Single Particle Thermodynamics with Levitated Nanoparticles

  • James MillenEmail author
  • Jan Gieseler
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)


Levitated Nanoparticles have received much attention for their potential to perform quantum mechanical experiments even at room temperature. However, in the regime where the particle dynamics are purely classical there is a lot of interesting physics that can be explored. Here we review the application of levitated nanoparticles as a new experimental platform to explore stochastic thermodynamics in small systems.


  1. 1.
    A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11(5), 288–290 (1986).
  2. 2.
    L.P. Faucheux, L.S. Bourdieu, P.D. Kaplan, A.J. Libchaber, Optical thermal ratchet. Phys. Rev. Lett. 74, 1504–1507 (1995).
  3. 3.
    U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75(12), 126001 (2012).
  4. 4.
    S. Kuhn, A. Kosloff, B.A. Stickler, F. Patolsky, K. Hornberger, M. Arndt, J. Millen, Full rotational control of levitated silicon nanorods. Optica 4(3), 356 (2017).
  5. 5.
    J. Gieseler, R. Quidant, C. Dellago, L. Novotny, Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nat. Nanotechnol. 9, 358 EP (2014).
  6. 6.
    T. Schmiedl, U. Seifert, Efficiency at maximum power: an analytically solvable model for stochastic heat engines. EPL (Europhys. Lett.) 81(2), 20003 (2008).
  7. 7.
    I.A. Martínez, A. Petrosyan, D. Guéry-Odelin, E. Trizac, S. Ciliberto, Engineered swift equilibration of a brownian particle. Nat. Phys. 12, 843 EP (2016).
  8. 8.
    A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187 EP (2012).
  9. 9.
    D.E. Chang, C.A. Regal, S.B. Papp, D.J. Wilson, J. Ye, O. Painter, H.J. Kimble, P. Zoller, Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl. Acad. Sci. 107(3), 1005–1010 (2010).
  10. 10.
    J. Gieseler, J. Millen, Levitated nanoparticles for microscopic thermodynamics - a review, Entropy (2018).
  11. 11.
    S.A. Beresnev, V.G. Chernyak, G.A. Fomyagin, Motion of a spherical particle in a rarefied gas. part 2. drag and thermal polarization. J. Fluid Mech. 219(1), 405–421 (1990).
  12. 12.
    J. Millen, T. Deesuwan, P. Barker, J. Anders, Nanoscale temperature measurements using non-equilibrium brownian dynamics of a levitated nanosphere. Nat. Nanotechnol. 9, 425–429 (2014).
  13. 13.
    M. Lewittes, S. Arnold, G. Oster, Radiometric levitation of micron sized spheres. Appl. Phys. Lett. 40(6), 455–457 (1982).
  14. 14.
    L. Martinetz, K. Hornberger, B.A. Stickler, Gas-induced friction and diffusion of rigid rotors. Phys. Rev. E 97, 052112 (2018).
  15. 15.
    V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, L. Novotny, Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett. 116, 243601 (2016).
  16. 16.
    A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471–527 (2013).
  17. 17.
    J. Bateman, S. Nimmrichter, K. Hornberger, H. Ulbricht, Near-field interferometry of a free-falling nanoparticle from a point-like source. Nat. Commun. 5, 4788 EP (2014).
  18. 18.
    T. Li, S. Kheifets, D. Medellin, M.G. Raizen, Measurement of the instantaneous velocity of a brownian particle. Science 328(5986), 1673–1675 (2010).
  19. 19.
    G.E. Uhlenbeck, L.S. Ornstein, On the theory of the brownian motion. Phys. Rev. 36(5), 823–841 (1930).
  20. 20.
    M.C. Wang, G.E. Uhlenbeck, On the theory of the brownian motion II. Rev. Mod. Phys. 17(2–3), 323–342 (1945).
  21. 21.
    J. Gieseler, L. Novotny, R. Quidant, Thermal nonlinearities in a nanomechanical oscillator. Nat. Phys. 9, 806 EP (2013).
  22. 22.
    J. Gieseler et al., Non-equilibrium steady state of a driven levitated particle with feedback cooling. New J. Phys. 17(4), 045011 (2015).
  23. 23.
    J. Gieseler, M. Spasenović, L. Novotny, R. Quidant, Nonlinear mode coupling and synchronization of a vacuum-trapped nanoparticle. Phys. Rev. Lett. 112(10), 103603 (2014).
  24. 24.
    F. Ricci, R.A. Rica, M. Spasenovic, J. Gieseler, L. Rondin, L. Novotny, R. Quidant, Optically levitated nanoparticle as a model system for stochastic bistable dynamics. Nat. Commun. 8, 15141 (2017).
  25. 25.
    M. Rashid, T. Tufarelli, J. Bateman, J. Vovrosh, D. Hempston, M.S. Kim, H. Ulbricht, Experimental realization of a thermal squeezed state of levitated optomechanics. Phys. Rev. Lett. 117(27), 273601–5 (2016).
  26. 26.
    L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, L. Novotny, Direct measurement of Kramers turnover with a levitated nanoparticle. Nat. Nanotechnol. 12, 1130 EP (2017).
  27. 27.
    H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4), 284–304 (1940).
  28. 28.
    V.I. Mel’nikov, The Kramers problem: fifty years of development. Phys. Rep. 209(1), 1–71 (1991).
  29. 29.
    D.S.P. Salazar, S.A. Lira, Exactly solvable nonequilibrium Langevin relaxation of a trapped nanoparticle. J. Phys. A Math. Theor. 49(46), 465001–18 (2016).
  30. 30.
    T.M. Hoang, R. Pan, J. Ahn, J. Bang, H.T. Quan, T. Li, Experimental test of the differential fluctuation theorem and a generalized Jarzynski equality for arbitrary initial states. Phys. Rev. Lett. 120(8), 080602 (2018).
  31. 31.
    A. Dechant, N. Kiesel, E. Lutz, All-optical nanomechanical heat engine. Phys. Rev. Lett. 114, 183602 (2015).
  32. 32.
    V. Blickle, C. Bechinger, Realization of a micrometre-sized stochastic heat engine. Nat. Phys. 8, 143 (2011).
  33. 33.
    A. Dechant, N. Kiesel, E. Lutz, Underdamped stochastic heat engine at maximum efficiency. EPL (Europhys. Lett.) 119(5), 50003 (2017).
  34. 34.
    R.E. Spinney, I.J. Ford, in Fluctuation relations: a pedagogical overview, ed. by R. Klages, W. Just, C. Jarzynski. Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond (Wiley-VCH, Weinheim, 2012, ISBN 978-3-527-41094-1). arXiv:1201.6381
  35. 35.
    A. Gomez-Marin, T. Schmiedl, U. Seifert, Optimal protocols for minimal work processes in underdamped stochastic thermodynamics. J. Chem. Phys. 129(2), 024114 (2008).
  36. 36.
    I.A. Martínez, É. Roldán, L. Dinis, D. Petrov, R.A. Rica, Adiabatic processes realized with a trapped brownian particle. Phys. Rev. Lett. 114, 120601 (2015).
  37. 37.
    D. Goldwater, B.A. Stickler, K. Hornberger, T. Northup, J. Millen, Levitated electromechanics: all-electrical cooling of charged nano- and micro-particles. Quantum Sci. Technol. 4, 024003 (2019).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of PhysicsKing’s College LondonStrand, LondonUK
  2. 2.Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations