Advertisement

Halophilic Microbial Ecology for Agricultural Production in Salt Affected Lands

  • Sanjay Arora
  • Meghna J. Vanza
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 33)

Abstract

Halophiles microbes are present in hypersaline environments. Several alkaliphilic Bacillus species isolated from soils show halophilic characteristics. Genera that include halophilic species isolated from soil samples are Halobacillus, Filobacillus, Tenuibacillus, Lentibacillus, and Thalassobacillus. Species from Filobacillus, Thalassobacillus, Lentibacillus and Tenuibacillus genera are moderately halophile. The family Nocardiopsaceae predominate in saline or alkaline soils. Many Gram-negative, moderately halophilic, or halotolerant species are included in the family Halomonadaceae. Microorganisms from the genus Streptomonospora, which are Gram-positive, aerobic organisms with branching hyphae, are found to grow upto 15% NaCl.

Mycorrhizal fungi can increase the growth of plants growing in salinity. Vesicular arbuscular mycorrhizal fungi have the ability to protect plants from salt stress. Compatible solute strategy is employed by the majority of moderately halophilic and halotolerant bacteria. All halophilic microorganisms contain potent transport mechanisms, generally based on Na+/H+ antiporters, to expel sodium ions from the interior of the cell. Also, some halophiles express aminocyclopropane-1-carboxylic acid (ACC) deaminase activity that removes stress, ethylene from the rhizosphere and some produce auxins that promote root growth. Plant growth-promoting rhizobacteria induces plants salt stress tolerance. Inoculation of halophilic plant growth-promoting bacterial strains reduces sodium by 19% in soil. Also, with such method, the yield of wheat and Zea mays can be increased by 10–12% under salinity stress. Liquid bioformulations of efficient halophilic plant growth promoters improvs crop yields under salt stress.

Keywords

Halophiles Expremophiles Salt tolerance Hypersaline environment Bio-remediation Saline soil 

References

  1. Aliasgharzadeh N, Saleh Rastin N, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122CrossRefPubMedGoogle Scholar
  2. Al-Tai AM, Ruan JS (1994) Nocardiopsis halophila sp. nov., a new halophilic actinomycete isolated from soil. Int J Syst Bacteriol 44:474–478CrossRefGoogle Scholar
  3. Al-Zarban SS, Abbas I, Al-Musallam AA, Steiner U, Stackebrandt E, Kroppenstedt RM (2002) Nocardiopsis halotolerans sp. nov., isolated from salt marsh soil in Kuwait. Int J Syst Evol Microbiol 52:525–529CrossRefPubMedGoogle Scholar
  4. Amoozegar MA, Malekzadeh F, Malik KA, Schumann P, Sproer C (2003) Halobacillus karajensis sp. nov., a novel moderate halophile. Int J Syst Evol Microbiol 53:059–1063CrossRefGoogle Scholar
  5. Arahal DR, Ventosa A (2002) Moderately halophilic and halotolerant species of Bacillus and related genera. In: Berkeley R, Heyndrickx M, Logan N, De Vos P (eds) Applications and systematics of Bacillus and relatives. Blackwell, Oxford, pp 83–99CrossRefGoogle Scholar
  6. Arahal DR, Ventosa A (2005) The family Halomonadaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbial community, release 3.20. Springer, New York http://141.150.157.117:8080/prokPUB/index.htm Google Scholar
  7. Arahal DR, Castillo AM, Ludwig W, Schleifer KH, Ventosa A (2002) Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina. Syst Appl Microbiol 25:207–211CrossRefPubMedGoogle Scholar
  8. Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, vol 18. Springer, Berlin/Heidelberg, pp 97–116CrossRefGoogle Scholar
  9. Arora SV (2017) Reclamation and management of salt affected soils for safeguarding agricultural productivity. Journal of Safe Agriculture 01(1):1–10Google Scholar
  10. Arora S, Singh YP, Vanza M, Sahni D (2016) Bioremediation of saline and sodic soils through halophilic bacteria to enhance agricultural production. J Soil Water Conserv, India 15(4):302–305CrossRefGoogle Scholar
  11. Arora S, Singh YP (2018) Bioremediation of salt affected soils of Uttar Pradesh through halophilic microbes to promote organic farming. In: Sharma PC, Singh A (eds) Annual report, 2017–18. ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India, pp 112–118Google Scholar
  12. Arora S, Trivedi R, Rao GG (2012) Bioremediation of coastal and inland salt affected soils using halophilic soil microbes. Salinity News 18(2):3Google Scholar
  13. Arora Sanjay, Trivedi R, Rao GG (2013) Bioremediation of coastal and inland salt affected soils using halophyte plants and halophilic soil microbes. CSSRI annual report 2012–13, CSSRI, Karnal, India, pp 94–100Google Scholar
  14. Arora S, Patel P, Vanza M, Rao GG (2014a) Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from coastal Gujarat. Afr J Microbiol Res 8(17):1779–1788CrossRefGoogle Scholar
  15. Arora S, Vanza M, Mehta R, Bhuva C, Patel P (2014b) Halophilic microbes for bio-remediation of salt affected soils. Afr J Microbiol Res 8(33):3070–3078CrossRefGoogle Scholar
  16. Arora S, Vanza M (2017) Microbial approach for bioremediation of saline and sodic soils. In: Sanjay A, Singh AK, Singh YP (eds) Bioremediation of salt affected soils: an Indian perspective. Springer, Switzerland, pp 87–100CrossRefGoogle Scholar
  17. Ash C, Farrow JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of genus Bacillus as revealed by comparative analysis of small-subunit-ribosomal RNA sequence. Lett Appl Microbiol 13:202–206CrossRefGoogle Scholar
  18. Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109(1):8–14CrossRefGoogle Scholar
  19. Bhuva C, Arora S, Rao GG (2013) Efficacy of halophilic microbes for salt removal from coastal saline soils. In: National seminar with the theme “Microbes and Human Welfare”, Bharathidasan University, Tiruchirappalli, IndiaGoogle Scholar
  20. Bouchotroch S, Quesada E, del Moral A, Llamas I, Bejar V (2001) Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51:1625–1632CrossRefPubMedGoogle Scholar
  21. Brocq-Rousseau D (1904) Sur un Streptothrix. Ref Gen Botanique 16:20–26Google Scholar
  22. Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846PubMedPubMedCentralGoogle Scholar
  23. Chakraborty U, Roy S, Chakraborty AP, Dey P, Chakraborty B (2011) Plant growth promotion and amelioration of salinity stress in crop plants by a salt-tolerant bacterium. Recent Res Sci Technol 3(11):61–70Google Scholar
  24. Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane- 1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918CrossRefPubMedGoogle Scholar
  25. Chun J, Bae KS, Moon EY, Jung SO, Lee HK, Kim SJ (2000) Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated from a saltern. Int J Syst Evol Microbiol 50:1909–1913CrossRefPubMedGoogle Scholar
  26. Collins MD, Lawson PA, Labrenz M, Tindall BJ, Weiss N, Hirsch P (2002) Nesterenkonia lacusekhoensis sp. Nov., isolated from hypersaline Ekho Lake, east Antarctica and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol 52:1145–1150PubMedGoogle Scholar
  27. Creus CM, Sueldo RJ, Barassi CA (1997) Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiol Biochem 35:939–944Google Scholar
  28. Creus CM, Sueldo RJ, Barassi CA (1998) Water relations in Azospirillum inoculated wheat seedlings under osmotic stress. Can J Bot 76:238–244Google Scholar
  29. Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP, Xu LH, Jiang CL (2001) Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51:357–363CrossRefPubMedGoogle Scholar
  30. Das S, Lyla PS, Khan SA (2006) Marine microbial diversity and ecology: present status and future perspectives. Curr Sci 90(10):1325–1335Google Scholar
  31. Dash HR, Das S (2012) Bioremediation of mercury and importance of bacterial mer genes. Int Biodeterior Biodegrad 75:207–213CrossRefGoogle Scholar
  32. DasSarma S, Arora P (2001) Halophiles. Enc Life Sci.  https://doi.org/10.1038/npg.els.0004356
  33. de Rutger W, Bouvier T (2006) Environmental. Microbiology 8(4):755–758.  https://doi.org/10.1111/j.1462-2920.2006.01017.x CrossRefGoogle Scholar
  34. Dobson SJ, Franzmann PD (1996) Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980) and Halovibrio (Fendrich, 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons, 1952) into a single genus, Halomonas and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46:550–558CrossRefGoogle Scholar
  35. Dodd IC, Perez-Alfocea F (2012) Microbial alleviation of crop salinity. J Exp Bot 63:3415–3428CrossRefPubMedGoogle Scholar
  36. Duan J, Muller KM, Charles TC, Vesely S, Glick BR (2009) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from Southern Saskatchewan. Microb Ecol 57:423–436CrossRefPubMedGoogle Scholar
  37. Dundas I (1998) Was the environment for primordial life hypersaline? Extremophiles 2:375–377CrossRefPubMedGoogle Scholar
  38. Echigo A, Hino M, Fukushima T, Mizuki T, Kamekura M, Usami R (2005) Endospores of halophilic bacteria of the family Bacillaceae isolated from non-saline Japanese soil may be transported by Kosa event (Asian dust storm). Saline Syst 1:8CrossRefPubMedPubMedCentralGoogle Scholar
  39. Fritze D (1996) Bacillus haloalkaliphilus sp. nov. Int J Syst Bacteriol 46:98–101CrossRefGoogle Scholar
  40. Garabito MJ, Arahal DR, Mellado E, Marquez MC, Ventosa A (1997) Bacillus salexigens sp. nov., a new moderately halophilic Bacillus species. Int J Syst Bacteriol 47:735–741CrossRefPubMedGoogle Scholar
  41. Garabito MJ, Marquez MC, Ventosa A (1998) Halotolerant Bacillus diversity in hypersaline environments. Can J Microbiol 44:95–102CrossRefGoogle Scholar
  42. Garcia MT, Mellado E, Ostos JC, Ventosa A (2004) Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 54:1723–1728CrossRefPubMedGoogle Scholar
  43. García MT, Gallego V, Ventosa A, Mellado E (2005) Thalassobacillus devorans gen. nov., sp. nov., a moderately halophilic, phenol-degrading, Gram-positive bacterium. Int J Syst Evol Microbiol 55:1789–1795CrossRefPubMedGoogle Scholar
  44. Garriga M, Ehrmann MA, Arnau J, Hugas M, Vogel RF (1998) Carnimonas nigrificans gen. nov., sp. nov., a bacterial causative agent for black spot formation on cured meat products. Int J Syst Bacteriol 48:677–686CrossRefPubMedGoogle Scholar
  45. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon- degrading marine bacterium. Int J Syst Bacteriol 42:568–576CrossRefPubMedGoogle Scholar
  46. Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41:277–281CrossRefGoogle Scholar
  47. Gorshkova NM, Ivanova EP, Sergeev AF, Zhukova NV, Alexeeva Y, Wrighy JP, Nicolau DV, Mikhailov VV, Christen R (2003) Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. Int J Syst Evol Microbiol 53:2073–2078CrossRefPubMedGoogle Scholar
  48. Govindasamy V, Senthilkumar M, Gaikwad K, Annapurna K (2008) Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria. Curr Microbiol 57(4):312–317CrossRefPubMedGoogle Scholar
  49. Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC-deaminase containing plant growth promoting bacteria. Plant Physiol Biochem 39:11–17CrossRefGoogle Scholar
  50. Hao MV, Kocur M, Komagata K (1984) Marinococcus gen. nov., a new genus for motile cocci with meso-diaminopimelic acid in the cell wall; and Marinococcus albus sp. nov. and Marinococcus halophilus (Novitsky and Kushner) comb. nov. J Gen Appl Microbiol 30:449–459CrossRefGoogle Scholar
  51. Heijnen CE, Hok-A-Hin CH, van Veen JA (1992) Improvements to the use of bentonite clay as a protective agent, increasing survival levels of bacteria introduced into soil. Soil Biol Biochem 24:533–538CrossRefGoogle Scholar
  52. Heyndrickx M, Lebbe L, Kersters K, De Vos P, Forsyth C, Logan NA (1998) Virgibacillus: A new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus. Int J Syst Bacteriol 48:99–106CrossRefGoogle Scholar
  53. Heyrman J, Logan NA, Busse HJ, Balcaen A, Lebbe L, Rodriguez-Diaz M, Swings J, De Vos P (2003) Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus, as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb.nov., and emended description of the genus Virgibacillus. Int J Syst Evol Microbiol 53:501–511CrossRefPubMedGoogle Scholar
  54. Hirrel MC, Gerdemann JW (1980) Improved growth of onion and bell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi. Soil Sci Soc Am J 44:654–665CrossRefGoogle Scholar
  55. Jamal Y, Shafi M, Bakht J, Arif M (2011) Seed priming improves salinity tolerance of wheat varieties. Pak J Bot 43(6):2683–2686Google Scholar
  56. Jeon CO, Lim JM, Lee JC, Lee GS, Lee JM, Xu LH, Jiang CL, Kim CJ (2005a) Lentibacillus salarius sp. nov., isolated from saline sediment in China, and emended description of the genus Lentibacillus. Int J Syst Evol Microbiol 55:1339–1343CrossRefPubMedGoogle Scholar
  57. Jeon CO, Lim JM, Lee JM, Xu LH, Jiang CL, Kim CJ (2005b) Reclassification of Bacillus haloalkaliphilus Fritze 1996 as Alkalibacillus haloalkaliphilus gen. nov., comb. nov. and the description of Alkalibacillus salilacus sp. nov., a novel halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 55:1891–1896CrossRefPubMedGoogle Scholar
  58. Juniper S, Abbott L (1993) Vesicular and arbuscular mycorrhizae and soil salinity. Mycorrhiza 4:45–57CrossRefGoogle Scholar
  59. Khan AG (1974) The occurrence of mycorrhizae in halophytes, hydrophytes and xerophytes, and of endogone spores in adjacent soils. J Gen Microbiol 81:7–14CrossRefGoogle Scholar
  60. Khan AG, Belik M (1994) Occurrence and ecological significance of mycorrhizal symbiosis in aquatic plants. In: Varma A, Hock B (eds) Mycorrhiza: function, molecular biology and biotechnology. Springer, HeidelbergGoogle Scholar
  61. Kim BY, Weon HY, Yoo SH, Kim JS, Kwon SW, Stackebrandt E, Go SJ (2006) Marinobacter koreensis sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 56:2653–2656CrossRefPubMedGoogle Scholar
  62. Kushner DJ (1993) Growth and nutrition of halophilic bacteria. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, pp 87–89Google Scholar
  63. Landwehr M, Hilderbrandt U, Wilde P, Nawrath K, Toth T, Biro B, Bothe H (2002) The arbuscular mycorrhizal fungus Glomus geosporum in Europaen saline, sodic and gypsum soils. Mycorrhiza 12:199–211CrossRefPubMedGoogle Scholar
  64. Lee JS, Lim JM, Lee KC, Lee JC, Park YH, Kim CJ (2006) Virgibacillus koreensis sp. nov., a novel bacterium from salt field, and transfer of Virgibacillus picturae to the genus Oceanobacillus as Oceanobacillus picturae comb. nov. with emended descriptions. Int J Syst Evol Microbiol 56:251–257CrossRefPubMedGoogle Scholar
  65. Li MG, Li WJ, Xu P, Cui XL, Xu LH, Jiang CL (2003a) Nocardiopsis xinjiangensis sp. nov., a halophilic actinomycete isolated from a saline soil sample in China. Int J Syst Evol Microbiol 53:317–321CrossRefPubMedGoogle Scholar
  66. Li WJ, Tang SK, Stackebrandt E, Kroppenstedt RM, Schumann P, Xu LH, Jiang CL (2003b) Saccharomonospora paurometabolica sp. nov., a moderately halophilic actinomycete isolated from soil in China. Int J Syst Evol Microbiol 53:1591–1594CrossRefPubMedGoogle Scholar
  67. Li WJ, Park DJ, Tang SK, Wang D, Li JC, Lee JC, Xu LH, Kim CJ, Jiang CL (2004) Nocardiopsis salina sp. nov., a novel halophilic actinomycete isolated from saline soil in China. Int J Syst Evol Microbiol 54:1805–1809CrossRefPubMedGoogle Scholar
  68. Li WJ, Schumann P, Zhang YQ, Chen GZ, Tian XP, Xu LH, Stackebrandt E, Jiang CL (2005a) Marinococcus halotolerans sp. nov., isolated from Qinghai, north-west China. Int J Syst Evol Microbiol 55:1801–1804CrossRefPubMedGoogle Scholar
  69. Li WJ, Chen HH, Kim CJ, Park DJ, Tang SK, Lee JC, Xu LH, Jiang CL (2005b) Microbacterium halotolerans sp. nov., isolated from a saline soil in the west of China. Int J Syst Evol Microbiol 55:67–70CrossRefPubMedGoogle Scholar
  70. Li WJ, Kroppenstedt RM, Wang D, Tang SK, Lee JC, Park DJ, Kim CJ, Xu LH, Jiang CL (2006) Five novel species of the genus Nocardiopsis isolated from hypersaline soils and emended description of Nocardiopsis salina Li et al. 2004. Int J Syst Evol Microbiol 56:1089–1096CrossRefPubMedGoogle Scholar
  71. Marquez MC, Ventosa A, Ruiz-Berraquero F (1992) Phenoypic and chemotaxonomic characterization of Marinococcus halophilus. Syst Appl Microbiol 15:63–69CrossRefGoogle Scholar
  72. Martin S, Marquez MC, Sanchez-Porro C, Mellado E, Arahal DR, Ventosa A (2003) Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53:1383–1387CrossRefPubMedGoogle Scholar
  73. Martinez-Canovas MJ, Bejar V, Martinez-Checa F, Quesada E (2004a) Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Malaga, southern Spain. Int J Syst Evol Microbiol 54:1329–1332CrossRefPubMedGoogle Scholar
  74. Martinez-Canovas MJ, Quesada E, Martinez-Checa F, del Moral A, Bejar V (2004b) Salipiger mucescens gen. nov., sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium isolated from hypersaline soil, belonging to the alpha-Proteobacteria. Int J Syst Evol Microbiol 54:1735–1740CrossRefPubMedGoogle Scholar
  75. Martinez-Checa F, Quesada E, Martinez-Canovas MJ, Llamas I, Bejar V (2005) Palleronia marisminoris gen. nov., sp. Nov., a moderately halophilic, exopolysaccharide producing bacterium belonging to the ‘Alphaproteobacteria’, isolated from the saline soil. Int J Syst Evol Microbiol 55:2525–2530CrossRefPubMedGoogle Scholar
  76. Mayak S, Tirosh T, Glick BR (2004) Plant growth promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572CrossRefPubMedGoogle Scholar
  77. Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164CrossRefPubMedGoogle Scholar
  78. Meyer J (1976) Nocardiopsis dassonvillei, a new genus of the order Actinomycetales. Int J Syst Bacteriol 26:487–493CrossRefGoogle Scholar
  79. Murugan M, Saju KA, Michael Babu M, Thiravia RS (2011) Survey on halophilic microbial diversity of Kovalam saltpans in Kanyakumari District and its industrial applications. J Appl Pharm Science 01(05):160–163Google Scholar
  80. Nielsen P, Rainey FA, Outtrup H, Priest FG, Fritze D (1994) Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus. FEMS Microbiol Lett 117:61–66CrossRefGoogle Scholar
  81. Nieto JJ, Fernandez-Castillo R, Marquez MC, Ventosa A, Quesada E, Ruiz-Berraquero F (1989) Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol 55:2385–2390PubMedPubMedCentralGoogle Scholar
  82. Nonomura H, Ohara Y (1971) Distribution of actinomycetes in soil. X New genus and species of monosporic actinomycetes. J Ferment Technol 49:895–903Google Scholar
  83. Ojala JC, Jarrell WM, Menge JA, Johnson ELV (1983) Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agron J 75:255–259CrossRefGoogle Scholar
  84. Okamoto T, Taguchi H, Nakamura K, Ikenaga H, Kuraishi H, Yamasato K (1993) Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from palm sap. Arch Microbiol 160:333–337CrossRefPubMedGoogle Scholar
  85. Olivera N, Sineriz F, Breccia JD (2005) Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from the rhizosphere of Atriplex lampa in Patagonia, Argentina. Int J Syst Evol Microbiol 55:443–447CrossRefPubMedGoogle Scholar
  86. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedPubMedCentralGoogle Scholar
  87. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63CrossRefPubMedGoogle Scholar
  88. Oren A, Mana L (2002) Amino acid composition of bulk protein and salt relationships of selected enzymes of Salinibacter ruber, an extremely halophilic bacterium. Extremophiles 6:217–223CrossRefPubMedGoogle Scholar
  89. Pond EC, Menge JA, Jarrell WM (1984) Improved growth of tomato in salinized soil by vesicular arbuscular mycorrhizal fungi collected from saline sites. Mycologia 76:74–84CrossRefGoogle Scholar
  90. Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azco’n R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359.  https://doi.org/10.1016/j.jplph.2009.02.010 CrossRefPubMedGoogle Scholar
  91. Quesada E, Ventosa A, Rodriguez-Valera F, Megias L, Ramos-Cormenzana A (1983) Numerical taxonomy of moderate halophiles from hypersaline soils. J Gen Microbiol 129:2649–2657Google Scholar
  92. Quillaguaman J, Hatti-Kaul R, Mattiasson B, Alvarez MT, Delgado O (2004) Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Microbiol 54:721–725CrossRefPubMedGoogle Scholar
  93. Regvar M, Vogel K, Irgel N, Wraber T, Hildebrandt U, Wilde P, Bothe H (2003) Colonization of pennycress (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. J Plant Physiol 160:615–626CrossRefPubMedGoogle Scholar
  94. Ren PG, Zhou PJ (2005) Tenuibacillus multivorans gen. nov., sp. nov., a moderately halophilic bacterium isolated from saline soil in Xin-Jiang, China. Int J Syst Evol Microbiol 55:95–99CrossRefPubMedGoogle Scholar
  95. Rios M, Nieto JJ, Ventosa A (1998) Numerical taxonomy of heavy metal-tolerant nonhalophilic bacteria isolated from hypersaline environments. Int Microbiol 1:45–51PubMedGoogle Scholar
  96. Rodriguez-Valera F (1988) Characteristics and microbial ecology of hypersaline environments. In: Rodriguez-Valera F (ed) Halophilic bacteria, vol 1. CRC Press, Boca Raton, pp 3–30Google Scholar
  97. Rodriguez-Valera F (1993) Introduction to saline environments. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, pp 1–12Google Scholar
  98. Romanenko LA, Schumann P, Rohde M, Zhukova NV, Mikhailov VV, Stackebrandt E (2005) Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 55:143–148CrossRefPubMedGoogle Scholar
  99. Rosendahl CN, Rosendahl S (1991) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis sativus L.) to salt stress. Environ Exp Bot 31:313–318CrossRefGoogle Scholar
  100. Ross IL, Alami Y, Harvey PR, Achouak W, Ryder MH (2000) Genetic diversity and biological control activity of novel species in South Australia. Appl Environ Microbiol 66:1609–1616CrossRefPubMedPubMedCentralGoogle Scholar
  101. Ruan JS, Al-Tai AM, Zhou ZH, Qu LH (1994) Actinopolyspora iraqiensis sp. nov., a new halophilic actinomycete isolated from soil. Int J Syst Bacteriol 44:759–763CrossRefGoogle Scholar
  102. Saqib ZA, Akhtar J, Ul-Haq MA, Ahmad I (2012) Salt induced changes in leaf phenology of wheat plants are regulated by accumulation and distribution pattern of Na+ion. Pak J Agri Sci 49:141–148Google Scholar
  103. Saum SH, Muller V (2008) Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies. Saline Syst 4:4CrossRefPubMedPubMedCentralGoogle Scholar
  104. Schlesner H, Lawson PA, Collins MD, Weiss N, Wehmeyer U, Volker H, Thomm M (2001) Filobacillus milensis gen. nov., sp. nov., a new halophilic spore-forming bacterium with Orn- D-Glu-type peptidoglycan. Int J Syst Evol Microbiol 51:425–431CrossRefPubMedGoogle Scholar
  105. Schobert B, Lanyi JK (1982) Halorhodopsin is a light-driven chloride pump. J Biol Chem 257:10306–10313PubMedGoogle Scholar
  106. Seigle-Murandi F, Guiraud P, Croize J, Falsen E, Eriksson KL (1996) Bacteria are omnipresent on Phanerochaete chrysosporium Burdsall. Appl. Environ Microbiol 62:2477–2481Google Scholar
  107. Shivanand P, Mugeraya G (2011) Halophilic bacteria and their compatible solutes – osmoregulation and potential applications. Curr Sci 100(10):1516–1521Google Scholar
  108. Smith R (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492.  https://doi.org/10.1139/m92-080 CrossRefGoogle Scholar
  109. Spring S, Ludwig W, Marquez MC, Ventosa A, Schleifer KH (1996) Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov., and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:492–496CrossRefGoogle Scholar
  110. Stackebrandt E, Koch C, Gvozdiak O, Schumann P (1995) Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 45:682–692CrossRefPubMedGoogle Scholar
  111. Stahl PO, Williams SE (1986) Oil shale process water affects activity of vesicular-arbuscular fungi and Rhizobium four years after application to soil. Soil Biol Biochem 18:451–455CrossRefGoogle Scholar
  112. Szabolcs I (1989) Salt affected soils. CRC Press Inc, Boca Raton ISBN 0-8493-4818-8Google Scholar
  113. Tang SK, Li WJ, Wang D, Zhang YG, Xu LH, Jiang CL (2003) Studies of the biological characteristic of some halophilic and halotolerant actinomycetes isolated from saline and alkaline soils. Actinomycetologica 17:6–10CrossRefGoogle Scholar
  114. Thijs S, Dillewijn PW, Sillen W, Truyens S, Holtappels M, Haen JD (2014) Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: Towards the development of a rhizocompetent TNTdetoxifying plant growth promoting consortium. Plant Soil 385:15–36CrossRefGoogle Scholar
  115. Tressner HD, Hayes JA (1971) Sodium chloride tolerance of terrestrial fungi. Appl Microbiol 22:210–213Google Scholar
  116. Tripathi AK, Mishra BM, Tripathy P (1998) Salinity stress responses in the plant growth promoting rhizobacteria, Azospirillum spp. J Biosci 23:463–471CrossRefGoogle Scholar
  117. Trivedi R, Arora S (2013) Characterization of acid and salt tolerant Rhizobium sp. isolated from saline soils of Gujarat. Int Res J Chem 3(3):8–13Google Scholar
  118. Ventosa A, Ramos-Cormenzana A, Kocur M (1983) Moderately halophilic gram-positive cocci from hypersaline environments. Syst Appl Microbiol 4:564–570CrossRefPubMedGoogle Scholar
  119. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol. Mol Biol Rev 62:504–544Google Scholar
  120. Ventosa A, Sanchez-Porro C, Martin S, Mellado E (2005) Halophilic archaea and bacteria as a source of extracellular hydrolytic enzymes. In: Gunde-Cimerman A, Oren A, Plemenitas A (eds) Adaptation of life at high salt concentrations in archaea, bacteria and eukarya. Springer, Heidelberg, pp 337–354CrossRefGoogle Scholar
  121. Wagner G, Hartmann R, Oesterhelt D (1978) Potassium uniport and ATP synthesis in Halobacterium halobium. Eur J Biochem 89:169–179CrossRefPubMedGoogle Scholar
  122. Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598CrossRefPubMedGoogle Scholar
  123. Wilde P, Manal A, Stodden M, Sieverding E, Hilderbrandt U, Bothe H (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Env Microbiol 11:1548–1561CrossRefGoogle Scholar
  124. Yadav RS, Mahatma MK, Thirumalaisamy PP, Meena HN, Bhaduri D, Arora S, Panwar J (2017) Arbuscular Mycorrhizal Fungi (AMF) for sustainable soil and plant health in salt-affected soils. In: Sanjay A, Singh AK, Singh YP (eds) Bioremediation of salt affected soils: an Indian perspective. Springer, Switzerland, pp 133–156CrossRefGoogle Scholar
  125. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1216CrossRefPubMedGoogle Scholar
  126. Yang LF, Jiang JQ, Zhao BS, Zhang B, Feng DQ, Lu WD, Wang L, Yang SS (2006) A Na+/H+ antiporter gene of the moderately halophilic bacterium Halobacillus dabanensis D-8T: cloning and molecular characterization. FEMS Microbiol Lett 255:89–95CrossRefPubMedGoogle Scholar
  127. Yildirim E, Taylor AG (2005) Effect of biological treatments on growth of bean Plants under Salt Stress. Annu Rep Bean Improv Coop 48:176–177Google Scholar
  128. Yoon JH, Weiss N, Lee KC, Lee IS, Kang KH, Park YH (2001) Jeotgalibacillus alimentarius gen. nov., sp. nov., a novel bacterium isolated from jeotgal with L-lysine in the cell wall, and reclassification of Bacillus marinus Rueger 1983 as Marinibacillus marinus gen. nov., comb. nov. Int J Syst Evol Microbiol 51:2087–2093CrossRefPubMedGoogle Scholar
  129. Yoon JH, Kang KH, Park YH (2002) Lentibacillus salicampi gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt field in Korea. Int J Syst Evol Microbiol 52:2043–2048PubMedGoogle Scholar
  130. Yoon JH, Kim IG, Kang KH, Oh TK, Park YH (2003) Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 53:1297–1303CrossRefPubMedGoogle Scholar
  131. Yoon JH, Oh TK, Park YH (2004) Transfer of Bacillus halodenitrificans Denariaz et al. 1989 to the genus Virgibacillus as Virgibacillus halodenitrificans comb. nov. Int J Syst Evol Microbiol 54:2163–2167CrossRefPubMedGoogle Scholar
  132. Yoshida M, Matsubara K, Kudo T, Horikoshi K (1991) Actinopolyspora mortivallis sp. nov., a moderately halophilic actinomycete. Int J Syst Bacteriol 41:15–20CrossRefGoogle Scholar
  133. Yumoto I, Yamaga S, Sogabe Y, Nodasaka Y, Matsuyama H, Nakajima K, Suemori A (2003) Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and mhydroxybenzoate. Int J Syst Evol Microbiol 53:1531–1536CrossRefPubMedGoogle Scholar
  134. Yumoto I, Hirota K, Goto T, Nodasaka Y, Nakajima K (2005) Bacillus oshimensis sp. nov., a moderately halophilic, non-motile alkaliphile. Int J Syst Evol Microbiol 55:907–911CrossRefPubMedGoogle Scholar
  135. Zahran HH, Räsänen LA, Karsisto M, Lindström K (1994) Alteration of lipopolysaccharide and protein profiles in SDSPAGE of rhizobia by osmotic and heat stress. World J Microbiol Biotechnol 10:100–105CrossRefPubMedGoogle Scholar
  136. Zhang Z, Wang Y, Ruan J (1998) Reclassification of Thermomonospora and Microtetraspora. Int J Syst Bacteriol 48:411–422CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sanjay Arora
    • 1
  • Meghna J. Vanza
    • 2
  1. 1.ICAR-Central Soil Salinity Research Institute, Regional Research StationLucknowIndia
  2. 2.V.N. South Gujarat UniversitySuratIndia

Personalised recommendations