Advertisement

Probing Quantum Fluctuations of Work with a Trapped Ion

  • Yao Lu
  • Shuoming An
  • Jing-Ning Zhang
  • Kihwan KimEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

In this chapter, we illustrate how a trapped ion system can be used for the experimental study of quantum thermodynamics, in particular, quantum fluctuation of work. As technology of nano/micro scale develops, it becomes critical to understand thermodynamics at the quantum mechanical level. The trapped ion system is a representative physical platform to experimentally demonstrate quantum phenomena with excellent control and precision. We provide a basic introduction of the trapped ion system and present the theoretical framework for the experimental study of quantum thermodynamics. Then we bring out two concrete examples of the experimental demonstrations. Finally, we discuss the results and the future of the experimental study of quantum thermodynamics with trapped ion systems.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grants No. 2016YFA0301900 and No. 2016YFA0301901 and the National Natural Science Foundation of China Grants No. 11374178, No. 11574002, and No. 11504197.

References

  1. 1.
    G. Hummer, A. Szabo, Proc. Natl. Acad. Sci. USA 98, 3658 (2001).  https://doi.org/10.1073/pnas.071034098ADSCrossRefGoogle Scholar
  2. 2.
    J. Liphardt, S. Dumont, S.B. Smith, I. Tinoco Jr., C. Bustamante, Science 296, 1832 (2002).  https://doi.org/10.1126/science.1071152
  3. 3.
    D. Collin, F. Ritort, C. Jarzynski, S.B. Smith, I. Tinoco Jr., C. Bustamante, Nature 437, 231 (2005).  https://doi.org/10.1038/nature04061
  4. 4.
    F. Douarche, S. Ciliberto, A. Petrosyan, I. Rabbiosi, Europhys. Lett. 70, 593 (2005).  https://doi.org/10.1209/epl/i2005-10024-4ADSCrossRefGoogle Scholar
  5. 5.
    V. Blickle, T. Speck, L. Helden, U. Seifert, C. Bechinger, Phys. Rev. Lett. 96, 070603 (2006).  https://doi.org/10.1103/PhysRevLett.96.070603ADSCrossRefGoogle Scholar
  6. 6.
    N.C. Harris, Y. Song, C.-H. Kiang, Phys. Rev. Lett. 99, 068101 (2007).  https://doi.org/10.1103/PhysRevLett.99.068101ADSCrossRefGoogle Scholar
  7. 7.
    I. Junier, A. Mossa, M. Manosas, F. Ritort, Phys. Rev. Lett. 102, 070602 (2009).  https://doi.org/10.1103/PhysRevLett.102.070602ADSCrossRefGoogle Scholar
  8. 8.
    E.A. Shank, C. Cecconi, J.W. Dill, S. Marqusee, C. Bustamante, Nature 465, 637 (2010).  https://doi.org/10.1038/nature09021ADSCrossRefGoogle Scholar
  9. 9.
    O.-P. Saira, Y. Yoon, T. Tanttu, M. Möttönen, D. Averin, J. Pekola, Phys. Rev. Lett. 109, 180601 (2012).  https://doi.org/10.1103/PhysRevLett.109.180601ADSCrossRefGoogle Scholar
  10. 10.
    C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).  https://doi.org/10.1103/PhysRevLett.78.2690ADSCrossRefGoogle Scholar
  11. 11.
    G.E. Crooks, Phys. Rev. E 60, 2721 (1999).  https://doi.org/10.1103/PhysRevE.60.2721ADSCrossRefGoogle Scholar
  12. 12.
    J. Kurchan, A quantum fluctuation theorem (2000), arXiv:cond-mat/0007360v2
  13. 13.
    H. Tasaki, Jarzynski relations for quantum systems and some applications (2000), arXiv:cond-mat/0009244
  14. 14.
    S. Mukamel, Phys. Rev. Lett. 90, 170604 (2003).  https://doi.org/10.1103/PhysRevLett.90.170604
  15. 15.
    M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011).  https://doi.org/10.1103/RevModPhys.83.771ADSCrossRefGoogle Scholar
  16. 16.
    M. Heyl, S. Kehrein, Phys. Rev. Lett. 108, 190601 (2012).  https://doi.org/10.1103/PhysRevLett.108.190601ADSCrossRefGoogle Scholar
  17. 17.
    R. Dorner, S.R. Clark, L. Heaney, R. Fazio, J. Goold, V. Vedral, Phys. Rev. Lett. 110, 230601 (2013).  https://doi.org/10.1103/PhysRevLett.110.230601
  18. 18.
    L. Mazzola, G. De Chiara, M. Paternostro, Phys. Rev. Lett. 110, 230602 (2013).  https://doi.org/10.1103/PhysRevLett.110.230602
  19. 19.
    P. Hänggi, P. Talkner, Nat. Phys. 11, 108 (2015).  https://doi.org/10.1038/nphys3167CrossRefGoogle Scholar
  20. 20.
    G. Huber, F. Schmidt-Kaler, S. Deffner, E. Lutz, Phys. Rev. Lett. 101, 070403 (2008).  https://doi.org/10.1103/PhysRevLett.101.070403ADSCrossRefGoogle Scholar
  21. 21.
    G.T. Huber, Ph.D. thesis, Universität Ulm, 2010Google Scholar
  22. 22.
    S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q. Yin, H.T. Quan, K. Kim, Nat. Phys. 11, 193 (2015).  https://doi.org/10.1038/nphys3197CrossRefGoogle Scholar
  23. 23.
    S. An, D. Lv, A. del Campo, K. Kim, Nat. Commun. 7, 12999 (2016).  https://doi.org/10.1038/ncomms12999
  24. 24.
    A. Smith, Y. Lu, S. An, X. Zhang, J.-N. Zhang, Z. Gong, H. Quan, C. Jarzynski, K. Kim, N. J. Phys. 20, 013008 (2018).  https://doi.org/10.1088/1367-2630/aa9cd6CrossRefGoogle Scholar
  25. 25.
    P. Dirac, The Principles of Quantum Mechanics (Clarendon Press, Oxford, 1930)Google Scholar
  26. 26.
    H. Dehmelt, P. Toschek, Bull. Am. Phys. Soc. 20, 61 (1975)Google Scholar
  27. 27.
    J.C. Bergquist, R.G. Hulet, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 57, 1699 (1986).  https://doi.org/10.1103/PhysRevLett.57.1699ADSCrossRefGoogle Scholar
  28. 28.
    W. Nagourney, J. Sandberg, H. Dehmelt, Phys. Rev. Lett. 56, 2797 (1986).  https://doi.org/10.1103/PhysRevLett.56.2797ADSCrossRefGoogle Scholar
  29. 29.
    T. Sauter, W. Neuhauser, R. Blatt, P.E. Toschek, Phys. Rev. Lett. 57, 1696 (1986).  https://doi.org/10.1103/PhysRevLett.57.1696
  30. 30.
    R. Blatt, P. Zoller, Eur. J. Phys. 9, 250 (1988).  https://doi.org/10.1088/0143-0807/9/4/002CrossRefGoogle Scholar
  31. 31.
    D.J. Wineland, H. Dehmelt, Bull. Am. Phys. Soc. 20, 637 (1975)Google Scholar
  32. 32.
    D.J. Wineland, R.E. Drullinger, F.L. Walls, Phys. Rev. Lett. 40, 1639 (1978).  https://doi.org/10.1103/PhysRevLett.40.1639
  33. 33.
    W. Neuhauser, M. Hohenstatt, P. Toschek, H. Dehmelt, Phys. Rev. Lett. 41, 233 (1978).  https://doi.org/10.1103/PhysRevLett.41.233
  34. 34.
    F. Diedrich, J.C. Bergquist, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 62, 403 (1989).  https://doi.org/10.1103/PhysRevLett.62.403
  35. 35.
    D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003).  https://doi.org/10.1103/RevModPhys.75.281
  36. 36.
    H. Häffner, C.F. Roos, R. Blatt, Phys. Rep. 469, (2008).  https://doi.org/10.1016/j.physrep.2008.09.003
  37. 37.
    C. Chipot, A. Pohorille, Free Energy Calculations (Springer, Berlin, 2007).  https://doi.org/10.1007/978-3-540-38448-9
  38. 38.
    A. Pohorille, C. Jarzynski, C. Chipot, J. Chem. Phys. B 114, 10235 (2010).  https://doi.org/10.1021/jp102971xCrossRefGoogle Scholar
  39. 39.
    C. Jarzynski, Annu. Rev. Condens. Matter Phys. 2, 329 (2011).  https://doi.org/10.1146/annurev-conmatphys-062910-140506ADSCrossRefGoogle Scholar
  40. 40.
    P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102(R) (2007a).  https://doi.org/10.1103/PhysRevE.75.050102ADSCrossRefGoogle Scholar
  41. 41.
    T.B. Batalhao, A.M. Souza, L. Mazzola, R. Auccaise, R.S. Sarthour, I.S. Oliveira, J. Goold, G.D. Chiara, M. Paternostro, R.M. Serra, Phys. Rev. Lett. 113, 140601 (2014).  https://doi.org/10.1103/PhysRevLett.113.140601ADSCrossRefGoogle Scholar
  42. 42.
    M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009).  https://doi.org/10.1103/RevModPhys.81.1665ADSCrossRefGoogle Scholar
  43. 43.
    J. Zhang, P. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.-D. Potirniche, A.C. Potter, A. Vishwanath et al., Nature 543, 217 (2017a).  https://doi.org/10.1038/nature21413ADSCrossRefGoogle Scholar
  44. 44.
    J. Zhang, G. Pagano, P.W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A.V. Gorshkov, Z.-X. Gong, C. Monroe, Nature 551, 601 (2017b).  https://doi.org/10.1038/nature24654ADSCrossRefGoogle Scholar
  45. 45.
    S. Debnath, N.M. Linke, C. Figgatt, K.A. Landsman, K. Wright, C. Monroe, Nature 536, 63 (2016).  https://doi.org/10.1038/nature18648ADSCrossRefGoogle Scholar
  46. 46.
    T. Monz, D. Nigg, E.A. Martinez, M.F. Brandl, P. Schindler, R. Rines, S.X. Wang, I.L. Chuang, R. Blatt, Science 351, 1068 (2016).  https://doi.org/10.1126/science.aad9480ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
  48. 48.
    Y. Wang, M. Um, J. Zhang, S. An, M. Lyu, J.-N. Zhang, L.-M. Duan, D. Yum, K. Kim, Nat. Photonics 11, 646 (2017).  https://doi.org/10.1038/s41566-017-0007-1ADSCrossRefGoogle Scholar
  49. 49.
    S. Olmschenk, K.C. Younge, D.L. Moehring, D.N. Matsukevich, P. Maunz, C. Monroe, Phys. Rev. A 76, 052314 (2007).  https://doi.org/10.1103/PhysRevA.76.052314ADSCrossRefGoogle Scholar
  50. 50.
    K. Funo, J.-N. Zhang, C. Chatou, K. Kim, M. Ueda, A. del Campo, Phys. Rev. Lett. 118, 100602 (2017).  https://doi.org/10.1103/PhysRevLett.118.100602
  51. 51.
    F.N. Loreti, A.B. Balantekin, Phys. Rev. D 50, 4762 (1994).  https://doi.org/10.1103/PhysRevD.50.4762ADSCrossRefGoogle Scholar
  52. 52.
    N.G.V. Kampen, Stochastic Processes in Physics and Chemisty (Elsevier, Amsterdam, 2007)Google Scholar
  53. 53.
    P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102 (2007b).  https://doi.org/10.1103/PhysRevE.75.050102ADSCrossRefGoogle Scholar
  54. 54.
    M.V. Berry, J. Phys. A Math. Theor. 42, 365303 (2009).  https://doi.org/10.1088/1751-8113/42/36/365303CrossRefGoogle Scholar
  55. 55.
    Q. Turchette, B. King, D. Leibfried, D. Meekhof, C. Myatt, M. Rowe, C. Sackett, C. Wood, W. Itano, C. Monroe et al., Phys. Rev. A 61, 063418 (2000).  https://doi.org/10.1103/PhysRevA.61.063418
  56. 56.
    C. Shen, Z. Zhang, L.-M. Duan, Phys. Rev. Lett. 112, 050504 (2014).  https://doi.org/10.1103/PhysRevLett.112.050504ADSCrossRefGoogle Scholar
  57. 57.
    F. Petruccione, H.P. Breuer, The Theory of Open Quantum Systems (Oxford University Press, London, 2002)Google Scholar
  58. 58.
    S. Pigeon, L. Fusco, A. Xuereb, G.D. Chiara, M. Paternostro, N. J. Phys. 18, 013009 (2016).  https://doi.org/10.1088/1367-2630/18/1/013009
  59. 59.
    H.T. Quan, Y.X. Liu, C.P. Sun, F. Nori, Phys. Rev. E 76, 031105 (2007).  https://doi.org/10.1103/PhysRevE.76.031105
  60. 60.
    O. Abah, J. Ronßagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 109, 203006 (2012).  https://doi.org/10.1103/PhysRevLett.109.203006ADSCrossRefGoogle Scholar
  61. 61.
    J. Roßnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, K. Singer, Science 352, 325 (2016).  https://doi.org/10.1126/science.aad6320ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    G. Maslennikov, S. Ding, R. Hablutzel, J. Gan, A. Roulet, S. Nimmrichter, J. Dai, V. Scarani, D. Matsukevich (2017).  https://doi.org/10.1038/s41467-018-08090-0

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yao Lu
    • 1
  • Shuoming An
    • 1
  • Jing-Ning Zhang
    • 1
  • Kihwan Kim
    • 1
    Email author
  1. 1.Center for Quantum Information, Institute for Interdisciplinary Information SciencesTsinghua UniversityBeijingP. R. China

Personalised recommendations