Advertisement

Single Particle Thermodynamics with Levitated Nanoparticles

  • James MillenEmail author
  • Jan Gieseler
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

Levitated Nanoparticles have received much attention for their potential to perform quantum mechanical experiments even at room temperature. However, in the regime where the particle dynamics are purely classical there is a lot of interesting physics that can be explored. Here we review the application of levitated nanoparticles as a new experimental platform to explore stochastic thermodynamics in small systems.

References

  1. 1.
    A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11(5), 288–290 (1986).  https://doi.org/10.1364/OL.11.000288
  2. 2.
    L.P. Faucheux, L.S. Bourdieu, P.D. Kaplan, A.J. Libchaber, Optical thermal ratchet. Phys. Rev. Lett. 74, 1504–1507 (1995).  https://doi.org/10.1103/PhysRevLett.74.1504
  3. 3.
    U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75(12), 126001 (2012).  https://doi.org/10.1088/0034-4885/75/12/126001
  4. 4.
    S. Kuhn, A. Kosloff, B.A. Stickler, F. Patolsky, K. Hornberger, M. Arndt, J. Millen, Full rotational control of levitated silicon nanorods. Optica 4(3), 356 (2017).  https://doi.org/10.1364/OPTICA.4.000356
  5. 5.
    J. Gieseler, R. Quidant, C. Dellago, L. Novotny, Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nat. Nanotechnol. 9, 358 EP (2014).  https://doi.org/10.1038/NNANO.2014.40
  6. 6.
    T. Schmiedl, U. Seifert, Efficiency at maximum power: an analytically solvable model for stochastic heat engines. EPL (Europhys. Lett.) 81(2), 20003 (2008).  https://doi.org/10.1209/0295-5075/81/20003
  7. 7.
    I.A. Martínez, A. Petrosyan, D. Guéry-Odelin, E. Trizac, S. Ciliberto, Engineered swift equilibration of a brownian particle. Nat. Phys. 12, 843 EP (2016).  https://doi.org/10.1038/nphys3758
  8. 8.
    A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187 EP (2012).  https://doi.org/10.1038/nature10872
  9. 9.
    D.E. Chang, C.A. Regal, S.B. Papp, D.J. Wilson, J. Ye, O. Painter, H.J. Kimble, P. Zoller, Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl. Acad. Sci. 107(3), 1005–1010 (2010).  https://doi.org/10.1073/pnas.0912969107
  10. 10.
    J. Gieseler, J. Millen, Levitated nanoparticles for microscopic thermodynamics - a review, Entropy (2018).  https://doi.org/10.3390/e20050326
  11. 11.
    S.A. Beresnev, V.G. Chernyak, G.A. Fomyagin, Motion of a spherical particle in a rarefied gas. part 2. drag and thermal polarization. J. Fluid Mech. 219(1), 405–421 (1990).  https://doi.org/10.1017/S0022112090003007
  12. 12.
    J. Millen, T. Deesuwan, P. Barker, J. Anders, Nanoscale temperature measurements using non-equilibrium brownian dynamics of a levitated nanosphere. Nat. Nanotechnol. 9, 425–429 (2014).  https://doi.org/10.1038/nnano.2014.82
  13. 13.
    M. Lewittes, S. Arnold, G. Oster, Radiometric levitation of micron sized spheres. Appl. Phys. Lett. 40(6), 455–457 (1982).  https://doi.org/10.1063/1.93146
  14. 14.
    L. Martinetz, K. Hornberger, B.A. Stickler, Gas-induced friction and diffusion of rigid rotors. Phys. Rev. E 97, 052112 (2018).  https://doi.org/10.1103/PhysRevE.97.052112
  15. 15.
    V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, L. Novotny, Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett. 116, 243601 (2016).  https://doi.org/10.1103/PhysRevLett.116.243601
  16. 16.
    A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471–527 (2013).  https://doi.org/10.1103/RevModPhys.85.471
  17. 17.
    J. Bateman, S. Nimmrichter, K. Hornberger, H. Ulbricht, Near-field interferometry of a free-falling nanoparticle from a point-like source. Nat. Commun. 5, 4788 EP (2014).  https://doi.org/10.1038/ncomms5788
  18. 18.
    T. Li, S. Kheifets, D. Medellin, M.G. Raizen, Measurement of the instantaneous velocity of a brownian particle. Science 328(5986), 1673–1675 (2010).  https://doi.org/10.1126/science.1189403
  19. 19.
    G.E. Uhlenbeck, L.S. Ornstein, On the theory of the brownian motion. Phys. Rev. 36(5), 823–841 (1930).  https://doi.org/10.1103/PhysRev.36.823
  20. 20.
    M.C. Wang, G.E. Uhlenbeck, On the theory of the brownian motion II. Rev. Mod. Phys. 17(2–3), 323–342 (1945).  https://doi.org/10.1103/RevModPhys.17.323
  21. 21.
    J. Gieseler, L. Novotny, R. Quidant, Thermal nonlinearities in a nanomechanical oscillator. Nat. Phys. 9, 806 EP (2013).  https://doi.org/10.1038/nphys2798
  22. 22.
    J. Gieseler et al., Non-equilibrium steady state of a driven levitated particle with feedback cooling. New J. Phys. 17(4), 045011 (2015).  https://doi.org/10.1088/1367-2630/17/4/045011
  23. 23.
    J. Gieseler, M. Spasenović, L. Novotny, R. Quidant, Nonlinear mode coupling and synchronization of a vacuum-trapped nanoparticle. Phys. Rev. Lett. 112(10), 103603 (2014).  https://doi.org/10.1103/PhysRevLett.112.103603
  24. 24.
    F. Ricci, R.A. Rica, M. Spasenovic, J. Gieseler, L. Rondin, L. Novotny, R. Quidant, Optically levitated nanoparticle as a model system for stochastic bistable dynamics. Nat. Commun. 8, 15141 (2017).  https://doi.org/10.1038/ncomms15141
  25. 25.
    M. Rashid, T. Tufarelli, J. Bateman, J. Vovrosh, D. Hempston, M.S. Kim, H. Ulbricht, Experimental realization of a thermal squeezed state of levitated optomechanics. Phys. Rev. Lett. 117(27), 273601–5 (2016).  https://doi.org/10.1103/PhysRevLett.117.273601
  26. 26.
    L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, L. Novotny, Direct measurement of Kramers turnover with a levitated nanoparticle. Nat. Nanotechnol. 12, 1130 EP (2017).  https://doi.org/10.1038/nnano.2017.198
  27. 27.
    H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4), 284–304 (1940).  https://doi.org/10.1016/S0031-8914(40)90098-2
  28. 28.
    V.I. Mel’nikov, The Kramers problem: fifty years of development. Phys. Rep. 209(1), 1–71 (1991).  https://doi.org/10.1016/0370-1573(91)90108-X
  29. 29.
    D.S.P. Salazar, S.A. Lira, Exactly solvable nonequilibrium Langevin relaxation of a trapped nanoparticle. J. Phys. A Math. Theor. 49(46), 465001–18 (2016).  https://doi.org/10.1088/1751-8113/49/46/465001
  30. 30.
    T.M. Hoang, R. Pan, J. Ahn, J. Bang, H.T. Quan, T. Li, Experimental test of the differential fluctuation theorem and a generalized Jarzynski equality for arbitrary initial states. Phys. Rev. Lett. 120(8), 080602 (2018).  https://doi.org/10.1103/PhysRevLett.120.080602
  31. 31.
    A. Dechant, N. Kiesel, E. Lutz, All-optical nanomechanical heat engine. Phys. Rev. Lett. 114, 183602 (2015).  https://doi.org/10.1103/PhysRevLett.114.183602
  32. 32.
    V. Blickle, C. Bechinger, Realization of a micrometre-sized stochastic heat engine. Nat. Phys. 8, 143 (2011).  https://doi.org/10.1038/nphys2163
  33. 33.
    A. Dechant, N. Kiesel, E. Lutz, Underdamped stochastic heat engine at maximum efficiency. EPL (Europhys. Lett.) 119(5), 50003 (2017).  https://doi.org/10.1209/0295-5075/119/50003
  34. 34.
    R.E. Spinney, I.J. Ford, in Fluctuation relations: a pedagogical overview, ed. by R. Klages, W. Just, C. Jarzynski. Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond (Wiley-VCH, Weinheim, 2012, ISBN 978-3-527-41094-1). arXiv:1201.6381
  35. 35.
    A. Gomez-Marin, T. Schmiedl, U. Seifert, Optimal protocols for minimal work processes in underdamped stochastic thermodynamics. J. Chem. Phys. 129(2), 024114 (2008).  https://doi.org/10.1063/1.2948948
  36. 36.
    I.A. Martínez, É. Roldán, L. Dinis, D. Petrov, R.A. Rica, Adiabatic processes realized with a trapped brownian particle. Phys. Rev. Lett. 114, 120601 (2015).  https://doi.org/10.1103/PhysRevLett.114.120601
  37. 37.
    D. Goldwater, B.A. Stickler, K. Hornberger, T. Northup, J. Millen, Levitated electromechanics: all-electrical cooling of charged nano- and micro-particles. Quantum Sci. Technol. 4, 024003 (2019).  https://doi.org/10.1088/2058-9565/aaf5f3

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of PhysicsKing’s College LondonStrand, LondonUK
  2. 2.Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations