Advertisement

Impact of Tillage Methods on Environment, Energy and Economy

  • Egidijus Šarauskis
  • Zita Kriaučiūnienė
  • Kęstutis Romaneckas
  • Sidona Buragienė
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 33)

Abstract

Soil tillage involves the mechanical manipulation of soils used for crop production. Tillage is done to prepare an optimal seedbed, to loosen compacted soil layers, to control weeds, to increase aeration, to incorporate plant residues into the soil, to facilitate water infiltration and soil moisture storage, and to control soil temperature. Nonetheless, soil tillage is one of the highest energy-consuming, environment-polluting and expensive technological processes in agriculture. Conventional tillage with ploughing is the most widely used practice. Conventional tillage has low efficiency, requires high-powered tractors with high fuel consumption and greenhouse gases emissions. Moreover, the cost of conventional tillage is high, and the influence on the soil structure, degradation, leaching of nutrients and the most fertile soil is negative. Here we review the impact of tillage methods on soil quality, environment and economy.

Due to the disadvantages of conventional tillage, sustainable tillage area increases each year by 4–6 million ha worldwide. Under sustainable tillage such as minimal or no-tillage, the total soil surface modified by the wheels of agricultural machinery is 20–40% lower than for conventional tillage. Sustainable tillage preserves better soil physical properties and biological processes. A comparison of tillage methods show that no-tillage has the highest energy efficiency ratio of 14.0, versus 12.4 for deep ploughing. The most expensive tillage operation is deep ploughing. The use of agricultural machinery under sustainable tillage conditions and preparation of soils without using a plough can reduce costs from 25% to 41%, compared with conventional tillage.

Keywords

Tillage Soil Properties CO2 emissions Fuel Consumption Energy Costs Environment 

References

  1. Al-Kaisi MM, Yin X (2005) Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn–soybean rotations. J Environ Qual 34(2):437–445.  https://doi.org/10.2134/jeq2005.0437 PubMedGoogle Scholar
  2. Alvarez R (2005) A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use Manag 21(1):38–52.  https://doi.org/10.1111/j.1475-2743.2005.tb00105.x Google Scholar
  3. Alvarez R, Steinbach HS (2009) A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res 104:1–15.  https://doi.org/10.1016/j.still.2009.02.005 Google Scholar
  4. Alvarez R, Alvarez CR, Lorenzo G (2001) Carbon dioxide fluxes following tillage from a mollisol in the Argentine Rolling Pampa. Eur J Soil Biol 37(3):161–166.  https://doi.org/10.1016/S1164-5563(01)01085-8 Google Scholar
  5. Álvaro-Fuentes J, Cantero-Martínez C, López MV, Arrúe JL (2007) Soil carbon dioxide fluxes following tillage in semiarid Mediterranean agroecosystems. Soil Tillage Res 96(1):331–341.  https://doi.org/10.1016/j.still.2007.08.003 Google Scholar
  6. Amos B, Arkebauer TJ, Doran JW (2005) Soil surface fluxes of greenhouse gases in an irrigated maize-based agroecosystem. Soil Sci Soc Am J 69(2):387–395.  https://doi.org/10.2136/sssaj2005.0387 Google Scholar
  7. Ang BW, Mu AR, Zhou P (2010) Accounting frameworks for tracking energy efficiency trends. Energy Econ 32(5):1209–1219.  https://doi.org/10.1016/j.eneco.2010.03.011 Google Scholar
  8. Arvidsson J (1998) Influence of soil texture and organic matter content on bulk density, air content, compression index and crop yield in field and laboratory compression experiments. Soil Tillage Res 49(1):159–170.  https://doi.org/10.1016/S0167-1987(98)00164-0 Google Scholar
  9. Arvidsson J (2010) Energy use efficiency in different tillage systems for winter wheat on a clay and silt loam in Sweden. Eur J Agron 33(3):250–256.  https://doi.org/10.1016/j.eja.2010.06.003 Google Scholar
  10. Arvidsson J, Westlin A, Sörensson F (2013) Working depth in non-inversion tillage – effects on soil physical properties and crop yield in Swedish field experiments. Soil Tillage Res 126:259–266.  https://doi.org/10.1016/j.still.2012.08.010 Google Scholar
  11. Auerswald K, Mutchler CK, McGregor KC (1994) The influence of tillage-induced differences in surface moisture content on soil erosion. Soil Tillage Res 32(1):41–50.  https://doi.org/10.1016/0167-1987(94)90031-0 Google Scholar
  12. Bakasenas A (2008) Comparative analysis of energy input in presowing soil tillage and crop sowing. Agric Eng 40(3–4):5–15Google Scholar
  13. Baker CJ, Saxton KE, Ritchie WR, Chamen WCT, Reicosky DC, Ribeiro F, Justice SE, Hobbs PR (2007) No-tillage seeding in conservation agriculture. CABI, FAO, Rome 326 pGoogle Scholar
  14. Bakker MM, Govers G, Rounsevell MD (2004) The crop productivity–erosion relationship: an analysis based on experimental work. Catena 57(1):55–76.  https://doi.org/10.1016/j.catena.2003.07.002 Google Scholar
  15. Ball BC, Scott A, Parker JP (1999) Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil Tillage Res 53(1):29–39.  https://doi.org/10.1016/S0167-1987(99)00074-4 Google Scholar
  16. Basch G, Kassam A, González-Sánchez E, Streit S (2012) Making Sustainable Agriculture real in CAP 2020: the role of conservation agriculture. ECAF, Brussels, 43 pGoogle Scholar
  17. Batey T (2009) Soil compaction and soil management – a review. Soil Use Manag 25(4):335–345.  https://doi.org/10.1111/j.1475-2743.2009.00236.x Google Scholar
  18. Bergamaschi H, Dalmago GA, Bergonci JI, Bianchi CAM, Heckler BMM, Comiran F (2004) Solar radiation intercepted by maize crops as function of soil tillage systems and water availabilities. In: 13th international soil conservation organisation conference, Brisbane, Australia CD-ROMGoogle Scholar
  19. Bertocco M, Basso B, Sartori L, Martin EC (2008) Evaluating energy efficiency of site-specific tillage in maize in NE Italy. Bioresour Technol 99(15):6957–6965.  https://doi.org/10.1016/j.biortech.2008.01.027 PubMedGoogle Scholar
  20. Bhagat RM, Bhuiyan SI, Moody K (1996) Water, tillage and weed interactions in lowland tropical rice: a review. Agric Water Manag 31(3):165–184.  https://doi.org/10.1016/0378-3774(96)01242-5 Google Scholar
  21. Boardman J, Poesen J (2006) Soil erosion in Europe. Wiley, Chichester, 855 p.  https://doi.org/10.1002/0470859202.fmatter
  22. Bogužas V, Kairyte A, Jodaugiene D (2010) Soil physical properties and earthworms as affected by soil tillage systems, straw and green manure management. Zemdirbyste-Agriculture 97(3):3–14Google Scholar
  23. Boucher O, Bellassen V, Benveniste H, Ciais P, Criqui P, Guivarch C, Le Treut H, Mathy S, Séférian R (2016) Opinion: in the wake of Paris Agreement, scientists must embrace new directions for climate change research. Proc Natl Acad Sci 113(27):7287–7290.  https://doi.org/10.1073/pnas.1607739113 PubMedGoogle Scholar
  24. Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124(1):3–22.  https://doi.org/10.1016/j.geoderma.2004.03.005 Google Scholar
  25. Buragiene S, Šarauskis E, Romaneckas K, Sakalauskas A, Užupis A, Katkevičius E (2011) Soil temperature and gas (CO2 and O2) emissions from soils under different tillage machinery systems. J Food Agric Environ 9(2):480–485Google Scholar
  26. Buragiene S, Šarauskis E, Romaneckas K, Sasnauskiene J, Masilionyte L, Kriauciuniene Z (2015) Experimental analysis of CO2 emissions from agricultural soils subjected to five different tillage systems in Lithuania. Sci Total Environ 514:1–9.  https://doi.org/10.1016/j.scitotenv.2015.01.090 PubMedGoogle Scholar
  27. Calderon FJ, Jackson LE (2002) Rototillage, disking, and subsequent irrigation. J Environ Qual 31(3):752–758.  https://doi.org/10.2134/jeq2002.7520 PubMedGoogle Scholar
  28. Cannell RQ, Hawes JD (1994) Trends in tillage practices in relation to sustainable crop production with special reference to temperate climates. Soil Tillage Res 30(2-4):245–282.  https://doi.org/10.1016/0167-1987(94)90007-8 Google Scholar
  29. Cavalieri KMV, Arvidsson J, da Silva AP, Keller T (2008) Determination of precompression stress from uniaxial compression tests. Soil Tillage Res 98(1):17–26  https://doi.org/10.1016/j.still.2007.09.020 Google Scholar
  30. Celik I, Turgut MM, Acir N (2012) Crop rotation and tillage effects on selected soil physical properties of a Typic Haploxerert in an irrigated semi-arid Mediterranean region. Int J Plant Prod 6(4):457–480Google Scholar
  31. Cerdan O, Govers G, Le Bissonnais Y, Van Oost K, Poesen J, Saby N, Gobin A, Vacca A, Quinton J, Auerswald K, Klik A, Kwaad FJPM, Raclot D, Ionita I, Rejman J, Rousseva S, Muxart T, Roxo MJ, Dostal T (2010) Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122(1):167–177.  https://doi.org/10.1016/j.geomorph.2010.06.011 Google Scholar
  32. Cesevicius G, Feiza V, Feiziene D (2005) Tausojančių žemės dirbimo būdų ir augalinių liekanų įtaka dirvožemio fizikinėms savybėms ir vasarinių miežių derliui. Vagos 69(22):7–18 (in Lithuanian)Google Scholar
  33. Chamen T, Alakukku L, Pires S, Sommer C, Spoor G, Tijink F, Weisskopf P (2003) Prevention strategies for field traffic-induced subsoil comp action: a review: part 2. Equipment and field practices. Soil Tillage Res 73(1):161–174.  https://doi.org/10.1016/S0167-1987(03)00108-9 Google Scholar
  34. Chang C, Lindwall CW (1990) Comparison of the effect of long term tillage and crop rotation on physical properties of a soil. Can Agric Eng 32(1):53–55Google Scholar
  35. Chatskikh D, Olesen JE (2007) Soil tillage enhanced CO2 and N2O emissions from loamy sand soil under spring barley. Soil Tillage Res 97(1):5–18.  https://doi.org/10.1016/j.still.2007.08.004 Google Scholar
  36. Chivenge PP, Murwira HK, Giller KE, Mapfumo P, Six J (2007) Long-term impact of reduced tillage and residue management on soil carbon stabilization: implications for conservation agriculture on contrasting soils. Soil Tillage Res 94(2):328–337.  https://doi.org/10.1016/j.still.2006.08.006 Google Scholar
  37. Chung SO, Sudduth KA, Motavalli PP, Kitchen NR (2013) Relating mobile sensor soil strength to penetrometer cone index. Soil Tillage Res 129:9–18.  https://doi.org/10.1016/j.still.2012.12.004 Google Scholar
  38. Ciuberkis S, Ozeraitiene D, Bernotas S, Ambrazaitiene D (2008) Changes in the soil properties as affected by conventional and minimal soil tillage systems. Zemdirbyste-Agriculture 95(2):16–28Google Scholar
  39. Coulouma G, Boizard H, Trotoux G, Lagacherie P, Richard G (2006) Effect of deep tillage for vineyard establishment on soil structure: a case study in Southern France. Soil Tillage Res 88(1):132–143.  https://doi.org/10.1016/j.still.2005.05.002 Google Scholar
  40. Curtin D, Wang H, Selles F, McConkey BG, Campbell CA (2000) Tillage effects on carbon fluxes in continuous wheat and fallow–wheat rotations. Soil Sci Soc Am J 64(6):2080–2086Google Scholar
  41. Czyż EA (2004) Effects of traffic on soil aeration, bulk density and growth of spring barley. Soil Tillage Res 79(2):153–166.  https://doi.org/10.1016/j.still.2004.07.004 Google Scholar
  42. Czyz EA, Tomaszewska J (1993) Changes of aeration conditions and the yield of sugar beet on sandy soil of different density. Pol J Soil Sci 26(1):1–9Google Scholar
  43. Czyż EA, Tomaszewska J, Dexter AR (2001) Response of spring barley to changes of compaction and aeration of sandy soil under model conditions. Int Agrophys 15(1):9–12Google Scholar
  44. D’Haene K, Vermang J, Cornelis WM, Leroy BL, Schiettecatte W, De Neve S, Gabriels D, Hofman G (2008) Reduced tillage effects on physical properties of silt loam soils growing root crops. Soil Tillage Res 99(2):279–290.  https://doi.org/10.1016/j.still.2008.03.003 Google Scholar
  45. Da Veiga M, Horn R, Reinert DJ, Reichert JM (2007) Soil compressibility and penetrability of an Oxisol from southern Brazil, as affected by long-term tillage systems. Soil Tillage Res 92(1):104–113.  https://doi.org/10.1016/j.still.2006.01.008 Google Scholar
  46. Dalmago GA, Bergamaschi H, Comiran F, Bianchi CAM, Bergonci JI, Heckler BMM (2004) Soil temperature in maize crops as function of soil tillage systems. In: Proceedings of the 13th international soil conservation organisation conference, Brisbane, Australia, pp 4–8Google Scholar
  47. Dao TH (1998) Tillage and crop residue effects on carbon dioxide evolution and carbon storage in a Paleustoll. Soil Sci Soc Am J 62(1):250–256.  https://doi.org/10.2136/sssaj1998.03615995006200010032x Google Scholar
  48. De Paz JM, Sánchez J, Visconti F (2006) Combined use of GIS and environmental indicators for assessment of chemical, physical and biological soil degradation in a Spanish Mediterranean region. J Environ Manag 79(2):150–162.  https://doi.org/10.1016/j.jenvman.2005.06.002 Google Scholar
  49. De Vita P, Di Paolo E, Fecondo G, Di Fonzo N, Pisante M (2007) No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res 92(1):69–78.  https://doi.org/10.1016/j.still.2006.01.012 Google Scholar
  50. Derpsch R, Friedrich T (2009) Development and current status of no-till adoption in the world. In: Proceedings on CD, 18th triennial conference of the International Soil Tillage Research Organization (ISTRO), June 15–19, 2009, Izmir, TurkeyGoogle Scholar
  51. Derpsch R, Lange D, Birbaumer G, Moriya K (2016) Why do medium-and large-scale farmers succeed practicing CA and small-scale farmers often do not? – Experiences from Paraguay. Int J Agric Sustain 14(3):269–281.  https://doi.org/10.1080/14735903.2015.1095974 Google Scholar
  52. Dexter AR, Czyz EA (2000) Effects of soil management on the dispersibility of clay in a sandy soil. Int Agrophys 14(3):269–272Google Scholar
  53. Dossou-Yovo ER, Brüggemann N, Jesse N, Huat J, Ago EE, Agbossou EK (2016) Reducing soil CO2 emission and improving upland rice yield with no-tillage, straw mulch and nitrogen fertilization in northern Benin. Soil Tillage Res 156:44–53.  https://doi.org/10.1016/j.still.2015.10.001 Google Scholar
  54. Duxbury JM (1994) The significance of agricultural sources of greenhouse gases. Fertil Res 38(2):151–163.  https://doi.org/10.1007/BF00748775 Google Scholar
  55. Duxbury JM (1995) The significance of greenhouse gas emissions from soils of tropical agroecosystems. Soil management and greenhouse effect. CRC Press, Boca Raton, pp 279–292Google Scholar
  56. Ekeberg E, Riley HCF (1997) Tillage intensity effects on soil properties and crop yields in a long-term trial on morainic loam soil in southeast Norway. Soil Tillage Res 42(4):277–293.  https://doi.org/10.1016/S0167-1987(97)00008-1 Google Scholar
  57. Ellert BH, Janzen HH (1999) Short-term influence of tillage on CO2 fluxes from a semi-arid soil on the Canadian Prairies. Soil Tillage Res 50(1):21–32.  https://doi.org/10.1016/S0167-1987(98)00188-3 Google Scholar
  58. Feiza V, Feiziene D, Deveikyte I (2006) Reduced tillage in spring: 1. Influence on soil physical properties. Zemdirbyste-Agriculture 93(3):35–55Google Scholar
  59. Feiza V, Feiziene D, Kadziene G (2008) Agro-physical properties of Endocalcari-pihypogleyic Cambisol arable layer in long-term soil management systems. Zemes ukio mokslai 15:13–23Google Scholar
  60. Feiza V, Feiziene D, Sinkeviciene A, Boguzas V, Putramentaite A, Lazauskas S, Deveikyte I, Seibutis V, Steponaviciene V, Pranaitiene S (2015) Soil water capacity, pore-size distribution and CO2 e-flux in different soils after long-term no-till management. Zemdirbyste-Agriculture 102(1):3–14.  https://doi.org/10.13080/z-a.2015.102.001 Google Scholar
  61. Feiziene D, Feiza V, Kadžiene G (2009) The influence of meteorological conditions on soil water vapour exchange rate and CO2 emission under different tillage systems. Zemdirbyste-Agriculture 96(2):3–22Google Scholar
  62. Feiziene D, Feiza V, Vaideliene A, Povilaitis V, Antanaitis S (2010) Soil surface carbon dioxide exchange rate as affected by soil texture, different long-term tillage application and weather. Zemdirbyste-Agriculture 97(3):25–42Google Scholar
  63. Fernández-Ugalde O, Virto I, Bescansa P, Imaz MJ, Enrique A, Karlen DL (2009) No-tillage improvement of soil physical quality in calcareous, degradation-prone, semiarid soils. Soil Tillage Res 106(1):29–35.  https://doi.org/10.1016/j.still.2009.09.012 Google Scholar
  64. Filipovic D, Kosutic S, Gospodaric Z, Zimmer R, Banaj D (2006) The possibilities of fuel savings and the reduction of CO2 emissions in the soil tillage in Croatia. Agric Ecosyst Environ 115(1):290–294.  https://doi.org/10.1016/j.agee.2005.12.013 Google Scholar
  65. Fleige H, Horn R (2000) Field experiments on the effect of soil compaction on soil properties, runoff, interflow and erosion. Adv Geoecol 32:258–268Google Scholar
  66. Fortin MC, Rochette P, Pattey E (1996) Soil carbon dioxide fluxes from conventional and no-tillage small-grain cropping systems. Soil Sci Soc Am J 60(5):1541–1547.  https://doi.org/10.2136/sssaj1996.03615995006000050036x Google Scholar
  67. Franzluebbers AJ (2002) Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res 66(2):197–205.  https://doi.org/10.1016/S0167-1987(02)00027-2 Google Scholar
  68. Fritton DD (2008) Evaluation of pedotransfer and measurement approaches to avoid soil compaction. Soil Tillage Res 99(2):268–278.  https://doi.org/10.1016/j.still.2008.03.004 Google Scholar
  69. Germanas L (2008) Evaluation indexes of sowing by disc coulters. Agric Eng 40(3-4):16–25Google Scholar
  70. Gisi U (1990) Bodenökologie. Georg Thience Verlag, Stuttgart 304 p. (in German)Google Scholar
  71. Goodman AM, Ennos AR (1999) The effects of soil bulk density on the morphology and anchorage mechanics of the root systems of sunflower and maize. Ann Bot 83(3):293–302.  https://doi.org/10.1006/anbo.1998.0822 Google Scholar
  72. Grant RF (1997) Changes in soil organic matter under different tillage and rotation: mathematical modeling in ecosys. Soil Sci Soc Am J 61(4):1159–1175.  https://doi.org/10.2136/sssaj1997.03615995006100040023x Google Scholar
  73. Gruber S, Möhring J, Claupein W (2011) On the way towards conservation tillage-soil moisture and mineral nitrogen in a long-term field experiment in Germany. Soil Tillage Res 115:80–87.  https://doi.org/10.1016/j.still.2011.07.001 Google Scholar
  74. Guerif J (1994) Effects of compaction on soil strength parameters. In: Soane BD, Ouwerkerk CV (eds) Soil compaction crop production. Elsevier, Amsterdam, pp 191–214Google Scholar
  75. Hamza MA, Anderson WK (2005) Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res 82(2):121–145.  https://doi.org/10.1016/j.still.2004.08.009 Google Scholar
  76. Hasankhani-Ghavam F, Abbaspour-Gilandeh Y, Shahgoli G, Rahmanzadeh-Bahram H (2015) Design, manufacture and evaluation of the new instrument to measure the friction coefficient of soil. Agric Eng Int CIGR J 17(1):101–109Google Scholar
  77. Hazarika S, Parkinson R, Bol R, Dixon L, Russell P, Donovan S, Allen D (2009) Effect of tillage system and straw management on organic matter dynamics. Agron Sustain Dev 29(4):525–533.  https://doi.org/10.1051/agro/2009024 Google Scholar
  78. Hendrix PF, Han CR, Groffman PM (1988) Soil respiration in conventional and no-tillage agroecosystems under different winter cover crop rotations. Soil Tillage Res 12(2):135–148.  https://doi.org/10.1016/0167-1987(88)90037-2 Google Scholar
  79. Hernanz JL, Giron VS, Cerisola C (1995) Long-term energy use and economic evaluation of three tillage systems for cereal and legume production in central Spain. Soil Tillage Res 35(4):183–198.  https://doi.org/10.1016/0167-1987(95)00490-4 Google Scholar
  80. Hernanz JL, López R, Navarrete L, Sanchez-Giron V (2002) Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain. Soil Tillage Res 66(2):129–141.  https://doi.org/10.1016/S0167-1987(02)00021-1 Google Scholar
  81. Hobbs PR, Sayre K, Gupta R (2008) The role of conservation agriculture in sustainable agriculture. Philos Trans R Soc B 363(1491):543–555Google Scholar
  82. Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103(1):1–25.  https://doi.org/10.1016/j.agee.2003.12.018 Google Scholar
  83. Horn R (2004) Time dependence of soil mechanical properties and pore functions for arable soils. Soil Sci Soc Am J 68(4):1131–1137.  https://doi.org/10.2136/sssaj2004.1131 Google Scholar
  84. Horn R, Domżżał H, Słowińska-Jurkiewicz A, Van Ouwerkerk C (1995) Soil compaction processes and their effects on the structure of arable soils and the environment. Soil Tillage Res 35(1):23–36.  https://doi.org/10.1016/0167-1987(95)00479-C Google Scholar
  85. Hsiao TC, Steduto P, Fereres E (2007) A systematic and quantitative approach to improve water use efficiency in agriculture. Irrig Sci 25(3):209–231.  https://doi.org/10.1007/s00271-007-0063-2 Google Scholar
  86. Jankauskas B, Jankauskienė G (2005) Erosion-preventive agricultural practices and adjustment of farm specialisation and alternative human activities to these practices. Zemdirbyste-Agriculture 91(3):27–29Google Scholar
  87. Janulevičius A, Juostas A, Pupinis G (2013) Engine performance during tractor operational period. Energy Convers Manag 68:11–19.  https://doi.org/10.1016/j.enconman.2013.01.001 Google Scholar
  88. Jasa P (2011) No-till soil and water issues. In: agronomy conference, South Dakota agri-business association, pp 14–15. Available: http://www.sdaba.org/agronomy-conference-2011.htm Accessed 12 May 2016
  89. Jastrow JD, Miller RM, Boutton TW (1996) Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance. Soil Sci Soc Am J 60(3):801–807.  https://doi.org/10.2136/sssaj1996.03615995006000030017x Google Scholar
  90. Jin H, Hongwen L, Rasaily RG, Qingjie W, Guohua C, Yanbo S, Xiaodong Q, Lijin L (2011) Soil properties and crop yields after 11 years of no tillage farming in wheat–maize cropping system in North China Plain. Soil Tillage Res 113(1):48–54.  https://doi.org/10.1016/j.still.2011.01.005 Google Scholar
  91. Jones PD, New M, Parker DE, Martin S, Rigor IG (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37:173–199.  https://doi.org/10.1029/1999RG900002 Google Scholar
  92. Kaczmarek Z, Gajewski P, Mocek A, Owczarzak W, Glina B (2015) Physical and water properties of selected Polish heavy soils of various origins. Soil Sci Annu 66(4):191–197.  https://doi.org/10.1515/ssa-2015-0036 Google Scholar
  93. Karapetyan MA (2005) The basic concept of the environmental compatibility of the system “Machine – Tractor – Technology – Soil”. Mekhanizatsiya i elektrifikatsiya selskogo khozyaystva (Mechanization and Electrification of Agriculture) 9:30–32 (in Russian)Google Scholar
  94. Karayel D (2009) Performance of a modified precision vacuum seeder for no-till sowing of maize and soybean. Soil Tillage Res 104:121–125.  https://doi.org/10.1016/j.still.2009.02.001 Google Scholar
  95. Kassam AH, Friedrich T, Shaxson F, Pretty J (2009) The spread of conservation agriculture: justification, sustainability and uptake. Int J Agric Sustain 7(4):1–29Google Scholar
  96. Kassam A, Friedrich T, Derpsch R, Kienzle J (2015) Overview of the worldwide spread of conservation agriculture. Field actions science reports, vol. 8, Available: http://factsreports.revues.org/3966. Accessed 20 Sept 2016
  97. Kessavalou A, Doran JW, Mosier AR, Drijber RA (1998) Greenhouse gas fluxes following tillage and wetting in a wheat-fallow cropping system. J Environ Qual 27(5):1105–1116.  https://doi.org/10.2134/jeq1998.00472425002700050016x Google Scholar
  98. Kılıç K, Özgöz E, Akbaş F (2004) Assessment of spatial variability in penetration resistance as related to some soil physical properties of two fluvents in Turkey. Soil Tillage Res 76(1):1–11.  https://doi.org/10.1016/j.still.2003.08.009 Google Scholar
  99. Kiryushin VI (1996) Ekologicheskie osnovy zemledeliya (Ecological Bases of Agriculture). Moscow 367 p. (in Russian)Google Scholar
  100. Köller K (2003) Techniques of soil tillage. In: Titi AE (ed) Soil tillage in agroecosystems. CRC Press, New York, 25 pGoogle Scholar
  101. Kowalenko CG, Ivarson KC (1978) Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils. Soil Biol Biochem 10(5):417–423.  https://doi.org/10.1016/0038-0717(78)90068-8 Google Scholar
  102. Król A, Lipiec J, Turski M, Kuś J (2013) Effects of organic and conventional management on physical properties of soil aggregates. Int Agrophys 27(1):15–21.  https://doi.org/10.2478/v10247-012-0063-1 Google Scholar
  103. Kroulík M, Kumhála F, Hůla J, Honzík I (2009) The evaluation of agricultural machines field trafficking intensity for different soil tillage technologies. Soil Tillage Res 105(1):171–175.  https://doi.org/10.1016/j.still.2009.07.004 Google Scholar
  104. Kulen A, Kuppers X (1986) Modern agricultural mechanics. Agropromizdat:231–234 (in Russian)Google Scholar
  105. Kumar S, Himanshu SK, Gupta KK (2012) Effect of global warming on mankind – a review. Int Res J of Environ Sci 1(4):56–59Google Scholar
  106. Kushnarov AS (1986) Umensheniye vrednogo vozdeystviya na pochvu rabochikh organov i khodovykh sistem mashinnykh agregatov pri vnedrenii industrialnykh tekhnologiy vozdelyvaniya s.-kh. kultur. Moscow, 56 p. (in Russian)Google Scholar
  107. Kushwaha RL, Vaishnav AS, Zoerb GC (1986) Soil bin evaluation of disc coulters under no-till crop residue conditions. Trans ASAE 29(1):40–44Google Scholar
  108. Kutzbach HD (2000) Trends in power and machinery. J Agric Eng Res 76(3):237–247.  https://doi.org/10.1006/jaer.2000.0574 Google Scholar
  109. La Scala N, Lopes A, Marques J, Pereira GT (2001) Carbon dioxide emissions after application of tillage systems for a dark red latosol in southern Brazil. Soil Tillage Res 62(3):163–166.  https://doi.org/10.1016/S0167-1987(01)00212-4 Google Scholar
  110. La Scala N, Bolonhezi D, Pereira GT (2006) Short-term soil CO2 emission after conventional and reduced tillage of a no-till sugar cane area in southern Brazil. Soil Tillage Res 91(1):244–248.  https://doi.org/10.1016/j.still.2005.11.012 Google Scholar
  111. La Scala N, Lopes A, Spokas K, Bolonhezi D, Archer DW, Reicosky DC (2008) Short-term temporal changes of soil carbon losses after tillage described by a first-order decay model. Soil Tillage Res 99(1):108–118.  https://doi.org/10.1016/j.still.2008.01.006 Google Scholar
  112. La Scala N, Lopes A, Spokas K, Archer DW, Reicosky DC (2009) Short-term temporal changes of bare soil CO2 fluxes after tillage described by first-order decay models. Eur J Soil Sci 60(2):258–264.  https://doi.org/10.1111/j.1365-2389.2008.01102.x Google Scholar
  113. Lahmar R (2010) Adoption of conservation agriculture in Europe: lessons of the KASSA project. Land Use Policy 27(1):4–10.  https://doi.org/10.1016/j.landusepol.2008.02.001 Google Scholar
  114. Lal R, Kimble JM (1997) Conservation tillage for carbon sequestration. Nutr Cycl Agroecosyst 49(1-3):243–253.  https://doi.org/10.1023/A:1009794514742 Google Scholar
  115. Lal R, Kimble JM, Stewart BA (1995) World soils as a source or sink for radiatively-active gases. Soil management and greenhouse effect. Advances in soil science. CRC Press, Boca Raton, pp 1–8Google Scholar
  116. Lamandé M, Schjønning P (2011) Transmission of vertical stress in a real soil profile. Part I: site description, evaluation of the Söhne model, and the effect of topsoil tillage. Soil Tillage Res 114(2):57–70.  https://doi.org/10.1016/j.still.2011.05.004 Google Scholar
  117. Lamandé M, Schjønning P, Tøgersen FA (2007) Mechanical behaviour of an undisturbed soil subjected to loadings: effects of load and contact area. Soil Tillage Res 97(1):91–106.  https://doi.org/10.1016/j.still.2007.09.002 Google Scholar
  118. Lampurlanes J, Cantero-Martinez C (2003) Soil bulk density and penetration resistance under different tillage and crop management systems and their relationship with barley root growth. Agron J 95(3):526–536.  https://doi.org/10.2134/agronj2003.5260 Google Scholar
  119. Lapen DR, Topp GC, Edwards ME, Gregorich EG, Curnoe WE (2004) Combination cone penetration resistance/water content instrumentation to evaluate cone penetration–water content relationships in tillage research. Soil Tillage Res 79(1):51–62.  https://doi.org/10.1016/j.still.2004.03.023 Google Scholar
  120. Lee J, Hopmans JW, van Kessel C, King AP, Evatt KJ, Louie D, Rolston DE, Six J (2009) Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a Mediterranean climate. Agric Ecosyst Environ 129(4):378–390.  https://doi.org/10.1016/j.agee.2008.10.012 Google Scholar
  121. Ley GJ, Mullins CE, Lal R (1993) Effects of soil properties on the strength of weakly structured tropical soils. Soil Tillage Res 28(1):1–13.  https://doi.org/10.1016/0167-1987(93)90051-P Google Scholar
  122. Lindstrom J (1990) Methods for measurement of soil aeration. Swedish University of Agricultural Sciences. Rep Dissertations 5(1):1–19Google Scholar
  123. Linke C (1998) Direktsaat – eine Bestandsaufnahme unter besonderer Berücksichtigung technischer, agronomischer und ökonomischer Aspekte. Dissertation, University of Hohenheim, Stuttgart, 482 p. (in German)Google Scholar
  124. Lithourgidis AS, Damalas CA, Eleftherohorinos IG (2009) Conservation tillage: a promising perspective for sustainable agriculture in Greece. J Sustain Agric 33(1):85–95.  https://doi.org/10.1080/10440040802587280 Google Scholar
  125. Logsdon SD, Karlen DL (2004) Bulk density as a soil quality indicator during conversion to no-tillage. Soil Tillage Res 78(2):143–149.  https://doi.org/10.1016/j.still.2004.02.003 Google Scholar
  126. Logsdon S, Allmaras RR, Wu L, Swan JB, Randall GW (1990) Macroporosity and its relation to saturated hydraulic conductivity under different tillage practices. Soil Sci Soc Am J 54(4):1096–1101.  https://doi.org/10.2136/sssaj1990.03615995005400040029x Google Scholar
  127. Lopez MV, Arrúe JL, Sánchez-Girón V (1996) A comparison between seasonal changes in soil water storage and penetration resistance under conventional and conservation tillage systems in Aragon. Soil Tillage Res 37(4):251–271.  https://doi.org/10.1016/0167-1987(96)01011-2 Google Scholar
  128. López MV, Blanco-Moure N, Limón MÁ, Gracia R (2012) No tillage in rainfed Aragon (NE Spain): effect on organic carbon in the soil surface horizon. Soil Tillage Res 118:61–65.  https://doi.org/10.1016/j.still.2011.10.012 Google Scholar
  129. López-Fando C, Pardo MT (2012) Use of a partial-width tillage system maintains benefits of no-tillage in increasing total soil nitrogen. Soil Tillage Res 118:32–39.  https://doi.org/10.1016/j.still.2011.10.010 Google Scholar
  130. Lowery B, Morrison JE (2002) Soil penetrometers and penetrability. In: Dane JH, Topp GC (eds) Methods of soil analysis, Part 4 physical methods. Soil science Society of America Book Series no. 5, pp 363–388Google Scholar
  131. Macfadyen A (1970) Soil metabolism in relation to ecosystem energy flow and to primary and secondary production. In: Phillipson J (ed) “Methods of Study in Soil Ecology”, Paris Symposium, pp 167–172Google Scholar
  132. Maikšteniene S, Šlepetiene A, Masilionyte L (2007) The effect of mouldboard nouldbo and ploughless primary soil tillage on the properties of Endocalcari – Endohypogleyic Cambisol and on energetic efficiency of agrosystems. Zemdirbyste-Agriculture 94(1):3–23Google Scholar
  133. Maikšteniene S, Krištaponyte I, Masilionyte L (2008) The effects of long-term fertilisation systems on the variation of major productivity parameters of Gleyic Cambisols. Zemdirbyste-Agriculture 95(1):22–39Google Scholar
  134. Mitchell JP, Carter LM, Reicosky DC, Shrestha A, Pettygrove GS, Klonsky KM, Marcum DB, Chessman D, Roy R, Hogan P, Dunning L (2016) A history of tillage in California’s Central Valley. Soil Tillage Res 157:52–64.  https://doi.org/10.1016/j.still.2015.10.015 Google Scholar
  135. Morell FJ, Álvaro-Fuentes J, Lampurlanés J, Cantero-Martínez C (2010) Soil CO2 fluxes following tillage and rainfall events in a semiarid Mediterranean agroecosystem: effects of tillage systems and nitrogen fertilization. Agric Ecosyst Environ 139(1):167–173.  https://doi.org/10.1016/j.agee.2010.07.015 Google Scholar
  136. Moret D, Arrúe JL (2007) Dynamics of soil hydraulic properties during fallow as affected by tillage. Soil Tillage Res 96(1):103–113.  https://doi.org/10.1016/j.still.2007.04.003 Google Scholar
  137. Morote CGB, Vidor C, Mendes NG (1990) Soil temperature as affected by mulching and irrigation. Revista Brasileira de Ciência do Solo 14(1):81–84Google Scholar
  138. Morris NL, Miller PCH, Orson JH, Froud-Williams RJ (2010) The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment – a review. Soil Tillage Res 108(1):1–15.  https://doi.org/10.1016/j.still.2010.03.004 Google Scholar
  139. Mueller L, Kay BD, Deen B, Hu C, Zhang Y, Wolff M, Eulenstein F, Schindler U (2009) Visual assessment of soil structure: part II. Implications of tillage, rotation and traffic on sites in Canada, China and Germany. Soil Tillage Res 103(1):188–196.  https://doi.org/10.1016/j.still.2008.09.010 Google Scholar
  140. Muñoz C, Paulino L, Monreal C, Zagal E (2010) Greenhouse gas (CO2 and N2O) emissions from soils: a review. Chilean J Agric Res 70(3):485–497Google Scholar
  141. Of Complex Systems Available: http://systemexplorations.wordpress.com/2011/09/05/of-complex-systems/. Accessed 27 Sept 2016
  142. Ogle SM, Breidt FJ, Paustian K (2005) Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 72(1):87–121.  https://doi.org/10.1007/s10533-004-0360-2 Google Scholar
  143. Omer AM (2008) Energy, environment and sustainable development. Renew Sust Energ Rev 12(9):2265–2300.  https://doi.org/10.1016/j.rser.2007.05.001 Google Scholar
  144. Oorts K, Merckx R, Gréhan E, Labreuche J, Nicolardot B (2007) Determinants of annual fluxes of CO2 and N2O in long-term no-tillage and conventional tillage systems in northern France. Soil Tillage Res 95(1):133–148.  https://doi.org/10.1016/j.still.2006.12.002 Google Scholar
  145. Oyedele DJ, Schjønning P, Sibbesen E, Debosz K (1999) Aggregation and organic matter fractions of three Nigerian soils as affected by soil disturbance and incorporation of plant material. Soil Tillage Res 50(2):105–114.  https://doi.org/10.1016/S0167-1987(98)00200-1 Google Scholar
  146. Pachepsky YA, Rawls WJ (2003) Soil structure and pedotransfer functions. Eur J Soil Sci 54(3):443–452.  https://doi.org/10.1046/j.1365-2389.2003.00485.x Google Scholar
  147. Pagliai M, Marsili A, Servadio P, Vignozzi N, Pellegrini S (2003) Changes in some physical properties of a clay soil in Central Italy following the passage of rubber tracked and wheeled tractors of medium power. Soil Tillage Res 73(1):119–129.  https://doi.org/10.1016/S0167-1987(03)00105-3 Google Scholar
  148. Pagliai M, Vignozzi N, Pellegrini S (2004) Soil structure and the effect of management practices. Soil Tillage Res 79(2):131–143.  https://doi.org/10.1016/j.still.2004.07.002 Google Scholar
  149. Parkin TB, Kaspar TC (2003) Temperature controls on diurnal carbon dioxide flux. Soil Sci Soc Am J 67(6):1763–1772.  https://doi.org/10.2136/sssaj2003.1763 Google Scholar
  150. Parton WJ, Woomer PL, Martin A, Swift MJ (1994) Modelling soil organic matter dynamics and plant productivity in tropical ecosystems. In: Woomer PL, Swift MJ (eds) The biological management of tropical soil fertility, pp 171–188Google Scholar
  151. Paz-Ferreiro J, Trasar-Cepeda C, Leirós MC, Seoane S, Gil-Sotres F (2009) Biochemical properties in managed grassland soils in a temperate humid zone: modifications of soil quality as a consequence of intensive grassland use. Biol Fertil Soils 45(7):711–722.  https://doi.org/10.1007/s00374-009-0382-y Google Scholar
  152. Pekrun C, Claupein W (1998) Forschung zur reduzierten Bodenbearbeitung in Mitteleuropa: eine Literaturübersicht. Pflanzenbauwissenschaften 2(4):160–175Google Scholar
  153. Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, McNair M, Crist S, Shpritz L, Fitton L, Saffouri R, Blair R (1995) Environmental and economic costs of soil erosion and conservation benefits. Science-AAAS-Weekly Paper Edition 267(5201):1117–1122Google Scholar
  154. Pocienė A, Kinčius L (2008) Dirvožemio erozija ir jos prevencija (Soil erosion and its prevention). Kaunas, Arvida 79 p. (in Lithuanian)Google Scholar
  155. Prior SA, Reicosky DC, Reeves DW, Runion GB, Raper RL (2000) Residue and tillage effects on planting implement-induced short-term CO2 and water loss from a loamy sand soil in Alabama. Soil Tillage Res 54(3):197–199.  https://doi.org/10.1016/S0167-1987(99)00092-6 Google Scholar
  156. Quinton JN, Govers G, Van Oost K, Bardgett RD (2010) The impact of agricultural soil erosion on biogeochemical cycling. Nat Geosci 3(5):311–314.  https://doi.org/10.1038/ngeo838 Google Scholar
  157. Račinskas A (1992) Dirvožemio erozija (Soil erosion). Mokslas, Vilnius 135 p. (in Lithuanian)Google Scholar
  158. Rasmussen KJ (1999) Impact of ploughless soil tillage on yield and soil quality: a Scandinavian review. Soil Tillage Res 53(1):3–14.  https://doi.org/10.1016/S0167-1987(99)00072-0 Google Scholar
  159. Rastogi M, Singh S, Pathak H (2002) Emission of carbon dioxide from soil. Curr Sci 82(5):510–517Google Scholar
  160. Reichert JM, da Silva VR, Reinert DJ (2004) Soil moisture, penetration resistance, and least limiting water range for three soil management systems and black beans yield. In: Conserving soil and water for society: sharing solutions. 13th international soil conservation organisation conference – Brisbane paper 721:1–4Google Scholar
  161. Reicosky DC (2015) Conservation tillage is not conservation agriculture. J Soil Water Conserv 70(5):103A–108A.  https://doi.org/10.2489/jswc.70.5.103A Google Scholar
  162. Reicosky DC, Allmaras RR (2003) Advances in tillage research in North American cropping systems. J Crop Prod 8(1-2):75–125.  https://doi.org/10.1300/J144v08n01_05 Google Scholar
  163. Reicosky DC, Lindstrom MJ (1993) Fall tillage method: effect on short-term carbon dioxide flux from soil. Agron J 85(6):1237–1243.  https://doi.org/10.2134/agronj1993.00021962008500060027x Google Scholar
  164. Reicosky DC, Dugas WA, Torbert HA (1997) Tillage-induced soil carbon dioxide loss from different cropping systems. Soil Tillage Res 41(1):105–118.  https://doi.org/10.1016/S0167-1987(96)01080-X Google Scholar
  165. Rochette P, Angers DA (1999) Soil surface carbon dioxide fluxes induced by spring, summer, and fall moldboard plowing in a sandy loam. Soil Sci Soc Am J 63(3):621–628.  https://doi.org/10.2136/sssaj1999.03615995006300030027x Google Scholar
  166. Rogelj J, Den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, Schaffer R, Sha F, Riahi K, Meinshausen M (2016) Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534(7609):631–639.  https://doi.org/10.1038/nature18307 PubMedGoogle Scholar
  167. Roger-Estrade J, Richard G, Dexter AR, Boizard H, De Tourdonnet S, Bertrand M, Caneill J (2009) Integration of soil structure variations with time and space into models for crop management: a review. Sustain Agric:813–822.  https://doi.org/10.1007/978-90-481-2666-8_49 Google Scholar
  168. Romaneckas K, Romaneckiene R, Šarauskis E, Pilipavičius V, Sakalauskas A (2009) The effect of conservation primary and zero tillage on soil bulk density, water content, sugar beet growth and weed infestation. Agron Res 7(1):73–86Google Scholar
  169. Romaneckas K, Šarauskis E, Avižienyte D, Buragiene S, Arney D (2015) The main physical properties of planosol in maize (Zea mays L.) cultivation under different long-term reduced tillage practices in the Baltic region. J Integr Agric 14(7):1309–1320.  https://doi.org/10.1016/S2095-3119(14)60962-X Google Scholar
  170. Roscoe R, Buurman P (2003) Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol. Soil Tillage Res 70(2):107–119.  https://doi.org/10.1016/S0167-1987(02)00160-5 Google Scholar
  171. Safa M, Tabatabaeefar A (2008) Fuel consumption in wheat production in irrigated and dry land farming. World J Agric Sci 4(1):86–90Google Scholar
  172. Salton JC, Mielniczuk J (1995) Relations between tillage systems, temperature and humidity of a dark red podzolic Eldorado South. Revista Brasileira de Ciência do Solo 19(2):313–319Google Scholar
  173. Sanchez ML, Ozores MI, Colle R, López MJ, De Torre B, Garcıa MA, Pérez I (2002) Soil CO2 fluxes in cereal land use of the Spanish plateau: influence of conventional and reduced tillage practices. Chemosphere 47(8):837–844.  https://doi.org/10.1016/S0045-6535(02)00071-1 PubMedGoogle Scholar
  174. Šarauskis E (2009) Technological processes of operation of environmentally-friendly soil tillage and sowing machines. Review of scientific works presented for habilitation procedure 38 pGoogle Scholar
  175. Šarauskis E, Buragiene S, Romaneckas K, Sakalauskas A, Jasinskas A, Vaiciukevicius E, Karayel D (2012) Working time, fuel consumption and economic analysis of different tillage and sowing systems in Lithuania. Eng Rural Develop 11:1–5Google Scholar
  176. Šarauskis E, Buragiene S, Romaneckas K, Masilionyte L, Kriauciuniene Z, Sakalauskas A, Jasinskas A, Karayel D (2014a) Deep, shallow and no-tillage effects on soil compaction parameters. Eng Rural Develop 13:31–36Google Scholar
  177. Šarauskis E, Buragiene S, Masilionytė L, Romaneckas K, Avizienyte D, Sakalauskas A (2014b) Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation. Energy 69:227–235.  https://doi.org/10.1016/j.energy.2014.02.090 Google Scholar
  178. Šarauskis E, Vaitauskiene K, Romaneckas K, Jasinskas A, Butkus V, Kriauciuniene Z (2017) Fuel consumption and CO emission analysis in different strip tillage scenarios. Energy 118:957–968.  https://doi.org/10.1016/j.energy.2016.10.121 Google Scholar
  179. Schaller M, Weigel HJ (2007) Analyse des Sachstands zu Auswirkungen von Klimaveränderungen auf die deutsche Landwirtschaft und Maßnahmen zur Anpassung. Landbauforschung Völkenrode. Sonderheft 316, 247 pGoogle Scholar
  180. Schillinger WF, Young DL (2004) Cropping systems research in the world’s driest rainfed wheat region. Agron J 96(4):1182–1187.  https://doi.org/10.2134/agronj2004.1182 Google Scholar
  181. Schönwiese CD, Janoschitz R (2005) Klima-Trendatlas Deutschland 1901-2000. Berichte des Instituts für Atmosphäre und Umwelt der Universität Frankfurt/Main. Available: https://www.uni-frankfurt.de/45447808/Inst_Ber_4_21.pdf. Accessed 15 Nov 2016
  182. Shafiq M, Hassan A, Ahmad S (1994) Soil physical properties as influenced by induced compaction under laboratory and field conditions. Soil Tillage Res 29(1):13–22.  https://doi.org/10.1016/0167-1987(94)90098-1 Google Scholar
  183. Šimanskaite D (2007) The effect of ploughing and ploughless soil tillage on soil physical properties and crop productivity. Žemes ukio mokslai 1:9–19Google Scholar
  184. Šimanskaite D, Feiza V, Lazauskas S, Feiziene D, Kadžiene G (2009) Soil tillage systems impact on hydrophysical properties of Gleyic Cambisol. Zemdirbyste-Agriculture 96(1):23–38Google Scholar
  185. Singh B, Malhi SS (2006) Response of soil physical properties to tillage and residue management on two soils in a cool temperate environment. Soil Tillage Res 85(1):143–153.  https://doi.org/10.1016/j.still.2004.12.005 Google Scholar
  186. Smithson R (2008) Evolution pressed. New Sci 197(2640):24Google Scholar
  187. Soane BD, Van Ouwerkerk C (1995) Implications of soil compaction in crop production for the quality of the environment. Soil Tillage Res 35(1):5–22.  https://doi.org/10.1016/0167-1987(95)00475-8 Google Scholar
  188. Soane BD, Ball BC, Arvidsson J, Basch G, Moreno F, Roger-Estrade J (2012) No-till in northern, western and south-western Europe: a review of problems and opportunities for crop production and the environment. Soil Tillage Res 118:66–87.  https://doi.org/10.1016/j.still.2011.10.015 Google Scholar
  189. Sommer R, Thierfelder C, Tittonell P, Hove L, Mureithi J, Mkomwa S (2014) Fertilizer use should not be a fourth principle to define conservation agriculture: response to the opinion paper of Vanlauwe et al. (2014)‘A fourth principle is required to define conservation agriculture in sub-Saharan Africa: the appropriate use of fertilizer to enhance crop productivity’. Field Crop Res 169:145–148.  https://doi.org/10.1016/j.fcr.2014.05.012 Google Scholar
  190. Sørensen CG, Nielsen V (2005) Operational analyses and model comparison of machinery systems for reduced tillage. Biosyst Eng 92(2):143–155.  https://doi.org/10.1016/j.biosystemseng.2005.06.014 Google Scholar
  191. Stevenson FJ, Cole MA (1999) Cycles of soils: carbon, nitrogen, phosphorus, sulfur, micronutrients. Wiley, New York 429 pGoogle Scholar
  192. Tebrügge F (2001) No-tillage visions – protection of soil, water and climate and influence on management and farm income. In: Garcia-Torres L, Benites J, Martınez-Vilela A (eds) Conservation agriculture – a worldwide challenge. World Congress on Conservation Agriculture 1:303–316.  https://doi.org/10.1007/978-94-017-1143-2_39 Google Scholar
  193. Tebrügge F, Böhrnsen A (1995) Direktsaat–Auswirkungen auf bodenökologische Faktoren und Ökonomie. Landtechnik–Agric Eng 50(1):6–7 (in German)Google Scholar
  194. Tessier S, Peru M, Dyck FB, Zentner FP, Campbell CA (1990) Conservation tillage for spring wheat production in semi-arid Saskatchewan. Soil Tillage Res 18(1):73–89.  https://doi.org/10.1016/0167-1987(90)90094-T Google Scholar
  195. The European Conservation Agriculture Federation (ECAF) Available: http://www.ecaf.org/. Accessed 25 Nov 2016
  196. Tolón-Becerra A, Lastra-Bravo X, Botta GF (2010) Methodological proposal for territorial distribution of the percentage reduction in gross inland energy consumption according to the EU energy policy strategic goal. Energy Policy 38(11):7093–7105.  https://doi.org/10.1016/j.enpol.2010.07.028 Google Scholar
  197. UNFCCC (2015) Draft decision: CP.21, FCCC/CP/2015/L.9/Rev.1. Available: unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf. Accessed 12 Nov 2016Google Scholar
  198. Unger PW, Jones OR (1998) Long-term tillage and cropping systems affect bulk density and penetration resistance of soil cropped to dryland wheat and grain sorghum. Soil Tillage Res 45(1):39–57.  https://doi.org/10.1016/S0167-1987(97)00068-8 Google Scholar
  199. Uri ND (2000) Perceptions on the use of no-till farming in production agriculture in the United States: an analysis of survey results. Agric Ecosyst Environ 77(3):263–266.  https://doi.org/10.1016/S0167-8809(99)00085-7 Google Scholar
  200. Van den Akker JJH, Canarache A (2001) Two European concerted actions on subsoil compaction. Landnutzung und Landentwicklung 42:15–22Google Scholar
  201. Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, Marques da Silva JR, Merckx R (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318(5850):626–629.  https://doi.org/10.1126/science.1145724 PubMedGoogle Scholar
  202. Velykis A, Satkus A (2005) Effect of winter crop and minimized tillage on soil physical properties. Zemes ukio mokslai 3:8–17Google Scholar
  203. Vinten AJA, Ball BC, O’sullivan MF, Henshall JK (2002) The effects of cultivation method, fertilizer input and previous sward type on organic C and N storage and gaseous losses under spring and winter barley following long-term leys. J Agric Sci 139(03):231–243.  https://doi.org/10.1017/S0021859602002496 Google Scholar
  204. Wilkinson BH (2005) Humans as geologic agents: a deep-time perspective. Geology 33(3):161–164.  https://doi.org/10.1130/G21108.1 Google Scholar
  205. Würfel T, Vetter R, Unterseher E, Elsäßer M (2002) Merkblätter für die Umweltgerechte Landbewirtschaftung 25:1–8 (in German)Google Scholar
  206. Yalcin H, Cakir E, Aykas E (2005) Tillage parameters and economic analysis of direct seeding, minimum and conventional tillage in wheat. J Agron 4(4):329–332Google Scholar
  207. Zhang GS, Chan KY, Oates A, Heenan DP, Huang GB (2007) Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. Soil Tillage Res 92(1):122–128.  https://doi.org/10.1016/j.still.2006.01.006 Google Scholar
  208. Zhang H, Wang X, Feng Z, Pang J, Lu F, Ouyang Z, Liu W, Hui D (2011) Soil temperature and moisture sensitivities of soil CO2 efflux before and after tillage in a wheat field of Loess Plateau, China. J Environ Sci 23(1):79–86.  https://doi.org/10.1016/S1001-0742(10)60376-2 Google Scholar
  209. Zink A, Fleige H, Horn R (2010) Load risks of subsoil compaction and depths of stress propagation in arable luvisols. Soil Sci Soc Am J 74(5):1733–1742.  https://doi.org/10.2136/sssaj2009.0336 Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Egidijus Šarauskis
    • 1
  • Zita Kriaučiūnienė
    • 2
  • Kęstutis Romaneckas
    • 2
  • Sidona Buragienė
    • 1
  1. 1.Institute of Agricultural Engineering and SafetyAleksandras Stulginskis UniversityKaunasLithuania
  2. 2.Institute of Agroecosystems and Soil ScienceAleksandras Stulginskis UniversityKaunasLithuania

Personalised recommendations