Advertisement

Electricity Demand Forecasting: The Uruguayan Case

  • Andrés Castrillejo
  • Jairo CugliariEmail author
  • Fernando Massa
  • Ignacio Ramirez
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 254)

Abstract

The development of new electricity generation technologies has given new opportunities to developing economies. These economies are often highly dependent on fossil sources and so on the price of petrol. Uruguay has finished the transformation of its energetic mix, presenting today a very large participation of renewable sources among its production mix. This rapid change has demanded new mathematical and computing methods for the administration and monitoring of the system load. In this work we present enercast, a R package that contains prediction models that can be used by the network operator. The prediction models are divided in two groups, exogenous and endogenous models, that respectively uses external covariates or not. Each model is used to produce daily prediction which are then combined using a sequential aggregation algorithm. We show by numerical experiments the appropriateness of our end-to-end procedure applied to real data from the Uruguayan electrical system.

Keywords

Electricity demand forecast Time series Sequential aggregation 

Notes

Acknowledgements

This work was partially funded by Agencia Nacional de Investigación e Innovación (ANII, Uruguay), grant FSE 2013/1/10886, “Modelos de previsión de demanda de corto plazo.”

References

  1. 1.
    A. Antoniadis, E. Paparoditis, T. Sapatinas, A functional wavelet-kernel approach for time series prediction. J. R. Stat. Soc. Ser. B Stat. Methodol. 68(5), 837 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Antoniadis, X. Brosat, J. Cugliari, J.-M. Poggi, Prévision d’un processus à valeurs fonctionnelles en presence de non stationnarites. Application à la consommation d’électricité. Journal de la Société Française de Statistique 153(2), 52–78 (2012)Google Scholar
  3. 3.
    A. Antoniadis, X. Brossat, J. Cugliari, J.-M. Poggi, Une approche fonctionnelle pour la prévision non-paramétrique de la consommation d’électricité. Journal de la Société Française de Statistique 155(2), 202–219 (2014)Google Scholar
  4. 4.
    A. Antoniadis, X. Brossat, J. Cugliari, J.-M. Poggi, A prediction interval for a function-valued forecast model. Int. J. Forecast. 32(2), 939–947 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Ben Taieb, R.J. Hyndman, A gradient boosting approach to the kaggle load forecasting competition. Int. J. Forecast. 30(2), 382–394 (2014)CrossRefGoogle Scholar
  6. 6.
    G.E.P. Box, G.M. Jenkins, G.C. Reinsel, G.M. Ljung, Time Series Analysis: Forecasting and Control, Wiley Series in Probability and Statistics (Wiley, New York, 2015)zbMATHGoogle Scholar
  7. 7.
    L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  8. 8.
    P.J. Brockwell, R.A. Davis, Time Series: Theory and Methods, 2nd edn., Springer Series in Statistics (Springer, Berlin, 1991)CrossRefGoogle Scholar
  9. 9.
    A. Bruhns, G. Deurveilher, J.S. Roy, A non linear regression model for mid-term load forecasting and improvements in seasonality, in Proceedings of the 15th Power Systems Computation Conference (2005), pp. 22–26Google Scholar
  10. 10.
    J. Cancelo, A. Espasa, R. Grafe, Forecasting the electricity load from one day to one week ahead for the spanish system operator. Int. J. Forecast. 24, 588–602 (2008)CrossRefGoogle Scholar
  11. 11.
    M. Devaine, P. Gaillard, Y. Goude, G. Stoltz, Forecasting electricity consumption by aggregating specialized experts. Mach. Learn. 90(2), 231–260 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    DNETN, Politica energética 2005–2030. Technical report, Ministerio de Industria, Energía y Minería, Uruguay, 2008Google Scholar
  13. 13.
    V. Dordonnat, S.J. Koopman, M. Ooms, A. Dessertaine, J. Collet, An hourly periodic state space model for modelling French national electricity load. Int. J. Forecast. 24(4), 566–587 (2008)CrossRefGoogle Scholar
  14. 14.
    G. Dudek, Short-term load forecasting using random forests, in Intelligent Systems’2014 ed. by D. Filev, J. Jablkowski, J. Kacprzyk, M. Krawczak, I. Popchev, L. Rutkowski, V. Sgurev, E. Sotirova, P. Szynkarczyk, S. Zadrozny. Advances in Intelligent Systems and Computing, vol. 323 (Springer, Berlin, 2015), pp. 821–828Google Scholar
  15. 15.
    J. Durbin, S.J. Koopman, Time Series Analysis by State Space Methods, Oxford Statistical Science Series (Clarendon Press, Oxford, 2001)zbMATHGoogle Scholar
  16. 16.
    P. Gaillard, Y. Goude, Forecasting electricity consumption by aggregating experts; how to design a good set of experts, in Modeling and Stochastic Learning for Forecasting in High Dimensions ed. by A. Antoniadis, X. Brossat, J.-M. Poggi. Lecture Notes in Statistics, vol. 217 (Springer, Berlin, 2015), pp. 95–115CrossRefGoogle Scholar
  17. 17.
    P. Gaillard, Y. Goude, Opera: Online Prediction by Expert Aggregation, 2016. R package version 1.0Google Scholar
  18. 18.
    W. Guang-Te, V.P. Singh, An autocorrelation function method for estimation of parameters of autoregressive models. Water Resour. Manag. 8(1), 33–55 (1994)CrossRefGoogle Scholar
  19. 19.
    T. Hong, P. Wang, H.L. Willis, A naïve multiple linear regression benchmark for short term load forecasting, in 2011 IEEE Power and Energy Society General Meeting (IEEE, 2011), pp. 1–6Google Scholar
  20. 20.
    T. Hong, P. Pinson, S. Fan, Global energy forecasting competition 2012. Int. J. Forecast. 30(2), 357–363 (2014)CrossRefGoogle Scholar
  21. 21.
    R. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)CrossRefGoogle Scholar
  22. 22.
    B. Lanzilotta, S. Rodriguez, Modelos de predicción de energía eléctrica con datos horarios para Uruguay. Informe de investigación, Fondo Sectorial de Energía. ANII, marzo, 2014Google Scholar
  23. 23.
    T. Launay, A. Philippe, S. Lamarche, Construction of an informative hierarchical prior distribution. Appl. Electr. Load Forecast. arXiv:1109.4533 (2012)
  24. 24.
    J.R. Lloyd, GEFCom2012 hierarchical load forecasting: gradient boosting machines and Gaussian processes. Int. J. Forecast. 30(2), 369–374 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Mougeot, D. Picard, V. Lefieux, L. Maillard-Teyssier, Forecasting intra day load curves using sparse functional regression, in Modeling and Stochastic Learning for Forecasting in High Dimensions ed. by A. Antoniadis, J.M. Poggi, X. Brossat. Lecture Notes in Statistics, vol 217 (Springer, Cham) (2015)CrossRefGoogle Scholar
  26. 26.
    R. Nedellec, J. Cugliari, Y. Goude, GEFCom2012: electric load forecasting and backcasting with semi-parametric models. Int. J. Forecast. 30(2), 375–381 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Papadopoulos, I. Karakatsanis, Short-term electricity load forecasting using time series and ensemble learning methods, in 2015 IEEE Power and Energy Conference at Illinois (PECI) (2015), pp. 1–6Google Scholar
  28. 28.
    J.-M. Poggi, Prévision nonprametrique de la consommation électrique. Rev. Statistique Appliquée XLII(4), 93–98 (1994)Google Scholar
  29. 29.
    R Core Team, R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2017Google Scholar
  30. 30.
    L.J. Soares, M.C. Medeiros, Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data. Int. J. Forecast. 24(4), 630–644 (2008)CrossRefGoogle Scholar
  31. 31.
    J.W. Taylor, L.M. de Menezes, P.E. McSharry, A comparison of univariate methods for forecasting electricity demand up to a day ahead. Int. J. Forecast. 22(1), 1–16 (2006)CrossRefGoogle Scholar
  32. 32.
    R. Weron, Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach, Wiley Finance Series, vol. 396 (Wiley, New York, 2006)CrossRefGoogle Scholar
  33. 33.
    R. Weron, B. Kozlowska, J. Nowicka-Zagrajek, Modeling electricity loads in California: a continuous-time approach. Phys. A Stat. Mech. Appl. 299(1), 344–350 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Andrés Castrillejo
    • 1
  • Jairo Cugliari
    • 2
    Email author
  • Fernando Massa
    • 1
  • Ignacio Ramirez
    • 3
  1. 1.IESTA, Fac. CCEEUniversidad de la RepublicaMontevideoUruguay
  2. 2.Université de LyonLyonFrance
  3. 3.IEE, Fac. de IngenieríaUniversidad de la RepublicaMontevideoUruguay

Personalised recommendations