Stochastic Lagrangian Approach for Wind Farm Simulation

  • Mireille BossyEmail author
  • Aurore Dupré
  • Philippe Drobinski
  • Laurent Violeau
  • Christian Briard
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 254)


We present a stochastic Lagrangian approach for atmospheric boundary layer simulation. Based on a turbulent-fluid-particle model, a stochastic Lagrangian particle approach could be an advantageous alternative for some applications, in particular in the context of down-scaling simulation and wind farm simulation. This paper presents two recent advances in this direction, first the analysis of an optimal rate of convergence result for the particle approximation method that grounds the space discretisation of the Lagrangian model, and second a preliminary illustration of our methodology based on the simulation of a Zephyr ENR wind farm of six turbines.


Stochastic Lagrangian models Numerical analysis Wind farm simulation 


  1. 1.
    F. Bernardin, M. Bossy, C. Chauvin, P. Drobinski, A. Rousseau, T. Salameh, Stochastic downscaling methods: application to wind refinement. Stoch. Environ. Res. Risk Assess. 23(6), 851–859 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    F. Bernardin, M. Bossy, C. Chauvin, J.-F. Jabir, A. Rousseau, Stochastic Lagrangian method for downscaling problems in computational fluid dynamics. ESAIM: M2AN 44(5), 885–920 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Bossy, Some stochastic particle methods for nonlinear parabolic PDEs, in GRIP—Research Group on Particle Interactions. ESAIM: Proceedings, vol. 15 (EDP Sciences, Les Ulis, 2005), pp. 18–57MathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Bossy, L. Violeau, Optimal rate of convergence of particle approximation for conditional McKean–Vlasov kinetic processes (2018)Google Scholar
  5. 5.
    M. Bossy, J. Espina, J. Morice, C. Paris, A. Rousseau, Modeling the wind circulation around mills with a Lagrangian stochastic approach. SMAI J. Comput. Math. 2, 177–214 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    P.A. Durbin, A Reynolds stress model for near-wall turbulence. J. Fluid Mech. 249, 465–498 (1993)CrossRefGoogle Scholar
  7. 7.
    P.-A. Durbin, C.-G. Speziale, Realizability of second-moment closure via stochastic analysis. J. Fluid Mech. 280, 395–407 (1994)CrossRefGoogle Scholar
  8. 8.
    W. McCarty, L. Coy, R. Gelano, A. Huang, D. Merkova, E.B. Smith, M. Sienkiewicz, K. Wargan, MERRA-2 input observations: summary and assessment, in NASA Technical Report Series on Global Modeling and Data Assimilation, vol. 46 (2016)Google Scholar
  9. 9.
    J.-P. Minier, Statistical descriptions of polydisperse turbulent two-phase flows. Phys. Rep.665(Supplement C), 1–122 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    J.-P. Minier, S. Chibbaro, S.B. Pope, Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows. Phys. Fluids 26(11), 113303 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Niayifar, F. Porté-Agel, Analytical modeling of wind farms: a new approach for power prediction. Energies 9(9), 741 (2016)CrossRefGoogle Scholar
  12. 12.
    S.B. Pope, Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech. 26, 23–63. Annual Reviews, Palo Alto, CA, 1994Google Scholar
  13. 13.
    S.B. Pope, Lagrangian pdf methods for turbulent flows. Annu. Rev. Fluid Mech. 26, 23–63 (1994)MathSciNetCrossRefGoogle Scholar
  14. 14.
    S.B. Pope, Particle method for turbulent flows: tegration of stochastic model equations. J. Comput. Phys. 117(2), 332–349 (1995)CrossRefGoogle Scholar
  15. 15.
    S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000)CrossRefGoogle Scholar
  16. 16.
    P.E. Réthoré, N.N. Sørensen, A. Bechmann, F. Zahle, Study of the atmospheric wake turbulence of a CFD actuator disc model, in Proceedings of European Wind Energy Conference, Marseille, France, 16–19 March 2009Google Scholar
  17. 17.
    J.N. Sørensen, Aerodynamic aspects of wind energy conversion. Annu. Rev. Fluid Mech. 43(1), 427–448 (2011)CrossRefGoogle Scholar
  18. 18.
    A. Stohl, Computation, accuracy and applications of trajectories. A review and bibliography. Atmos. Environ. 32(6), 947–966 (1998)CrossRefGoogle Scholar
  19. 19.
    M. Waclawczyk, J. Pozorski, J.-P. Minier, Probability density function computation of turbulent flows with a new near-wall model. Phys. Fluids 16(5), 1410–1422 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mireille Bossy
    • 1
    Email author
  • Aurore Dupré
    • 2
  • Philippe Drobinski
    • 2
  • Laurent Violeau
    • 1
  • Christian Briard
    • 3
  1. 1.Université Côte d’Azur, InriaSophia AntipolisFrance
  2. 2.LMD/IPSL, École polytechniqueUniversité Paris Saclay, ENS, PSL Research University, Sorbonne Universités, UPMC Univ Paris 06, CNRSPalaiseauFrance
  3. 3.Zephyr ENRSaint-AvertinFrance

Personalised recommendations