdtfeger WK, Buhl E (1991) The mossy cells of the fascia dentata: a comparative study of their fine structure and synaptic connections in rodents and primates. J Comp Neurol 312(1):145–163PubMedCrossRefPubMedCentralGoogle Scholar
  45. Gasparini S, Magee JC (2002) Phosphorylation-dependent differences in the activation properties of distal and proximal dendritic Na+ channels in rat CA1 hippocampal neurons. J Physiol 541(Pt 3):665–672PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gasparini S, Migliore M, Magee JC (2004) On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J Neurosci 24(49):11046–11056PubMedCrossRefPubMedCentralGoogle Scholar
  47. Geiger JR, Jonas P (2000) Dynamic control of presynaptic Ca(2+) inflow by fast-inactivating K(+) channels in hippocampal mossy fiber boutons. Neuron 28:927–939CrossRefPubMedPubMedCentralGoogle Scholar
  48. Gentet LJ, Stuart GJ, Clements JD (2000) (2000) direct measurement of specific membrane capacitance in neurons. Biophys J 79(1):314–320PubMedPubMedCentralCrossRefGoogle Scholar
  49. Golding NL, Jung HY, Mickus T, Spruston N (1999) Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons. J Neurosci 19(20):8789–8798PubMedCrossRefPubMedCentralGoogle Scholar
  50. Goldman L, Schauf CL (1973) Quantitative description of sodium and potassium currents and computed action potentials in Myxicola giant axons. J Gen Physiol 61:361–384PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gong B, Rhodes KJ, Bekele-Arcuri Z, Trimmer JS (1999) Type I and type II Na(+) channel alpha-subunit polypeptides exhibit distinct spatial and temporal patterning, and association with auxiliary subunits in rat brain. J Comp Neurol 412(2):342–352PubMedCrossRefPubMedCentralGoogle Scholar
  52. Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG (1994) Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol 45(6):1227–1234PubMedGoogle Scholar
  53. Gu N, Vervaeke K, Hu H, Storm JF (2005) M-channels (Kv7/KCNQ channels) that regulate synaptic integration, excitability, and spike pattern of CA1 pyramidal cells are located in the perisomatic region. J Physiol 566(Pt 3):689–715PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100PubMedCrossRefPubMedCentralGoogle Scholar
  55. Häusser M, Stuart G, Racca C, Sakmann B (1995) Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron 15:637–647PubMedCrossRefPubMedCentralGoogle Scholar
  56. Hefft S, Jonas P (2005) Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nat Neurosci 8(10):1319–1328PubMedCrossRefGoogle Scholar
  57. Hillman D, Chen S, Aung TT, Cherksey B, Sugimori M, Llinás RR (1991) Localization of P-type calcium channels in the central nervous system. Proc Natl Acad Sci U S A 88(16):7076–7080PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hitti FL, Siegelbaum SA (2014) The hippocampal CA2 region is essential for social memory. Nature 508(7494):88–92PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hoffman DA, Johnston D (1998) Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. J Neurosci 18(10):3521–3528PubMedCrossRefPubMedCentralGoogle Scholar
  61. Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387(6636):869–875PubMedCrossRefPubMedCentralGoogle Scholar
  62. Hoogland TM, Saggau P (2004) Facilitation of L-type Ca2+ channels in dendritic spines by activation of beta2 adrenergic receptors. J Neurosci 24(39):8416–8427PubMedCrossRefGoogle Scholar
  63. Horn R, Marty A (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol 92:145–159PubMedCrossRefGoogle Scholar
  64. Howard AL, Neu A, Morgan RJ, Echegoyen JC, Soltesz I (2007) Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network. J Neurophysiol 97(3):2394–2409PubMedCrossRefGoogle Scholar
  65. Hu H, Vervaeke K, Storm JF (2002) Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J Physiol 545(Pt 3):783–805PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hu H, Vervaeke K, Storm JF (2007) M-channels (Kv7/KCNQ channels) that regulate synaptic integration, excitability, and spike pattern of CA1 pyramidal cells are located in the perisomatic region. J Neurosci 27:1853–1867PubMedCrossRefPubMedCentralGoogle Scholar
  67. Hu H, Martina M, Jonas P (2010) Dendritic mechanisms underlying rapid synaptic activation of fast-spiking hippocampal interneurons. Science 327(5961):52–58PubMedCrossRefPubMedCentralGoogle Scholar
  68. Hyun JH, Eom K, Lee KH, Ho WK, Lee SH (2013) Activity-dependent downregulation of D-type K+ channel subunit Kv1.2 in rat hippocampal CA3pyramidal neurons. J Physiol 591(22):5525–5540PubMedPubMedCentralCrossRefGoogle Scholar
  69. Jinno S, Ishizuka S, Kosaka T (2003) Ionic currents underlying rhythmic bursting of ventral mossy cells in the developing mouse dentate gyrus. Eur J Neurosci 17(7):1338–1354PubMedCrossRefGoogle Scholar
  70. Johnston D, Hoffman DA, Magee JC, Poolos NP, Watanabe S, Colbert CM, Migliore M (2000) Dendritic potassium channels in hippocampal pyramidal neurons. J Physiol 525(Pt 1):75–81PubMedPubMedCentralCrossRefGoogle Scholar
  71. Jung HY, Mickus T, Spruston N (1997) Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons. J Neurosci 17(17):6639–6646PubMedCrossRefGoogle Scholar
  72. Jung HY, Staff NP, Spruston N (2001) Action potential bursting in subicular pyramidal neurons is driven by a calcium tail current. J Neurosci 21(10):3312–3321PubMedCrossRefGoogle Scholar
  73. Kim J, Wei DS, Hoffman DA (2005) Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones. J Physiol 569:41–57PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kim S (2014) Action potential modulation in CA1 pyramidal neuron axons facilitates OLM interneuron activation in recurrent inhibitory microcircuits of rat hippocampus. PLoS One 19(11):e113124CrossRefGoogle Scholar
  75. Kim S, Guzman SJ, Hu H, Jonas P (2012) Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons. Nat Neurosci 15:600–606PubMedPubMedCentralCrossRefGoogle Scholar
  76. King B, Rizwan AP, Asmara H, Heath NC, Engbers JD, Dykstra S, Bartoletti TM, Hameed S, Zamponi GW, Turner RW (2015) IKCa channels are a critical determinant of the slow AHP in CA1 pyramidal neurons. Cell Rep 11(2):175–182PubMedCrossRefPubMedCentralGoogle Scholar
  77. Klee R, Ficker E, Heinemann U (1995) Comparison of voltage-dependent potassium currents in rat pyramidal neurons acutely isolated from hippocampal regions CA1 and CA3. J Neurophysiol 74(5):1982–1995PubMedCrossRefPubMedCentralGoogle Scholar
  78. Kohara K, Pignatelli M, Rivest AJ, Jung HY, Kitamura T, Suh J, Frank D, Kajikawa K, Mise N, Obata Y, Wickersham IR, Tonegawa S (2014) Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nat Neurosci 17(2):269–279PubMedCrossRefPubMedCentralGoogle Scholar
  79. Lambert NA, Wilson WA (1996) High-threshold Ca2+ currents in rat hippocampal interneurones and their selective inhibition by activation of GABA(B) receptors. J Physiol 492(Pt 1):115–127PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lawrence JJ, Saraga F, Churchill JF, Statland JM, Travis KE, Skinner FK, McBain CJ (2006) Somatodendritic Kv7/KCNQ/M channels control interspike interval in hippocampal interneurons. J Neurosci 26(47):12325–12338PubMedCrossRefPubMedCentralGoogle Scholar
  81. Li L, Bischofberger J, Jonas P (2007) Differential gating and recruitment of P/Q-, N-, and R-type Ca2+ channels in hippocampal mossy fiber boutons. J Neurosci 27(49):13420–13429PubMedCrossRefPubMedCentralGoogle Scholar
  82. Liao YJ, Jan YN, Jan LY (1996) Heteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain. J Neurosci 16(22):7137–7150PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lien CC, Jonas P (2003) Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J Neurosci 23(6):2058–2068PubMedCrossRefPubMedCentralGoogle Scholar
  84. Lien CC, Martina M, Schultz JH, Ehmke H, Jonas P (2002) Gating, modulation and subunit composition of voltage-gated K(+) channels in dendritic inhibitory interneurones of rat hippocampus. J Physiol 538(Pt 2):405–419PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lein ES, Callaway EM, Albright TD, Gage FH (2005) Redefining the boundaries of the hippocampal CA2 subfield in the mouse using gene expression and 3-dimensional reconstruction. J Comp Neurol 485:1–10CrossRefGoogle Scholar
  86. Liu PW, Bean BP (2014) Kv2 channel regulation of action potential repolarization and firing patterns in superior cervical ganglion neurons and hippocampal CA1 pyramidal neurons. J Neurosci 34:4991–5002PubMedPubMedCentralCrossRefGoogle Scholar
  87. Llinás R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol 305:197–213PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lübke J, Frotscher M, Spruston N (1998) Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata. J Neurophysiol 79(3):1518–1534CrossRefGoogle Scholar
  89. Maccaferri G, McBain CJ (1996) The hyperpolarization-activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus interneurones. J Physiol 497(Pt 1):119–130PubMedPubMedCentralCrossRefGoogle Scholar
  90. Maccaferri G, Mangoni M, Lazzari A, DiFrancesco D (1993) Properties of the hyperpolarization-activated current in rat hippocampal CA1 pyramidal cells. J Neurophysiol 69(6):2129–2136PubMedCrossRefGoogle Scholar
  91. Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18(19):7613–7624PubMedCrossRefGoogle Scholar
  92. Magee JC, Carruth M (1999) Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. J Neurophysiol 82(4):1895–1901PubMedCrossRefGoogle Scholar
  93. Magee JC, Johnston D (1995a) Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 487:67–90PubMedPubMedCentralCrossRefGoogle Scholar
  94. Magee JC, Johnston D (1995b) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268:301–304PubMedCrossRefGoogle Scholar
  95. Magee JC, Christofi G, Miyakawa H, Christie B, Lasser-Ross N, Johnston D (1995) Subthreshold synaptic activation of voltage-gated Ca2+ channels mediates a localized Ca2+ influx into the dendrites of hippocampal pyramidal neurons. J Neurophysiol 74(3):1335–1342PubMedCrossRefGoogle Scholar
  96. Magee JC, Avery RB, Christie BR, Johnston D (1996) Dihydropyridine-sensitive, voltage-gated Ca2+ channels contribute to the resting intracellular Ca2+ concentration of hippocampal CA1 pyramidal neurons. J Neurophysiol 76:3460–3470PubMedCrossRefGoogle Scholar
  97. Major G (1993) Solutions for transients in arbitrarily branching cables: III. Voltage clamp problems. Biophys J 65:469–491PubMedPubMedCentralCrossRefGoogle Scholar
  98. Major G, Larkman AU, Jonas P, Sakmann B, Jack JJ (1994) Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J Neurosci 14:4613–4638CrossRefGoogle Scholar
  99. Maletic-Savatic M, Lenn NJ, Trimmer JS (1995) Differential spatiotemporal expression of K+ channel polypeptides in rat hippocampal neurons developing in situ and in vitro. J Neurosci 15:3840–3851PubMedCrossRefPubMedCentralGoogle Scholar
  100. Martina M, Jonas P (1997) Functional differences in Na+ channel gating between fast-spiking interneurones and principal neurones of rat hippocampus. J Physiol 505:593–603PubMedPubMedCentralCrossRefGoogle Scholar
  101. Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P (1998) Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. J Neurosci 18:8111–8125PubMedCrossRefGoogle Scholar
  102. Martina M, Vida I, Jonas P (2000) Distal initiation and active propagation of action potentials in interneuron dendrites. Science 287:295–300CrossRefGoogle Scholar
  103. McKay BE, McRory JE, Molineux ML, Hamid J, Snutch TP, Zamponi GW, Turner RW (2006) Ca(V)3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. Eur J Neurosci 24:2581–2594PubMedCrossRefPubMedCentralGoogle Scholar
  104. Meeks JP, Mennerick S (2007) Action potential initiation and propagation in CA3 pyramidal axons. J Neurophysiol 97:3460–3472PubMedCrossRefGoogle Scholar
  105. Metz AE, Jarsky T, Martina M, Spruston N (2005) R-type calcium channels contribute to afterdepolarization and bursting in hippocampal CA1 pyramidal neurons. J Neurosci 25:5763–5773PubMedCrossRefGoogle Scholar
  106. Metz AE, Spruston N, Martina M (2007) Dendritic D-type potassium currents inhibit the spike afterdepolarization in rat hippocampal CA1 pyramidal neurons. J Physiol 581:175–187PubMedPubMedCentralCrossRefGoogle Scholar
  107. Meyer AH, Katona I, Blatow M, Rozov A, Monyer H (2002) In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J Neurosci 22:7055–7064CrossRefGoogle Scholar
  108. Mills LR, Niesen CE, So AP, Carlen PL, Spigelman I, Jones OT (1994) N-type Ca2+ channels are located on somata, dendrites, and a subpopulation of dendritic spines on live hippocampal pyramidal neurons. J Neurosci 14:6815–6824PubMedCrossRefPubMedCentralGoogle Scholar
  109. Mintz IM, Adams ME, Bean BP (1992) P-type calcium channels in rat central and peripheral neurons. Neuron 9:85–95PubMedCrossRefPubMedCentralGoogle Scholar
  110. Misonou H, Menegola M, Buchwalder L, Park EW, Meredith A, Rhodes KJ, Aldrich RW, Trimmer JS (2006) Immunolocalization of the Ca2+−activated K+ channel Slo1 in axons and nerve terminals of mammalian brain and cultured neurons. J Comp Neurol 496:289–302PubMedPubMedCentralCrossRefGoogle Scholar
  111. Mitterdorfer J, Bean BP (2002) Potassium currents during the action potential of hippocampal CA3 neurons. J Neurosci 22:10106–10115PubMedCrossRefPubMedCentralGoogle Scholar
  112. Miyawaki T, Tsubokawa H, Yokota H, Oguro K, Konno K, Masuzawa T, Kawai N (2002) Differential effects of novel wasp toxin on rat hippocampal interneurons. Neurosci Lett 328:25–28PubMedCrossRefPubMedCentralGoogle Scholar
  113. Mogul DJ, Fox AP (1991) Evidence for multiple types of Ca2+ channels in acutely isolated hippocampal CA3 neurones of the Guinea-pig. J Physiol 433:259–281PubMedPubMedCentralCrossRefGoogle Scholar
  114. Monaghan MM, Trimmer JS, Rhodes KJ (2001) Experimental localization of Kv1 family voltage-gated K+ channel alpha and beta subunits in rat hippocampal formation. J Neurosci 21:5973–5983PubMedCrossRefPubMedCentralGoogle Scholar
  115. Neher E, Sakmann B, Steinbach JH (1978) The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflugers Arch 375:219–228PubMedCrossRefGoogle Scholar
  116. Nevian T, Helmchen F (2007) Calcium indicator loading of neurons using single-cell electroporation. Pflugers Arch 454:675–688PubMedCrossRefPubMedCentralGoogle Scholar
  117. Nicoll RA, Alger BE (1981) Synaptic excitation may activate a calcium-dependent potassium conductance in hippocampal pyramidal cells. Science 212:957–959PubMedCrossRefGoogle Scholar
  118. Normann C, Peckys D, Schulze CH, Walden J, Jonas P, Bischofberger J (2000) Associative long-term depression in the hippocampus is dependent on postsynaptic N-type Ca2+ channels. J Neurosci 20:8290–8297PubMedCrossRefPubMedCentralGoogle Scholar
  119. Notomi T, Shigemoto R (2004) Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain. J Comp Neurol 471:241–276PubMedCrossRefGoogle Scholar
  120. Palacio S, Chevaleyre V, Brann DH, Murray KD, Piskorowski RA, Trimmer JS (2017) Heterogeneity in Kv2 channel expression shapes action potential characteristics and firing patterns in CA1 versus CA2 hippocampal pyramidal neurons. eNeuro. 4. pii: ENEURO.0267-17.2017Google Scholar
  121. Park KH, Chung YH, Shin C, Kim MJ, Lee BK, Cho SS, Cha CI (2001) Immunohistochemical study on the distribution of the voltage-gated potassium channels in the gerbil hippocampus. Neurosci Lett 298:29–32PubMedCrossRefPubMedCentralGoogle Scholar
  122. Parra P, Gulyás AI, Miles R (1998) How many subtypes of inhibitory cells in the hippocampus? Neuron 20:983–993PubMedCrossRefPubMedCentralGoogle Scholar
  123. Piskorowski RA, Nasrallah K, Diamantopoulou A, Mukai J, Hassan SI, Siegelbaum SA, Gogos JA, Chevaleyre V (2016) Age-dependent specific changes in area CA2 of the hippocampus and social memory deficit in a mouse model of the 22q11.2 deletion syndrome. Neuron 89:163–176PubMedPubMedCentralCrossRefGoogle Scholar
  124. Poncer JC, McKinney RA, Gähwiler BH, Thompson SM (1997) Either N- or P-type calcium channels mediate GABA release at distinct hippocampal inhibitory synapses. Neuron 18:463–472PubMedCrossRefPubMedCentralGoogle Scholar
  125. Poolos NP, Johnston D (1999) Calcium-activated potassium conductances contribute to action potential repolarization at the soma but not the dendrites of hippocampal CA1 pyramidal neurons. J Neurosci 19:5205–5212PubMedCrossRefPubMedCentralGoogle Scholar
  126. Price CJ, Cauli B, Kovacs ER, Kulik A, Lambolez B, Shigemoto R, Capogna M (2005) Neurogliaform neurons form a novel inhibitory network in the hippocampal CA1 area. J Neurosci 25:6775–6786PubMedPubMedCentralCrossRefGoogle Scholar
  127. Radzicki D, Yau HJ, Pollema-Mays SL, Mlsna L, Cho K, Koh S, Martina M (2013) Temperature-sensitive Cav1.2 calcium channels support intrinsic firing of pyramidal neurons and provide a target for the treatment of febrile seizures. J Neurosci 33:9920–9931PubMedPubMedCentralCrossRefGoogle Scholar
  128. Ramakers GM, Storm JF (2002) A postsynaptic transient K(+) current modulated by arachidonic acid regulates synaptic integration and threshold for LTP induction in hippocampal pyramidal cells. Proc Natl Acad Sci U S A 99:10144–10149PubMedPubMedCentralCrossRefGoogle Scholar
  129. Reckziegel G, Beck H, Schramm J, Elger CE, Urban BW (1998) Electrophysiological characterization of Na+ currents in acutely isolated human hippocampal dentate granule cells. J Physiol 509:139–150PubMedPubMedCentralCrossRefGoogle Scholar
  130. Rettig J, Heinemann SH, Wunder F, Lorra C, Parcej DN, Dolly JO, Pongs O (1994) Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature 1994(369):289–294CrossRefGoogle Scholar
  131. Rhodes KJ, Strassle BW, Monaghan MM, Bekele-Arcuri Z, Matos MF, Trimmer JS (1997) Association and colocalization of the Kvbeta1 and Kvbeta2 beta-subunits with Kv1 alpha-subunits in mammalian brain K+ channel complexes. J Neurosci 17:8246–8258PubMedCrossRefGoogle Scholar
  132. Rhodes KJ, Carroll KI, Sung MA, Doliveira LC, Monaghan MM, Burke SL, Strassle BW, Buchwalder L, Menegola M, Cao J, An WF, Trimmer JS (2004) KChIPs and Kv4 alpha subunits as integral components of A-type potassium channels in mammalian brain. J Neurosci 24:7903–7915PubMedCrossRefGoogle Scholar
  133. Riazanski V, Becker A, Chen J, Sochivko D, Lie A, Wiestler OD, Elger CE, Beck H (2001) Functional and molecular analysis of transient voltage-dependent K+ currents in rat hippocampal granule cells. J Physiol 537:391–406PubMedPubMedCentralCrossRefGoogle Scholar
  134. Robert V, Cassim S, Chevaleyre V, Piskorowski RA (2018) Hippocampal area CA2: properties and contribution to hippocampal function. Cell Tissue Res.  https://doi.org/10.1007/s00441-017-2769-7 PubMedCrossRefGoogle Scholar
  135. Rozsa B, Zelles T, Vizi ES, Lendvai B (2004) Distance-dependent scaling of calcium transients evoked by backpropagating spikes and synaptic activity in dendrites of hippocampal interneurons. J Neurosci 24:661–670PubMedCrossRefGoogle Scholar
  136. Russo MJ, Mugnaini E, Martina M (2007) Intrinsic properties and mechanisms of spontaneous firing in mouse cerebellar unipolar brush cells. J Physiol 581(Pt 2):709–724PubMedPubMedCentralCrossRefGoogle Scholar
  137. Saganich MJ, Machado E, Rudy B (2001) Differential expression of genes encoding subthreshold-operating voltage-gated K+ channels in brain. J Neurosci 21:4609–4624PubMedCrossRefGoogle Scholar
  138. Santoro B, Wainger BJ, Siegelbaum SA (2004) Regulation of HCN channel surface expression by a novel C-terminal protein-protein interaction. J Neurosci 24:10750–10762PubMedCrossRefGoogle Scholar
  139. Sather W, Dieudonné S, MacDonald JF, Ascher P (1992) Activation and desensitization of N-methyl-D-aspartate receptors in nucleated outside-out patches from mouse neurones. J Physiol 450:643–672PubMedPubMedCentralCrossRefGoogle Scholar
  140. Saviane C, Mohajerani MH, Cherubini E (2003) An ID-like current that is downregulated by Ca2+ modulates information coding at CA3-CA3 synapses in the rat hippocampus. J Physiol 552:513–524PubMedPubMedCentralCrossRefGoogle Scholar
  141. Schmidt-Hieber C, Jonas P, Bischofberger J (2007) Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells. J Neurosci 27:8430–8441PubMedCrossRefPubMedCentralGoogle Scholar
  142. Schmidt-Hieber C, Jonas P, Bischofberger J (2008) Action potential initiation and propagation in hippocampal mossy fibre axons. J Physiol 586:1849–1857PubMedPubMedCentralCrossRefGoogle Scholar
  143. Schroeder BC, Hechenberger M, Weinreich F, Kubisch C, Jentsch TJ (2000) KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. J Biol Chem 275:24089–24095PubMedCrossRefGoogle Scholar
  144. Sekirnjak C, Martone ME, Weiser M, Deerinck T, Bueno E, Rudy B, Ellisman M (1997) Subcellular localization of the K+ channel subunit Kv3.1b in selected rat CNS neurons. Brain Res 766:173–187PubMedCrossRefGoogle Scholar
  145. Serôdio P, Vega-Saenz de Miera E, Rudy B (1996) Cloning of a novel component of A-type K+ channels operating at subthreshold potentials with unique expression in heart and brain. Neurophysiol 75:2174–2179CrossRefGoogle Scholar
  146. Serôdio P, Rudy B (1998) Differential expression of Kv4 K+ channel subunits mediating subthreshold transient K+ (A-type) currents in rat brain. J Neurophysiol 79:1081–1091PubMedCrossRefPubMedCentralGoogle Scholar
  147. Shah M, Mistry M, Marsh SJ, Brown DA, Delmas P (2002) Molecular correlates of the M-current in cultured rat hippocampal neurons. J Physiol 544:29–37PubMedPubMedCentralCrossRefGoogle Scholar
  148. Sheng M, Tsaur ML, Jan YN, LY J (1992) Subcellular segregation of two A-type K+ channel proteins in rat central neurons. Neuron 9:271–284PubMedCrossRefPubMedCentralGoogle Scholar
  149. Sheng M, Tsaur ML, Jan YN, Jan LY (1994) Contrasting subcellular localization of the Kv1.2 K+ channel subunit in different neurons of rat brain. J Neurosci 14:2408–2417PubMedCrossRefPubMedCentralGoogle Scholar
  150. Sochivko D, Pereverzev A, Smyth N, Gissel C, Schneider T, Beck H (2002) The Ca(V)2.3 Ca(2+) channel subunit contributes to R-type Ca(2+) currents in murine hippocampal and neocortical neurones. J Physiol 542:699–710PubMedPubMedCentralCrossRefGoogle Scholar
  151. Sochivko D, Chen J, Becker A, Beck H (2003) Blocker-resistant Ca2+ currents in rat CA1 hippocampal pyramidal neurons. Neuroscience 116:629–638PubMedCrossRefGoogle Scholar
  152. Spruston N, Johnston D (1992) Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J Neurophysiol 67:508–529PubMedCrossRefGoogle Scholar
  153. Spruston N, Schiller Y, Stuart G, Sakmann B (1995) Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268:297–300CrossRefGoogle Scholar
  154. Srinivas KV, Buss EW, Sun Q, Santoro B, Takahashi H, Nicholson DA, Siegelbaum SA (2017) The dendrites of CA2 and CA1 pyramidal neurons differentially regulate information flow in the cortico-hippocampal circuit. J Neurosci 37:3276–3293PubMedCrossRefPubMedCentralGoogle Scholar
  155. Staley KJ, Otis TS, Mody I (1992) Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. J Neurophysiol 67:1346–1358PubMedCrossRefGoogle Scholar
  156. Stea A, Tomlinson WJ, Soong TW, Bourinet E, Dubel SJ, Vincent SR, Snutch TP (1994) Localization and functional properties of a rat brain alpha 1A calcium channel reflect similarities to neuronal Q- and P-type channels. Proc Natl Acad Sci U S A 91:10576–10580PubMedPubMedCentralCrossRefGoogle Scholar
  157. Steinhäuser C, Tennigkeit M, Matthies H, Gündel J (1990) Properties of the fast sodium channels in pyramidal neurones isolated from the CA1 and CA3 areas of the hippocampus of postnatal rats. Pflugers Arch 415:756–761PubMedCrossRefPubMedCentralGoogle Scholar
  158. Storm JF (1990) Potassium currents in hippocampal pyramidal cells. Prog Brain Res 83:161–187PubMedCrossRefPubMedCentralGoogle Scholar
  159. Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72PubMedCrossRefGoogle Scholar
  160. Stuart G, Spruston N (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18:3501–3510PubMedCrossRefPubMedCentralGoogle Scholar
  161. Su H, Sochivko D, Becker A, Chen J, Jiang Y, Yaari Y, Beck H (2002) Upregulation of a T-type Ca2+ channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J Neurosci 22:3645–3655PubMedCrossRefGoogle Scholar
  162. Sun Q, Srinivas KV, Sotayo A, Siegelbaum SA (2014) Dendritic Na+ spikes enable cortical input to drive action potential output from hippocampal CA2 pyramidal neurons. elife 3.  https://doi.org/10.7554/eLife.04551
  163. Sun Q, Sotayo A, Cazzulino AS, Snyder AM, Denny CA, Siegelbaum SA (2017) Proximodistal Heterogeneity of Hippocampal CA3 Pyramidal Neuron Intrinsic Properties, Connectivity, and Reactivation during Memory Recall. Neuron 95:656–672PubMedPubMedCentralCrossRefGoogle Scholar
  164. Tai C, Abe Y, Westenbroek RE, Scheuer T, Catterall WA (2014) Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome. Proc Natl Acad Sci U S A 111(30):E3139–E3148PubMedPubMedCentralCrossRefGoogle Scholar
  165. Takahashi K, Wakamori M, Akaike N (1989) Hippocampal CA1 pyramidal cells of rats have four voltage-dependent calcium conductances. Neurosci Lett 104:229–234PubMedCrossRefGoogle Scholar
  166. Takahashi K, Ueno S, Akaike N (1991) Kinetic properties of T-type Ca2+ currents in isolated rat hippocampal CA1 pyramidal neurons. J Neurophysiol 65:148–155PubMedCrossRefGoogle Scholar
  167. Takigawa T, Alzheimer C (2002) Phasic and tonic attenuation of EPSPs by inward rectifier K+ channels in rat hippocampal pyramidal cells. J Physiol 539:67–75PubMedPubMedCentralCrossRefGoogle Scholar
  168. Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA (2001) CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 21:7491–7505PubMedCrossRefGoogle Scholar
  169. Taniguchi H, He M, Wu P, Kim S, Paik R, Sugino K, Kvitsiani D, Fu Y, Lu J, Lin Y, Miyoshi G, Shima Y, Fishell G, Nelson SB, Huang ZJ (2011) A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71:995–1013PubMedPubMedCentralCrossRefGoogle Scholar
  170. Taverna S, Tkatch T, Metz AE, Martina M (2005) Differential expression of TASK channels between horizontal interneurons and pyramidal cells of rat hippocampus. J Neurosci 25:9162–9170PubMedCrossRefPubMedCentralGoogle Scholar
  171. Thompson SM, Wong RK (1991) Development of calcium current subtypes in isolated rat hippocampal pyramidal cells. J Physiol 439:671–689PubMedPubMedCentralCrossRefGoogle Scholar
  172. Tippens AL, Pare JF, Langwieser N, Moosmang S, Milner TA, Smith Y, Lee A (2008) Ultrastructural evidence for pre- and postsynaptic localization of Cav1.2 L-type Ca2+ channels in the rat hippocampus. J Comp Neurol 506:569–583PubMedCrossRefPubMedCentralGoogle Scholar
  173. Torborg CL, Berg AP, Jeffries BW, Bayliss DA, McBain CJ (2006) TASK-like conductances are present within hippocampal CA1 stratum oriens interneuron subpopulations. J Neurosci 26:7362–7367PubMedCrossRefGoogle Scholar
  174. Tsaur ML, Sheng M, Lowenstein DH, Jan YN, Jan LY (1992) Differential expression of K+ channel mRNAs in the rat brain and down-regulation in the hippocampus following seizures. Neuron 8:1055–1067PubMedCrossRefPubMedCentralGoogle Scholar
  175. Tsay D, Dudman JT, Siegelbaum SA (2007) HCN1 channels constrain synaptically evoked Ca2+ spikes in distal dendrites of CA1 pyramidal neurons. Neuron 56:1076–1089PubMedPubMedCentralCrossRefGoogle Scholar
  176. Veng LM, Browning MD (2002) Regionally selective alterations in expression of the alpha(1D) subunit (Ca(v)1.3) of L-type calcium channels in the hippocampus of aged rats. Brain Res Mol Brain Res 107:120–127PubMedCrossRefPubMedCentralGoogle Scholar
  177. Vervaeke K, Gu N, Agdestein C, Hu H, Storm JF (2006) Kv7/KCNQ/M-channels in rat glutamatergic hippocampal axons and their role in regulation of excitability and transmitter release. J Physiol 576:235–256PubMedPubMedCentralCrossRefGoogle Scholar
  178. Vida I, Halasy K, Szinyei C, Somogyi P, Buhl EH (1998) Unitary IPSPs evoked by interneurons at the stratum radiatum-stratum lacunosum-moleculare border in the CA1 area of the rat hippocampus in vitro. J Physiol 506:755–773PubMedPubMedCentralCrossRefGoogle Scholar
  179. Wang H, Kunkel DD, Schwartzkroin PA, Tempel BL (1994) Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain. J Neurosci 14:4588–4599PubMedCrossRefPubMedCentralGoogle Scholar
  180. Wang HS, Pan Z, Shi W, Brown BS, Wymore RS, Cohen IS, Dixon JE, McKinnon D (1998) CNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282:1890–1893PubMedCrossRefPubMedCentralGoogle Scholar
  181. Weiler N, Wood L, Yu J, Solla SA, Shepherd GM (2008) Top-down laminar organization of the excitatory network in motor cortex. Nat Neurosci 11:360–366PubMedPubMedCentralCrossRefGoogle Scholar
  182. Weiser M, Vega-Saenz de Miera E, Kentros C, Moreno H, Franzen L, Hillman D, Baker H, Rudy B (1994) Differential expression of Shaw-related K+ channels in the rat central nervous system. J Neurosci 14:949–972PubMedCrossRefPubMedCentralGoogle Scholar
  183. Weiser M, Bueno E, Sekirnjak C, Martone ME, Baker H, Hillman D, Chen S, Thornhill W, Ellisman M, Rudy B (1995) The potassium channel subunit KV3.1b is localized to somatic and axonal membranes of specific populations of CNS neurons. J Neurosci 15:4298–4314PubMedCrossRefPubMedCentralGoogle Scholar
  184. Wilson SM, Toth PT, Oh SB, Gillard SE, Volsen S, Ren D, Philipson LH, Lee EC, Fletcher CF, Tessarollo L, Copeland NG, Jenkins NA, Miller RJ (2000) The status of voltage-dependent calcium channels in alpha 1E knock-out mice. J Neurosci 20:8566–8571PubMedCrossRefPubMedCentralGoogle Scholar
  185. Xu W, Lipscombe D (2001) Neuronal Ca(V)1.3alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J Neurosci 21:5944–5951PubMedCrossRefPubMedCentralGoogle Scholar
  186. Yaari Y, Yue C, Su H (2007) Recruitment of apical dendritic T-type Ca2+ channels by backpropagating spikes underlies de novo intrinsic bursting in hippocampal epileptogenesis. J Physiol 580:435–450PubMedPubMedCentralCrossRefGoogle Scholar
  187. Yue C, Yaari Y (2004) KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J Neurosci 24:4614–4624PubMedCrossRefGoogle Scholar
  188. Yue C, Remy S, Su H, Beck H, Yaari Y (2005) Proximal persistent Na+ channels drive spike afterdepolarizations and associated bursting in adult CA1 pyramidal cells. J Neurosci 25:9704–9720PubMedCrossRefPubMedCentralGoogle Scholar
  189. Zhang L, Valiante TA, Carlen PL (1993) Contribution of the low-threshold T-type calcium current in generating the post-spike depolarizing afterpotential in dentate granule neurons of immature rats. J Neurophysiol 70:223–231PubMedCrossRefPubMedCentralGoogle Scholar
  190. Zhao M, Choi YS, Obrietan K, Dudek SM (2007) Synaptic plasticity (and the lack thereof) in hippocampal CA2 neurons. J Neurosci 27:12025–12032PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of PhysiologyNorthwestern University, Feinberg School of MedicineChicagoUSA
  2. 2.Institute of NeuroscienceNational Yang-Ming UniversityTaipeiTaiwan

Personalised recommendations