Advertisement

A Virtual Proof

  • Peter Roquette
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2222)

Abstract

In this chapter I would like to interrupt the historic line in order to put into evidence what I just said, namely that the proof of RHp could have been found already in 1937, in the framework of the theory of function fields. I will present here such a proof. In principle it can be regarded as a translation of Severi’s proof from the language of algebraic geometry into the language of algebra. But I will not use any knowledge of the terminology and results of algebraic geometry. I shall use those notions and facts from the theory of function fields which were available to and preferred by Hasse at the time of the Göttingen workshop which I have discussed above.

References

  1. [Deu37]
    M. Deuring, Arithmetische Theorie der Korrespondenzen algebraischer Funktionenkörper. I. J. Reine Angew. Math. 177, 161–191 (1937)zbMATHGoogle Scholar
  2. [Deu40]
    M. Deuring, Arithmetische Theorie der Korrespondenzen algebraischer Funktionenkörper. II. J. Reine Angew. Math. 183, 25–36 (1940)zbMATHGoogle Scholar
  3. [Has02]
    H. Hasse, Number Theory. Transl. from the 3rd German edn. edited and with a preface by Horst Günter Zimmer. Reprint of the 1980 edn. (Springer, Berlin, 2002), 638 pp.Google Scholar
  4. [Has68]
    H. Hasse, The Riemann Hypothesis in Algebraic Function Fields over a Finite Constants Field. Lecture Notes (Pennsylvania State University, State College, Spring 1968)Google Scholar
  5. [Hil97]
    D. Hilbert, Die Theorie der algebraischen Zahlkörper. Jahresber. Dtsch. Math. Ver., 4:I–XVIII u. 175–546, 1897. Englische Übersetzung: The Theory of Algebraic Number Fields (Springer, Heidelberg, 1998)Google Scholar
  6. [Kan80]
    E. Kani, Eine Verallgemeinerung des Satzes von Castelnuovo-Severi. J. Reine Angew. Math. 318, 178–220 (1980)MathSciNetzbMATHGoogle Scholar
  7. [Roq53]
    P. Roquette, Arithmetischer Beweis der Riemannschen Vermutung in Kongruenzfunktionenkörpern beliebigen Geschlechts. J. Reine Angew. Math. 191, 199–252 (1953)MathSciNetzbMATHGoogle Scholar
  8. [Roq76]
    P. Roquette, On the division fields of an algebraic function field of one variable. An estimate for their degree of irrationality. Houston J. Math. 2, 251–287 (1976)zbMATHGoogle Scholar
  9. [Sch31a]
    F.K. Schmidt, Analytische Zahlentheorie in Körpern der Charakteristik p. Math. Z. 33, 1–32 (1931)Google Scholar
  10. [Wei41]
    A. Weil, On the Riemann hypothesis in function fields. Proc. Natl. Acad. Sci. USA 27, 345–347 (1941)CrossRefGoogle Scholar
  11. [Wei46]
    A. Weil, Foundations of Algebraic Geometry. Colloquium Publications, vol. XXIX (American Mathematical Society, Providence, RI, 1946)Google Scholar
  12. [Wei48a]
    A. Weil, Sur les courbes algébriques et les variétés qui s’en deduisent. Actualités scientifiques et industrielles, vol. 1048 (Hermann & Cie, Paris, 1948), 85 pp.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Peter Roquette
    • 1
  1. 1.Mathematical InstituteHeidelberg UniversityHeidelbergGermany

Personalised recommendations