Advertisement

Quantum Thermodynamics of Nanoscale Thermoelectrics and Electronic Devices

  • Robert S. WhitneyEmail author
  • Rafael Sánchez
  • Janine Splettstoesser
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

This chapter is intended as a short introduction to electron flow in nanostructures. Its aim is to provide a brief overview of this topic for people who are interested in the thermodynamics of quantum systems, but know little about nanostructures. We particularly emphasize devices that work in the steady-state, such as simple thermoelectrics, but also mention cyclically driven heat engines. We do not aim to be either complete or rigorous, but use a few pages to outline some of the main ideas in the topic.

Notes

Acknowledgements

We acknowledge the support of the COST Action MP1209 “Thermodynamics in the quantum regime” (2013-2017), which enabled us to meet regularly to learn about and discuss much of the physics presented in this chapter. RW acknowledges the financial support of the French National Research Agency’s “Investissement d’avenir” program (ANR-15-IDEX-02) via the Université Grenoble Alpes QuEnG project. RS is supported by the Spanish Ministerio de Economía y Competitividad via the Ramón y Cajal program RYC-2016-20778. JS acknowledges support from the Knut and Alice Wallenberg foundation and from the Swedish VR.

References

  1. 1.
    H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)Google Scholar
  2. 2.
    H. van Houten, L.W. Molenkamp, C.W.J. Beenakker, C.T. Foxon, Thermo-electric properties of quantum point contacts. Semicond. Sci. Technol. 7(3B), B215 (1992).  https://doi.org/10.1088/0268-1242/7/3B/052
  3. 3.
    J. Pekola, Trends in thermometry. J. Low Temp. Phys. 135(5), 723–744 (2004).  https://doi.org/10.1023/B:JOLT.0000029516.18146.42
  4. 4.
    O. Bourgeois, S.E. Skipetrov, F. Ong, J. Chaussy, Attojoule calorimetry of mesoscopic superconducting loops. Phys. Rev. Lett. 94(5), 057007 (2005). https://doi.org/10.1103/PhysRevLett.94.057007
  5. 5.
    F. Giazotto, T.T. Heikkilä, A. Luukanen, A.M. Savin, J.P. Pekola, Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Rev. Mod. Phys. 78(1), 217–274 (2006). https://doi.org/10.1103/RevModPhys.78.217
  6. 6.
    P. Reddy, S.-Y. Jang, R.A. Segalman, A. Majumdar, Thermoelectricity in molecular junctions. Science 315(5818), 1568–1571 (2007).  https://doi.org/10.1126/science.1137149
  7. 7.
    J.S. Heron, T. Fournier, N. Mingo, O. Bourgeois, Mesoscopic size effects on the thermal conductance of silicon nanowire. Nano Lett. 9(5), 601–604 (2009). https://doi.org/10.1021/nl803844j
  8. 8.
    A. Mavalankar, S.J. Chorley, J. Griffiths, G.A.C. Jones, I. Farrer, D.A. Ritchie, C.G. Smith, A non-invasive electron thermometer based on charge sensing of a quantum dot. Appl. Phys. Lett. 103(13), 133116 (2013).  https://doi.org/10.1063/1.4823703
  9. 9.
    S. Jezouin, F.D. Parmentier, A. Anthore, U. Gennser, A. Cavanna, Y. Jin, F. Pierre, Quantum limit of heat flow across a single electronic channel. Science 342(6158), 601–604 (2013).  https://doi.org/10.1126/science.1241912
  10. 10.
    Y. Kim, W. Jeong, K. Kim, W. Lee, P. Reddy, Electrostatic control of thermoelectricity in molecular junctions. Nat. Nanotechnol. 9(11), 881–885 (2014).  https://doi.org/10.1038/nnano.2014.209
  11. 11.
    L.B. Wang, O.-P. Saira, J.P. Pekola, Fast thermometry with a proximity Josephson junction. Appl. Phys. Lett. 112(1), 013105 (2018).  https://doi.org/10.1063/1.5010236
  12. 12.
    G. Benenti, G. Casati, K. Saito, R.S. Whitney, Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep. 694, 1–124 (2017).  https://doi.org/10.1016/j.physrep.2017.05.008ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    T. Ihn, Semiconductor Nanostructures (Oxford University Press, Oxford, 2009).  https://doi.org/10.1093/acprof:oso/9780199534425.001.0001
  14. 14.
    Y.V. Nazarov, Y.M. Blanter, Quantum Transport: Introduction to Nanoscience (Cambridge University Press, Cambridge, 2009).  https://doi.org/10.1017/CBO9780511626906
  15. 15.
    B. Karimi, J.P. Pekola, M. Campisi, R. Fazio, Coupled qubits as a quantum heat switch. Quantum Sci. Tech. 2(4), 044007 (2017).  https://doi.org/10.1088/2058-9565/aa8330
  16. 16.
    N. Brunner, N. Linden, S. Popescu, P. Skrzypczyk, Virtual qubits, virtual temperatures, and the foundations of thermodynamics. Phys. Rev. E 85(5), 051117 (2012).  https://doi.org/10.1103/PhysRevE.85.051117
  17. 17.
    P.P. Hofer, M. Perarnau-Llobet, J.B. Brask, R. Silva, M. Huber, N. Brunner, Autonomous quantum refrigerator in a circuit QED architecture based on a Josephson junction. Phys. Rev. B 94(23), 235420 (2016).  https://doi.org/10.1103/PhysRevB.94.235420
  18. 18.
    M.V. Moskalets, Scattering Matrix Approach to Non-Stationary Quantum Transport (World Scientific Publishing Company. Singapore (2011).  https://doi.org/10.1142/p822CrossRefGoogle Scholar
  19. 19.
    S. Datta, Electronic Transport in Mesoscopic Systems, (Cambridge University Press, Cambridge, 1997)Google Scholar
  20. 20.
    T.T. Heikkilä, The Physics of Nanoelectronics, (Oxford University Press, Oxford, 2013)Google Scholar
  21. 21.
    U. Sivan, Y. Imry, Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge. Phys. Rev. B 33(1), 551–558 (1986).  https://doi.org/10.1103/PhysRevB.33.551
  22. 22.
    P.N. Butcher, Thermal and electrical transport formalism for electronic microstructures with many terminals. J. Phys. Condens. Matter 2(22), 4869 (1990).  https://doi.org/10.1088/0953-8984/2/22/008
  23. 23.
    F. Ronetti, L. Vannucci, G. Dolcetto, M. Carrega, M. Sassetti, Spin-thermoelectric transport induced by interactions and spin-flip processes in two-dimensional topological insulators. Phys. Rev. B 93(16), 165414 (2016).  https://doi.org/10.1103/PhysRevB.93.165414
  24. 24.
    S.-Y. Hwang, P. Burset, B. Sothmann, Odd-frequency superconductivity revealed by thermopower. Phys. Rev. B 98(16), 161408 (2018).  https://doi.org/10.1103/PhysRevB.98.161408
  25. 25.
    G. Granger, J.P. Eisenstein, J.L. Reno, Observation of chiral heat transport in the quantum Hall regime. Phys. Rev. Lett. 102(8), 086803 (2009). https://doi.org/10.1103/PhysRevLett.102.086803
  26. 26.
    S.-G. Nam, E.H. Hwang, H.-J. Lee, Thermoelectric detection of chiral heat transport in graphene in the quantum Hall regime. Phys. Rev. Lett. 110(22), 226801 (2013). https://doi.org/10.1103/PhysRevLett.110.226801
  27. 27.
    B. Sothmann, E.M. Hankiewicz, Fingerprint of topological Andreev bound states in phase-dependent heat transport. Phys. Rev. B 94(8), 081407 (2016).  https://doi.org/10.1103/PhysRevB.94.081407
  28. 28.
    S.J. Erlingsson, A. Manolescu, G.A. Nemnes, J.H. Bardarson, D. Sánchez, Reversal of thermoelectric current in tubular nanowires. Phys. Rev. Lett. 119(3), 036804 (2017). https://doi.org/10.1103/PhysRevLett.119.036804
  29. 29.
    Y. Gross, M. Dolev, M. Heiblum, V. Umansky, D. Mahalu, Upstream neutral modes in the fractional quantum Hall effect regime: heat waves or coherent dipoles. Phys. Rev. Lett. 108(22), 226801 (2012). https://doi.org/10.1103/PhysRevLett.108.226801
  30. 30.
    C. Altimiras, H. le Sueur, U. Gennser, A. Anthore, A. Cavanna, D. Mailly, F. Pierre, Chargeless heat transport in the fractional quantum Hall regime. Phys. Rev. Lett. 109(2), 026803 (2012). https://doi.org/10.1103/PhysRevLett.109.026803
  31. 31.
    M. Banerjee, M. Heiblum, A. Rosenblatt, Y. Oreg, D.E. Feldman, A. Stern, V. Umansky, Observed quantization of anyonic heat flow. Nature 545(7652), 75–79 (2017).  https://doi.org/10.1038/nature22052
  32. 32.
    J.T. Muhonen, M. Meschke, J.P. Pekola, Micrometre-scale refrigerators. Rep. Prog. Phys. 75(4), 046501 (2012).  https://doi.org/10.1088/0034-4885/75/4/046501
  33. 33.
    B. Sothmann, R. Sánchez, A.N. Jordan, Thermoelectric energy harvesting with quantum dots. Nanotechnology 26(3), 032001 (2015).  https://doi.org/10.1088/0957-4484/26/3/032001
  34. 34.
    F. Haupt, M. Leijnse, H.L. Calvo, L. Classen, J. Splettstoesser, M.R. Wegewijs, Heat, molecular vibrations, and adiabatic driving in non-equilibrium transport through interacting quantum dots. Phys. Status. Solidi B 250(11), 2315–2329 (2013). https://doi.org/10.1002/pssb.201349219
  35. 35.
    Y. Dubi, M. Di Ventra, Colloquium: heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83(1), 131–155 (2011). https://doi.org/10.1103/RevModPhys.83.131
  36. 36.
    M. Ratner, A brief history of molecular electronics. Nat. Nanotechnol. 8, 378–381 (2013).  https://doi.org/10.1038/nnano.2013.110ADSCrossRefGoogle Scholar
  37. 37.
    J.P. Bergfield, M.A. Ratner, Forty years of molecular electronics: non-equilibrium heat and charge transport at the nanoscale. Phys. Status Solidi B 250(11), 2249 (2013).  https://doi.org/10.1002/pssb.201370573
  38. 38.
    J.-L. Pichard, R.S. Whitney (ed.), Special issue : mesoscopic thermoelectric phenomena. C. R. Phys. 17(10), 1039–1174 (2016).  https://doi.org/10.1016/j.crhy.2016.08.006
  39. 39.
    M. Di Ventra, Electrical Transport in Nanoscale Systems, (Cambridge University Press, Cambridge, 2008).  https://doi.org/10.1017/CBO9780511755606.002
  40. 40.
    A.E. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Pion Ltd, London, 1958)Google Scholar
  41. 41.
    H.J. Goldsmid, Introduction to Thermoelectricity, Springer Series in Materials Science, (Springer, Berlin, 2009).  https://doi.org/10.1007/978-3-642-00716-3
  42. 42.
    D.M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca, Raton, 1995).  https://doi.org/10.1201/9781420049718
  43. 43.
    F.J. DiSalvo, Thermoelectric cooling and power generation. Science 285(5428), 703–706 (1999).  https://doi.org/10.1126/science.285.5428.703
  44. 44.
    A. Shakouri, M. Zebarjadi, Nanoengineered materials for thermoelectric energy conversion, in Thermal Nanosystems and Nanomaterials, vol. 225, ed. by S. Volz S (2009).  https://doi.org/10.1007/978-3-642-04258-4_9
  45. 45.
    A. Shakouri, Recent developments in semiconductor thermoelectric physics and materials. Ann. Rev. Mater. Res. 41(1), 399–431 (2011).  https://doi.org/10.1146/annurev-matsci-062910-100445
  46. 46.
    E. Pop, S. Sinha, K.E. Goodson, Heat generation and transport in nanometer-scale transistors. Proc. IEEE 94(8), 1587–1601 (2006).  https://doi.org/10.1109/JPROC.2006.879794
  47. 47.
    K. Koumoto, T. Mori, Thermoelectric Nanomaterials: Materials Design and Applications, Springer Series in Materials Science, Band 182 (Springer, Berlin, 2013).  https://doi.org/10.1007/978-3-642-37537-8
  48. 48.
    E. Maciá, Thermoelectric Materials: Advances and Applications (Pan Stanford, The Netherlands, 2015)Google Scholar
  49. 49.
    D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003).  https://doi.org/10.1063/1.1524305
  50. 50.
    D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, L. Shi, Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1(1), 011305 (2014).  https://doi.org/10.1063/1.4832615
  51. 51.
    G.D. Mahan, J.O. Sofo, The best thermoelectric. Proc. Natl. Acad. Sci. U.S.A 93(15), 7436–7439 (1996).  https://doi.org/10.1073/pnas.93.15.7436
  52. 52.
    T.E. Humphrey, R. Newbury, R.P. Taylor, H. Linke, Reversible quantum brownian heat engines for electrons. Phys. Rev. Lett. 89(11), 116801 (2002). https://doi.org/10.1103/PhysRevLett.89.116801
  53. 53.
    N. Nakpathomkun, H.Q. Xu, H. Linke, Thermoelectric efficiency at maximum power in low-dimensional systems. Phys. Rev. B 82(23), 235428 (2010).  https://doi.org/10.1103/PhysRevB.82.235428
  54. 54.
    A. Svilans, M. Leijnse, H. Linke, Experiments on the thermoelectric properties of quantum dots. C.R. Phys. 17(10), 1096–1108 (2016).  https://doi.org/10.1016/j.crhy.2016.08.002
  55. 55.
    L. Cui, R. Miao, K. Wang, D. Thompson, L.A. Zotti, J.C. Cuevas, E. Meyhofer, P. Reddy, Peltier cooling in molecular junctions. Nat. Nanotechnol. 13(2), 122–127 (2017).  https://doi.org/10.1038/s41565-017-0020-z
  56. 56.
    L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47(19), 12727–12731 (1993a).  https://doi.org/10.1103/PhysRevB.47.12727
  57. 57.
    L.D. Hicks, M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47(24), 16631–16634 (1993b).  https://doi.org/10.1103/PhysRevB.47.16631
  58. 58.
    T.E. Humphrey, H. Linke, Reversible thermoelectric nanomaterials. Phys. Rev. Lett. 94(9), 096601 (2005). https://doi.org/10.1103/PhysRevLett.94.096601
  59. 59.
    J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 8(7), 471 (2013).  https://doi.org/10.1038/nnano.2013.129
  60. 60.
    R.S. Whitney, Most efficient quantum thermoelectric at finite power output. Phys. Rev. Lett. 112(13), 130601 (2014). https://doi.org/10.1103/PhysRevLett.112.130601
  61. 61.
    R.S. Whitney, Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output. Phys. Rev. B 91(11), 115425 (2015).  https://doi.org/10.1103/PhysRevB.91.115425
  62. 62.
    R.S. Whitney, Quantum coherent three-terminal thermoelectrics: maximum efficiency at given power output. Entropy 18(6), 208 (2016).  https://doi.org/10.3390/e18060208
  63. 63.
    J.B. Pendry, Quantum limits to the flow of information and entropy. J. Phys. A Math. Gen. 16(10), 2161 (1983).  https://doi.org/10.1088/0305-4470/16/10/012
  64. 64.
    I.-J. Chen, A. Burke, A. Svilans, H. Linke, C. Thelander, Thermoelectric power factor limit of a 1D nanowire. Phys. Rev. Lett. 120(17), 177703 (2018). https://doi.org/10.1103/PhysRevLett.120.177703
  65. 65.
    K. Brandner, U. Seifert, Bound on thermoelectric power in a magnetic field within linear response. Phys. Rev. E 91(1), 012121 (2015).  https://doi.org/10.1103/PhysRevE.91.012121
  66. 66.
    J. Schulenborg, R.B. Saptsov, F. Haupt, J. Splettstoesser, M.R. Wegewijs, Fermion-parity duality and energy relaxation in interacting open systems. Phys. Rev. B 93(8), 081411 (2016).  https://doi.org/10.1103/PhysRevB.93.081411
  67. 67.
    J. Schulenborg, A. Di Marco, J. Vanherck, M.R. Wegewijs, J. Splettstoesser, Thermoelectrics of interacting nanosystems-exploiting superselection instead of time-reversal symmetry. Entropy 19(12), 668 (2017).  https://doi.org/10.3390/e19120668
  68. 68.
    D.R. Schmidt, R.J. Schoelkopf, A.N. Cleland, Photon-mediated thermal relaxation of electrons in nanostructures. Phys. Rev. Lett. 93(4), 045901 (2004). https://doi.org/10.1103/PhysRevLett.93.045901
  69. 69.
    L.M.A. Pascal, H. Courtois, F.W.J. Hekking, Circuit approach to photonic heat transport. Phys. Rev. B 83(12), 125113 (2011).  https://doi.org/10.1103/PhysRevB.83.125113
  70. 70.
    B.L. Zink, A.D. Avery, R. Sultan, D. Bassett, M.R. Pufall, Exploring thermoelectric effects and Wiedemann-Franz violation in magnetic nanostructures via micromachined thermal platforms. Solid State Commun. 150(11), 514–518 (2010).  https://doi.org/10.1016/j.ssc.2009.11.003
  71. 71.
    S. Poran, T. Nguyen-Duc, A. Auerbach, N. Dupuis, A. Frydman, O. Bourgeois, Quantum criticality at the superconductor to insulator transition revealed by specific heat measurements. Nat. Commun. 8, 14464 (2017).  https://doi.org/10.1038/ncomms14464
  72. 72.
    M. Partanen, K.Y. Tan, J. Govenius, R.E. Lake, M.K. Mäkelä, T. Tanttu, M. Möttönen, Quantum-limited heat conduction over macroscopic distances. Nat. Phys. 12(5), 460–464 (2016).  https://doi.org/10.1038/nphys3642
  73. 73.
    R. Sánchez, Correlation-induced refrigeration with superconducting single-electron transistors. Appl. Phys. Lett. 111(22), 223103 (2017).  https://doi.org/10.1063/1.5008481
  74. 74.
    H. Courtois, H.O. Nguyen, C.B. Winkelmann, J.P. Pekola, High-performance electronic cooling with superconducting tunnel junctions. C.R. Phys. 17(10), 1139–1145 (2016).  https://doi.org/10.1016/j.crhy.2016.08.010
  75. 75.
    J.R. Prance, C.G. Smith, J.P. Griffiths, S.J. Chorley, D. Anderson, G.A.C. Jones, I. Farrer, D.A. Ritchie, Electronic refrigeration of a two-dimensional electron gas. Phys. Rev. Lett. 102(14), 146602 (2009). https://doi.org/10.1103/PhysRevLett.102.146602
  76. 76.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Brooks Cole, Boston, 1976)Google Scholar
  77. 77.
    L.P. Kouwenhoven, D.G. Austing, S. Tarucha, Few-electron quantum dots. Rep. Prog. Phys. 64(64), 701 (2001).  https://doi.org/10.1088/0034-4885/64/6/201
  78. 78.
    R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Spins in few-electron quantum dots. Rev. Mod. Phys. 79(4), 1217–1265 (2007). https://doi.org/10.1103/RevModPhys.79.1217
  79. 79.
    J.P. Bird, Electron Transport in Quantum Dots (Springer, New York, 2003).  https://doi.org/10.1007/978-1-4615-0437-5
  80. 80.
    R. Sánchez, M. Büttiker, Optimal energy quanta to current conversion. Phys. Rev. B 83(8), 085428 (2011).  https://doi.org/10.1103/PhysRevB.83.085428
  81. 81.
    H. Thierschmann, R. Sánchez, B. Sothmann, F. Arnold, C. Heyn, W. Hansen, H. Buhmann, L.W. Molenkamp, Three-terminal energy harvester with coupled quantum dots. Nat. Nanotechnol. 10(10), 854–858 (2015).  https://doi.org/10.1038/nnano.2015.176
  82. 82.
    B. Roche, P. Roulleau, T. Jullien, Y. Jompol, I. Farrer, D.A. Ritchie, D.C. Glattli, Harvesting dissipated energy with a mesoscopic ratchet. Nat. Commun. 6, 6738 (2015).  https://doi.org/10.1038/ncomms7738ADSCrossRefGoogle Scholar
  83. 83.
    F. Hartmann, P. Pfeffer, S. Höfling, M. Kamp, L. Worschech, Voltage fluctuation to current converter with coulomb-coupled quantum dots. Phys. Rev. Lett. 114(14), 146805 (2015). https://doi.org/10.1103/PhysRevLett.114.146805
  84. 84.
    R.S. Whitney, R. Sánchez, F. Haupt, J. Splettstoesser, Thermoelectricity without absorbing energy from the heat sources. Phys. E 75, 257–265 (2016).  https://doi.org/10.1016/j.physe.2015.09.025CrossRefGoogle Scholar
  85. 85.
    K.V. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45(6), 494–497 (1980). https://doi.org/10.1103/PhysRevLett.45.494
  86. 86.
    B.I. Halperin, Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25(4), 2185–2190 (1982).  https://doi.org/10.1103/PhysRevB.25.2185
  87. 87.
    M. Büttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B 38(14), 9375–9389 (1988a).  https://doi.org/10.1103/PhysRevB.38.9375
  88. 88.
    B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, C.T. Foxon, Quantized conductance of point contacts in a two-dimensional electron gas. Rev. Lett. 60(9), 848–850 (1988). https://doi.org/10.1103/PhysRevLett.60.848
  89. 89.
    M. Büttiker, Quantized transmission of a saddle-point constriction. Phys. Rev. B 41(11), 7906–7909 (Apr 1990).  https://doi.org/10.1103/PhysRevB.41.7906
  90. 90.
    P. Streda, Quantised thermopower of a channel in the ballistic regime. J. Phys. Condens. Matter 1(5), 1025 (1989).  https://doi.org/10.1088/0953-8984/1/5/021
  91. 91.
    L.W. Molenkamp, H. van Houten, C.W.J. Beenakker, R. Eppenga, C.T. Foxon, Quantum oscillations in the transverse voltage of a channel in the nonlinear transport regime. Phys. Rev. Lett. 65(8), 1052–1055 (1990). https://doi.org/10.1103/PhysRevLett.65.1052
  92. 92.
    L.W. Molenkamp, Th. Gravier, H. van Houten, O.J.A. Buijk, M.A.A. Mabesoone, C.T. Foxon, Peltier coefficient and thermal conductance of a quantum point contact. Phys. Rev. Lett. 68(25), 3765–3768 (1992). https://doi.org/10.1103/PhysRevLett.68.3765
  93. 93.
    P.P. Hofer, B. Sothmann, Quantum heat engines based on electronic Mach-Zehnder interferometers. Phys. Rev. B 91(19), 195406 (2015).  https://doi.org/10.1103/PhysRevB.91.195406
  94. 94.
    L. Vannucci, F. Ronetti, G. Dolcetto, M. Carrega, M. Sassetti, Interference-induced thermoelectric switching and heat rectification in quantum Hall junctions. Phys. Rev. B 92(7), 075446 (2015). https://doi.org/10.1103/PhysRevB.92.075446
  95. 95.
    P. Samuelsson, S. Kheradsoud, B. Sothmann, Optimal quantum interference thermoelectric heat engine with edge states. Phys. Rev. Lett. 118(25), 256801 (2017). https://doi.org/10.1103/PhysRevLett.118.256801
  96. 96.
    J. Stark, K. Brandner, K. Saito, U. Seifert, Classical Nernst engine. Phys. Rev. Lett. 112(14), 140601 (2014). https://doi.org/10.1103/PhysRevLett.112.140601
  97. 97.
    B. Sothmann, R. Sánchez, A.N. Jordan, Quantum Nernst engines. EPL 107(4), 47003 (2014).  https://doi.org/10.1209/0295-5075/107/47003
  98. 98.
    A.N. Jordan, B. Sothmann, R. Sánchez, M. Büttiker, Powerful and efficient energy harvester with resonant-tunneling quantum dots. Phys. Rev. B 87(7), 075312 (2013).  https://doi.org/10.1103/PhysRevB.87.075312
  99. 99.
    S. Donsa, S. Andergassen, K. Held, Double quantum dot as a minimal thermoelectric generator. Phys. Rev. B 89(12), 125103 (2014).  https://doi.org/10.1103/PhysRevB.89.125103
  100. 100.
    R. Sánchez, B. Sothmann, A.N. Jordan, Chiral thermoelectrics with quantum Hall edge states. Phys. Rev. Lett. 114(14), 146801 (2015a). https://doi.org/10.1103/PhysRevLett.114.146801
  101. 101.
    R. Sánchez, B. Sothmann, A.N. Jordan, Heat diode and engine based on quantum Hall edge states. New J. Phys. 17(7), 075006 (2015b).  https://doi.org/10.1088/1367-2630/17/7/075006
  102. 102.
    L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37(4), 405–426 (1931). https://doi.org/10.1103/PhysRev.37.405
  103. 103.
    M. Büttiker, Symmetry of electrical conduction. IBM J. Res. Dev. 32(3), 317–334 (1988b).  https://doi.org/10.1147/rd.323.0317
  104. 104.
    A. Mani, C. Benjamin, Helical thermoelectrics and refrigeration. Phys. Rev. E 97(2), 022114 (2018).  https://doi.org/10.1103/PhysRevE.97.022114
  105. 105.
    G. Benenti, K. Saito, G. Casati, Thermodynamic bounds on efficiency for systems with broken time-reversal symmetry. Phys. Rev. Lett. 106(23), 230602 (2011). https://doi.org/10.1103/PhysRevLett.106.230602
  106. 106.
    K. Brandner, K. Saito, U. Seifert, Strong bounds on onsager coefficients and efficiency for three-terminal thermoelectric transport in a magnetic field. Phys. Rev. Lett. 110(7), 070603 (2013). https://doi.org/10.1103/PhysRevLett.110.070603
  107. 107.
    P. Roura-Bas, L. Arrachea, E. Fradkin, Enhanced thermoelectric response in the fractional quantum Hall effect. Phys. Rev. B 97(8), 081104 (2018).  https://doi.org/10.1103/PhysRevB.97.081104
  108. 108.
    L. Arrachea, M. Moskalets, L. Martin-Moreno, Heat production and energy balance in nanoscale engines driven by time-dependent fields. Phys. Rev. B 75(24), 245420 (2007).  https://doi.org/10.1103/PhysRevB.75.245420
  109. 109.
    M.F. Ludovico, F. Battista, F. von Oppen, L. Arrachea, Adiabatic response and quantum thermoelectrics for ac-driven quantum systems. Phys. Rev. B 93(7), 075136 (2016).  https://doi.org/10.1103/PhysRevB.93.075136
  110. 110.
    A. Bruch, S.V. Kusminskiy, G. Refael, F. von Oppen, An interacting adiabatic quantum motor. Phys. Rev. B 97(19), 195411 (2018). https://doi.org/10.1103/PhysRevB.97.195411
  111. 111.
    H.L. Calvo, F.D. Ribetto, R.A. Bustos-Marún, Real-time diagrammatic approach to current-induced forces: application to quantum-dot based nanomotors. Phys. Rev. B 96(16), 165309 (2017).  https://doi.org/10.1103/PhysRevB.96.165309
  112. 112.
    B. Karimi, J.P. Pekola, Otto refrigerator based on a superconducting qubit: classical and quantum performance. Phys. Rev. B 94(18), 184503 (2016).  https://doi.org/10.1103/PhysRevB.94.184503
  113. 113.
    J.V. Koski, V.F. Maisi, J.P. Pekola, D.V. Averin, Experimental realization of a Szilard engine with a single electron. Proc. Natl. Acad. Sci. U.S.A. 111(38), 13786–13789 (2014).  https://doi.org/10.1073/pnas.1406966111
  114. 114.
    J.V. Koski, A. Kutvonen, I.M. Khaymovich, T. Ala-Nissila, J.P. Pekola, On-chip Maxwell’s demon as an information-powered refrigerator. Phys. Rev. Lett. 115(26), 260602 (2015). https://doi.org/10.1103/PhysRevLett.115.260602
  115. 115.
    S. Juergens, F. Haupt, M. Moskalets, J. Splettstoesser, Thermoelectric performance of a driven double quantum dot. Phys. Rev. B 87(24), 245423 (2013).  https://doi.org/10.1103/PhysRevB.87.245423
  116. 116.
    H. Pothier, P. Lafarge, C. Urbina, D. Esteve, M.H. Devoret, Single-electron pump based on charging effects. EPL 17(3), 249 (1992).  https://doi.org/10.1209/0295-5075/17/3/011
  117. 117.
    S.J. Chorley, J. Frake, C.G. Smith, G.A.C. Jones, M.R. Buitelaar, Quantized charge pumping through a carbon nanotube double quantum dot. Appl. Phys. Lett. 100(14), 143104 (2012).  https://doi.org/10.1063/1.3700967
  118. 118.
    B. Roche, R.-P. Riwar, B. Voisin, E. Dupont-Ferrier, R. Wacquez, M. Vinet, M. Sanquer, J. Splettstoesser, X. Jehl, A two-atom electron pump. Nat. Commun. 4, 1581 (2013).  https://doi.org/10.1038/ncomms2544
  119. 119.
    M. Josefsson, A. Svilans, A.M. Burke, E.A. Hoffmann, S. Fahlvik, C. Thelander, M. Leijnse, H. Linke, A quantum-dot heat engine operated close to thermodynamic efficiency limits. Nat. Nanotechnol (2017).  https://doi.org/10.1038/s41565-018-0200-5
  120. 120.
    C. Bergenfeldt, P. Samuelsson, B.J. Sothmann, C. Flindt, M. Büttiker, Hybrid microwave-cavity heat engine. Phys. Rev. Lett. 112(7), 076803 (2014). https://doi.org/10.1103/PhysRevLett.112.076803
  121. 121.
    R. Žitko, J. Mravlje, A. Ramšak, T. Rejec, Spin thermopower in the overscreened Kondo model. New J. Phys. 15(10), 105023 (2013).  https://doi.org/10.1088/1367-2630/15/10/105023
  122. 122.
    D.M. Kennes, D. Schuricht, V. Meden, Efficiency and power of a thermoelectric quantum dot device. EPL 102(5), 57003 (2013).  https://doi.org/10.1209/0295-5075/102/57003
  123. 123.
    T.A. Costi, V. Zlatić, Thermoelectric transport through strongly correlated quantum dots. Phys. Rev. B 81(23), 235127 (2010).  https://doi.org/10.1103/PhysRevB.81.235127
  124. 124.
    P. Strasberg, G. Schaller, N. Lambert, T. Brandes, Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction. New J. Phys. 18(7), 073007 (2016).  https://doi.org/10.1088/1367-2630/18/7/073007
  125. 125.
    R.S. Whitney, Non-Markovian quantum thermodynamics: laws and fluctuation theorems. Phys. Rev. B 98, 085415 (2016).  https://doi.org/10.1103/PhysRevB.98.085415

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Robert S. Whitney
    • 1
    Email author
  • Rafael Sánchez
    • 2
  • Janine Splettstoesser
    • 3
  1. 1.Laboratoire de Physique et Modélisation des Milieux Condensés (UMR 5493)Université Grenoble Alpes and CNRS, Maison des Magistères, BP 166GrenobleFrance
  2. 2.Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridSpain
  3. 3.Department of Microtechnology and Nanoscience (MC2)Chalmers University of TechnologyGöteborgSweden

Personalised recommendations