Quantum Thermodynamics of Nanoscale Thermoelectrics and Electronic Devices

  • Robert S. WhitneyEmail author
  • Rafael Sánchez
  • Janine Splettstoesser
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)


This chapter is intended as a short introduction to electron flow in nanostructures. Its aim is to provide a brief overview of this topic for people who are interested in the thermodynamics of quantum systems, but know little about nanostructures. We particularly emphasize devices that work in the steady-state, such as simple thermoelectrics, but also mention cyclically driven heat engines. We do not aim to be either complete or rigorous, but use a few pages to outline some of the main ideas in the topic.



We acknowledge the support of the COST Action MP1209 “Thermodynamics in the quantum regime” (2013-2017), which enabled us to meet regularly to learn about and discuss much of the physics presented in this chapter. RW acknowledges the financial support of the French National Research Agency’s “Investissement d’avenir” program (ANR-15-IDEX-02) via the Université Grenoble Alpes QuEnG project. RS is supported by the Spanish Ministerio de Economía y Competitividad via the Ramón y Cajal program RYC-2016-20778. JS acknowledges support from the Knut and Alice Wallenberg foundation and from the Swedish VR.


  1. 1.
    H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)Google Scholar
  2. 2.
    H. van Houten, L.W. Molenkamp, C.W.J. Beenakker, C.T. Foxon, Thermo-electric properties of quantum point contacts. Semicond. Sci. Technol. 7(3B), B215 (1992).
  3. 3.
    J. Pekola, Trends in thermometry. J. Low Temp. Phys. 135(5), 723–744 (2004).
  4. 4.
    O. Bourgeois, S.E. Skipetrov, F. Ong, J. Chaussy, Attojoule calorimetry of mesoscopic superconducting loops. Phys. Rev. Lett. 94(5), 057007 (2005).
  5. 5.
    F. Giazotto, T.T. Heikkilä, A. Luukanen, A.M. Savin, J.P. Pekola, Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Rev. Mod. Phys. 78(1), 217–274 (2006).
  6. 6.
    P. Reddy, S.-Y. Jang, R.A. Segalman, A. Majumdar, Thermoelectricity in molecular junctions. Science 315(5818), 1568–1571 (2007).
  7. 7.
    J.S. Heron, T. Fournier, N. Mingo, O. Bourgeois, Mesoscopic size effects on the thermal conductance of silicon nanowire. Nano Lett. 9(5), 601–604 (2009).
  8. 8.
    A. Mavalankar, S.J. Chorley, J. Griffiths, G.A.C. Jones, I. Farrer, D.A. Ritchie, C.G. Smith, A non-invasive electron thermometer based on charge sensing of a quantum dot. Appl. Phys. Lett. 103(13), 133116 (2013).
  9. 9.
    S. Jezouin, F.D. Parmentier, A. Anthore, U. Gennser, A. Cavanna, Y. Jin, F. Pierre, Quantum limit of heat flow across a single electronic channel. Science 342(6158), 601–604 (2013).
  10. 10.
    Y. Kim, W. Jeong, K. Kim, W. Lee, P. Reddy, Electrostatic control of thermoelectricity in molecular junctions. Nat. Nanotechnol. 9(11), 881–885 (2014).
  11. 11.
    L.B. Wang, O.-P. Saira, J.P. Pekola, Fast thermometry with a proximity Josephson junction. Appl. Phys. Lett. 112(1), 013105 (2018).
  12. 12.
    G. Benenti, G. Casati, K. Saito, R.S. Whitney, Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep. 694, 1–124 (2017). Scholar
  13. 13.
    T. Ihn, Semiconductor Nanostructures (Oxford University Press, Oxford, 2009).
  14. 14.
    Y.V. Nazarov, Y.M. Blanter, Quantum Transport: Introduction to Nanoscience (Cambridge University Press, Cambridge, 2009).
  15. 15.
    B. Karimi, J.P. Pekola, M. Campisi, R. Fazio, Coupled qubits as a quantum heat switch. Quantum Sci. Tech. 2(4), 044007 (2017).
  16. 16.
    N. Brunner, N. Linden, S. Popescu, P. Skrzypczyk, Virtual qubits, virtual temperatures, and the foundations of thermodynamics. Phys. Rev. E 85(5), 051117 (2012).
  17. 17.
    P.P. Hofer, M. Perarnau-Llobet, J.B. Brask, R. Silva, M. Huber, N. Brunner, Autonomous quantum refrigerator in a circuit QED architecture based on a Josephson junction. Phys. Rev. B 94(23), 235420 (2016).
  18. 18.
    M.V. Moskalets, Scattering Matrix Approach to Non-Stationary Quantum Transport (World Scientific Publishing Company. Singapore (2011). Scholar
  19. 19.
    S. Datta, Electronic Transport in Mesoscopic Systems, (Cambridge University Press, Cambridge, 1997)Google Scholar
  20. 20.
    T.T. Heikkilä, The Physics of Nanoelectronics, (Oxford University Press, Oxford, 2013)Google Scholar
  21. 21.
    U. Sivan, Y. Imry, Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge. Phys. Rev. B 33(1), 551–558 (1986).
  22. 22.
    P.N. Butcher, Thermal and electrical transport formalism for electronic microstructures with many terminals. J. Phys. Condens. Matter 2(22), 4869 (1990).
  23. 23.
    F. Ronetti, L. Vannucci, G. Dolcetto, M. Carrega, M. Sassetti, Spin-thermoelectric transport induced by interactions and spin-flip processes in two-dimensional topological insulators. Phys. Rev. B 93(16), 165414 (2016).
  24. 24.
    S.-Y. Hwang, P. Burset, B. Sothmann, Odd-frequency superconductivity revealed by thermopower. Phys. Rev. B 98(16), 161408 (2018).
  25. 25.
    G. Granger, J.P. Eisenstein, J.L. Reno, Observation of chiral heat transport in the quantum Hall regime. Phys. Rev. Lett. 102(8), 086803 (2009).
  26. 26.
    S.-G. Nam, E.H. Hwang, H.-J. Lee, Thermoelectric detection of chiral heat transport in graphene in the quantum Hall regime. Phys. Rev. Lett. 110(22), 226801 (2013).
  27. 27.
    B. Sothmann, E.M. Hankiewicz, Fingerprint of topological Andreev bound states in phase-dependent heat transport. Phys. Rev. B 94(8), 081407 (2016).
  28. 28.
    S.J. Erlingsson, A. Manolescu, G.A. Nemnes, J.H. Bardarson, D. Sánchez, Reversal of thermoelectric current in tubular nanowires. Phys. Rev. Lett. 119(3), 036804 (2017).
  29. 29.
    Y. Gross, M. Dolev, M. Heiblum, V. Umansky, D. Mahalu, Upstream neutral modes in the fractional quantum Hall effect regime: heat waves or coherent dipoles. Phys. Rev. Lett. 108(22), 226801 (2012).
  30. 30.
    C. Altimiras, H. le Sueur, U. Gennser, A. Anthore, A. Cavanna, D. Mailly, F. Pierre, Chargeless heat transport in the fractional quantum Hall regime. Phys. Rev. Lett. 109(2), 026803 (2012).
  31. 31.
    M. Banerjee, M. Heiblum, A. Rosenblatt, Y. Oreg, D.E. Feldman, A. Stern, V. Umansky, Observed quantization of anyonic heat flow. Nature 545(7652), 75–79 (2017).
  32. 32.
    J.T. Muhonen, M. Meschke, J.P. Pekola, Micrometre-scale refrigerators. Rep. Prog. Phys. 75(4), 046501 (2012).
  33. 33.
    B. Sothmann, R. Sánchez, A.N. Jordan, Thermoelectric energy harvesting with quantum dots. Nanotechnology 26(3), 032001 (2015).
  34. 34.
    F. Haupt, M. Leijnse, H.L. Calvo, L. Classen, J. Splettstoesser, M.R. Wegewijs, Heat, molecular vibrations, and adiabatic driving in non-equilibrium transport through interacting quantum dots. Phys. Status. Solidi B 250(11), 2315–2329 (2013).
  35. 35.
    Y. Dubi, M. Di Ventra, Colloquium: heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83(1), 131–155 (2011).
  36. 36.
    M. Ratner, A brief history of molecular electronics. Nat. Nanotechnol. 8, 378–381 (2013). Scholar
  37. 37.
    J.P. Bergfield, M.A. Ratner, Forty years of molecular electronics: non-equilibrium heat and charge transport at the nanoscale. Phys. Status Solidi B 250(11), 2249 (2013).
  38. 38.
    J.-L. Pichard, R.S. Whitney (ed.), Special issue : mesoscopic thermoelectric phenomena. C. R. Phys. 17(10), 1039–1174 (2016).
  39. 39.
    M. Di Ventra, Electrical Transport in Nanoscale Systems, (Cambridge University Press, Cambridge, 2008).
  40. 40.
    A.E. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Pion Ltd, London, 1958)Google Scholar
  41. 41.
    H.J. Goldsmid, Introduction to Thermoelectricity, Springer Series in Materials Science, (Springer, Berlin, 2009).
  42. 42.
    D.M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca, Raton, 1995).
  43. 43.
    F.J. DiSalvo, Thermoelectric cooling and power generation. Science 285(5428), 703–706 (1999).
  44. 44.
    A. Shakouri, M. Zebarjadi, Nanoengineered materials for thermoelectric energy conversion, in Thermal Nanosystems and Nanomaterials, vol. 225, ed. by S. Volz S (2009).
  45. 45.
    A. Shakouri, Recent developments in semiconductor thermoelectric physics and materials. Ann. Rev. Mater. Res. 41(1), 399–431 (2011).
  46. 46.
    E. Pop, S. Sinha, K.E. Goodson, Heat generation and transport in nanometer-scale transistors. Proc. IEEE 94(8), 1587–1601 (2006).
  47. 47.
    K. Koumoto, T. Mori, Thermoelectric Nanomaterials: Materials Design and Applications, Springer Series in Materials Science, Band 182 (Springer, Berlin, 2013).
  48. 48.
    E. Maciá, Thermoelectric Materials: Advances and Applications (Pan Stanford, The Netherlands, 2015)Google Scholar
  49. 49.
    D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003).
  50. 50.
    D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, L. Shi, Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1(1), 011305 (2014).
  51. 51.
    G.D. Mahan, J.O. Sofo, The best thermoelectric. Proc. Natl. Acad. Sci. U.S.A 93(15), 7436–7439 (1996).
  52. 52.
    T.E. Humphrey, R. Newbury, R.P. Taylor, H. Linke, Reversible quantum brownian heat engines for electrons. Phys. Rev. Lett. 89(11), 116801 (2002).
  53. 53.
    N. Nakpathomkun, H.Q. Xu, H. Linke, Thermoelectric efficiency at maximum power in low-dimensional systems. Phys. Rev. B 82(23), 235428 (2010).
  54. 54.
    A. Svilans, M. Leijnse, H. Linke, Experiments on the thermoelectric properties of quantum dots. C.R. Phys. 17(10), 1096–1108 (2016).
  55. 55.
    L. Cui, R. Miao, K. Wang, D. Thompson, L.A. Zotti, J.C. Cuevas, E. Meyhofer, P. Reddy, Peltier cooling in molecular junctions. Nat. Nanotechnol. 13(2), 122–127 (2017).
  56. 56.
    L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47(19), 12727–12731 (1993a).
  57. 57.
    L.D. Hicks, M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47(24), 16631–16634 (1993b).
  58. 58.
    T.E. Humphrey, H. Linke, Reversible thermoelectric nanomaterials. Phys. Rev. Lett. 94(9), 096601 (2005).
  59. 59.
    J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 8(7), 471 (2013).
  60. 60.
    R.S. Whitney, Most efficient quantum thermoelectric at finite power output. Phys. Rev. Lett. 112(13), 130601 (2014).
  61. 61.
    R.S. Whitney, Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output. Phys. Rev. B 91(11), 115425 (2015).
  62. 62.
    R.S. Whitney, Quantum coherent three-terminal thermoelectrics: maximum efficiency at given power output. Entropy 18(6), 208 (2016).
  63. 63.
    J.B. Pendry, Quantum limits to the flow of information and entropy. J. Phys. A Math. Gen. 16(10), 2161 (1983).
  64. 64.
    I.-J. Chen, A. Burke, A. Svilans, H. Linke, C. Thelander, Thermoelectric power factor limit of a 1D nanowire. Phys. Rev. Lett. 120(17), 177703 (2018).
  65. 65.
    K. Brandner, U. Seifert, Bound on thermoelectric power in a magnetic field within linear response. Phys. Rev. E 91(1), 012121 (2015).
  66. 66.
    J. Schulenborg, R.B. Saptsov, F. Haupt, J. Splettstoesser, M.R. Wegewijs, Fermion-parity duality and energy relaxation in interacting open systems. Phys. Rev. B 93(8), 081411 (2016).
  67. 67.
    J. Schulenborg, A. Di Marco, J. Vanherck, M.R. Wegewijs, J. Splettstoesser, Thermoelectrics of interacting nanosystems-exploiting superselection instead of time-reversal symmetry. Entropy 19(12), 668 (2017).
  68. 68.
    D.R. Schmidt, R.J. Schoelkopf, A.N. Cleland, Photon-mediated thermal relaxation of electrons in nanostructures. Phys. Rev. Lett. 93(4), 045901 (2004).
  69. 69.
    L.M.A. Pascal, H. Courtois, F.W.J. Hekking, Circuit approach to photonic heat transport. Phys. Rev. B 83(12), 125113 (2011).
  70. 70.
    B.L. Zink, A.D. Avery, R. Sultan, D. Bassett, M.R. Pufall, Exploring thermoelectric effects and Wiedemann-Franz violation in magnetic nanostructures via micromachined thermal platforms. Solid State Commun. 150(11), 514–518 (2010).
  71. 71.
    S. Poran, T. Nguyen-Duc, A. Auerbach, N. Dupuis, A. Frydman, O. Bourgeois, Quantum criticality at the superconductor to insulator transition revealed by specific heat measurements. Nat. Commun. 8, 14464 (2017).
  72. 72.
    M. Partanen, K.Y. Tan, J. Govenius, R.E. Lake, M.K. Mäkelä, T. Tanttu, M. Möttönen, Quantum-limited heat conduction over macroscopic distances. Nat. Phys. 12(5), 460–464 (2016).
  73. 73.
    R. Sánchez, Correlation-induced refrigeration with superconducting single-electron transistors. Appl. Phys. Lett. 111(22), 223103 (2017).
  74. 74.
    H. Courtois, H.O. Nguyen, C.B. Winkelmann, J.P. Pekola, High-performance electronic cooling with superconducting tunnel junctions. C.R. Phys. 17(10), 1139–1145 (2016).
  75. 75.
    J.R. Prance, C.G. Smith, J.P. Griffiths, S.J. Chorley, D. Anderson, G.A.C. Jones, I. Farrer, D.A. Ritchie, Electronic refrigeration of a two-dimensional electron gas. Phys. Rev. Lett. 102(14), 146602 (2009).
  76. 76.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Brooks Cole, Boston, 1976)Google Scholar
  77. 77.
    L.P. Kouwenhoven, D.G. Austing, S. Tarucha, Few-electron quantum dots. Rep. Prog. Phys. 64(64), 701 (2001).
  78. 78.
    R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Spins in few-electron quantum dots. Rev. Mod. Phys. 79(4), 1217–1265 (2007).
  79. 79.
    J.P. Bird, Electron Transport in Quantum Dots (Springer, New York, 2003).
  80. 80.
    R. Sánchez, M. Büttiker, Optimal energy quanta to current conversion. Phys. Rev. B 83(8), 085428 (2011).
  81. 81.
    H. Thierschmann, R. Sánchez, B. Sothmann, F. Arnold, C. Heyn, W. Hansen, H. Buhmann, L.W. Molenkamp, Three-terminal energy harvester with coupled quantum dots. Nat. Nanotechnol. 10(10), 854–858 (2015).
  82. 82.
    B. Roche, P. Roulleau, T. Jullien, Y. Jompol, I. Farrer, D.A. Ritchie, D.C. Glattli, Harvesting dissipated energy with a mesoscopic ratchet. Nat. Commun. 6, 6738 (2015). Scholar
  83. 83.
    F. Hartmann, P. Pfeffer, S. Höfling, M. Kamp, L. Worschech, Voltage fluctuation to current converter with coulomb-coupled quantum dots. Phys. Rev. Lett. 114(14), 146805 (2015).
  84. 84.
    R.S. Whitney, R. Sánchez, F. Haupt, J. Splettstoesser, Thermoelectricity without absorbing energy from the heat sources. Phys. E 75, 257–265 (2016). Scholar
  85. 85.
    K.V. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45(6), 494–497 (1980).
  86. 86.
    B.I. Halperin, Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25(4), 2185–2190 (1982).
  87. 87.
    M. Büttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B 38(14), 9375–9389 (1988a).
  88. 88.
    B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, C.T. Foxon, Quantized conductance of point contacts in a two-dimensional electron gas. Rev. Lett. 60(9), 848–850 (1988).
  89. 89.
    M. Büttiker, Quantized transmission of a saddle-point constriction. Phys. Rev. B 41(11), 7906–7909 (Apr 1990).
  90. 90.
    P. Streda, Quantised thermopower of a channel in the ballistic regime. J. Phys. Condens. Matter 1(5), 1025 (1989).
  91. 91.
    L.W. Molenkamp, H. van Houten, C.W.J. Beenakker, R. Eppenga, C.T. Foxon, Quantum oscillations in the transverse voltage of a channel in the nonlinear transport regime. Phys. Rev. Lett. 65(8), 1052–1055 (1990).
  92. 92.
    L.W. Molenkamp, Th. Gravier, H. van Houten, O.J.A. Buijk, M.A.A. Mabesoone, C.T. Foxon, Peltier coefficient and thermal conductance of a quantum point contact. Phys. Rev. Lett. 68(25), 3765–3768 (1992).
  93. 93.
    P.P. Hofer, B. Sothmann, Quantum heat engines based on electronic Mach-Zehnder interferometers. Phys. Rev. B 91(19), 195406 (2015).
  94. 94.
    L. Vannucci, F. Ronetti, G. Dolcetto, M. Carrega, M. Sassetti, Interference-induced thermoelectric switching and heat rectification in quantum Hall junctions. Phys. Rev. B 92(7), 075446 (2015).
  95. 95.
    P. Samuelsson, S. Kheradsoud, B. Sothmann, Optimal quantum interference thermoelectric heat engine with edge states. Phys. Rev. Lett. 118(25), 256801 (2017).
  96. 96.
    J. Stark, K. Brandner, K. Saito, U. Seifert, Classical Nernst engine. Phys. Rev. Lett. 112(14), 140601 (2014).
  97. 97.
    B. Sothmann, R. Sánchez, A.N. Jordan, Quantum Nernst engines. EPL 107(4), 47003 (2014).
  98. 98.
    A.N. Jordan, B. Sothmann, R. Sánchez, M. Büttiker, Powerful and efficient energy harvester with resonant-tunneling quantum dots. Phys. Rev. B 87(7), 075312 (2013).
  99. 99.
    S. Donsa, S. Andergassen, K. Held, Double quantum dot as a minimal thermoelectric generator. Phys. Rev. B 89(12), 125103 (2014).
  100. 100.
    R. Sánchez, B. Sothmann, A.N. Jordan, Chiral thermoelectrics with quantum Hall edge states. Phys. Rev. Lett. 114(14), 146801 (2015a).
  101. 101.
    R. Sánchez, B. Sothmann, A.N. Jordan, Heat diode and engine based on quantum Hall edge states. New J. Phys. 17(7), 075006 (2015b).
  102. 102.
    L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37(4), 405–426 (1931).
  103. 103.
    M. Büttiker, Symmetry of electrical conduction. IBM J. Res. Dev. 32(3), 317–334 (1988b).
  104. 104.
    A. Mani, C. Benjamin, Helical thermoelectrics and refrigeration. Phys. Rev. E 97(2), 022114 (2018).
  105. 105.
    G. Benenti, K. Saito, G. Casati, Thermodynamic bounds on efficiency for systems with broken time-reversal symmetry. Phys. Rev. Lett. 106(23), 230602 (2011).
  106. 106.
    K. Brandner, K. Saito, U. Seifert, Strong bounds on onsager coefficients and efficiency for three-terminal thermoelectric transport in a magnetic field. Phys. Rev. Lett. 110(7), 070603 (2013).
  107. 107.
    P. Roura-Bas, L. Arrachea, E. Fradkin, Enhanced thermoelectric response in the fractional quantum Hall effect. Phys. Rev. B 97(8), 081104 (2018).
  108. 108.
    L. Arrachea, M. Moskalets, L. Martin-Moreno, Heat production and energy balance in nanoscale engines driven by time-dependent fields. Phys. Rev. B 75(24), 245420 (2007).
  109. 109.
    M.F. Ludovico, F. Battista, F. von Oppen, L. Arrachea, Adiabatic response and quantum thermoelectrics for ac-driven quantum systems. Phys. Rev. B 93(7), 075136 (2016).
  110. 110.
    A. Bruch, S.V. Kusminskiy, G. Refael, F. von Oppen, An interacting adiabatic quantum motor. Phys. Rev. B 97(19), 195411 (2018).
  111. 111.
    H.L. Calvo, F.D. Ribetto, R.A. Bustos-Marún, Real-time diagrammatic approach to current-induced forces: application to quantum-dot based nanomotors. Phys. Rev. B 96(16), 165309 (2017).
  112. 112.
    B. Karimi, J.P. Pekola, Otto refrigerator based on a superconducting qubit: classical and quantum performance. Phys. Rev. B 94(18), 184503 (2016).
  113. 113.
    J.V. Koski, V.F. Maisi, J.P. Pekola, D.V. Averin, Experimental realization of a Szilard engine with a single electron. Proc. Natl. Acad. Sci. U.S.A. 111(38), 13786–13789 (2014).
  114. 114.
    J.V. Koski, A. Kutvonen, I.M. Khaymovich, T. Ala-Nissila, J.P. Pekola, On-chip Maxwell’s demon as an information-powered refrigerator. Phys. Rev. Lett. 115(26), 260602 (2015).
  115. 115.
    S. Juergens, F. Haupt, M. Moskalets, J. Splettstoesser, Thermoelectric performance of a driven double quantum dot. Phys. Rev. B 87(24), 245423 (2013).
  116. 116.
    H. Pothier, P. Lafarge, C. Urbina, D. Esteve, M.H. Devoret, Single-electron pump based on charging effects. EPL 17(3), 249 (1992).
  117. 117.
    S.J. Chorley, J. Frake, C.G. Smith, G.A.C. Jones, M.R. Buitelaar, Quantized charge pumping through a carbon nanotube double quantum dot. Appl. Phys. Lett. 100(14), 143104 (2012).
  118. 118.
    B. Roche, R.-P. Riwar, B. Voisin, E. Dupont-Ferrier, R. Wacquez, M. Vinet, M. Sanquer, J. Splettstoesser, X. Jehl, A two-atom electron pump. Nat. Commun. 4, 1581 (2013).
  119. 119.
    M. Josefsson, A. Svilans, A.M. Burke, E.A. Hoffmann, S. Fahlvik, C. Thelander, M. Leijnse, H. Linke, A quantum-dot heat engine operated close to thermodynamic efficiency limits. Nat. Nanotechnol (2017).
  120. 120.
    C. Bergenfeldt, P. Samuelsson, B.J. Sothmann, C. Flindt, M. Büttiker, Hybrid microwave-cavity heat engine. Phys. Rev. Lett. 112(7), 076803 (2014).
  121. 121.
    R. Žitko, J. Mravlje, A. Ramšak, T. Rejec, Spin thermopower in the overscreened Kondo model. New J. Phys. 15(10), 105023 (2013).
  122. 122.
    D.M. Kennes, D. Schuricht, V. Meden, Efficiency and power of a thermoelectric quantum dot device. EPL 102(5), 57003 (2013).
  123. 123.
    T.A. Costi, V. Zlatić, Thermoelectric transport through strongly correlated quantum dots. Phys. Rev. B 81(23), 235127 (2010).
  124. 124.
    P. Strasberg, G. Schaller, N. Lambert, T. Brandes, Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction. New J. Phys. 18(7), 073007 (2016).
  125. 125.
    R.S. Whitney, Non-Markovian quantum thermodynamics: laws and fluctuation theorems. Phys. Rev. B 98, 085415 (2016).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Robert S. Whitney
    • 1
    Email author
  • Rafael Sánchez
    • 2
  • Janine Splettstoesser
    • 3
  1. 1.Laboratoire de Physique et Modélisation des Milieux Condensés (UMR 5493)Université Grenoble Alpes and CNRS, Maison des Magistères, BP 166GrenobleFrance
  2. 2.Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridSpain
  3. 3.Department of Microtechnology and Nanoscience (MC2)Chalmers University of TechnologyGöteborgSweden

Personalised recommendations