Advertisement

One-Dimensional Atomic Superfluids as a Model System for Quantum Thermodynamics

  • Jörg SchmiedmayerEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

In this chapter we will present the one-dimensional (1d) quantum degenerate Bose gas (1d superfluid) as a testbed to experimentally illustrate some of the key aspects of quantum thermodynamics. Hard-core bosons in one-dimension are described by the integrable Lieb-Lininger model. Realistic systems, as they can be implemented, are only approximately integrable, and let us investigate the cross over to ‘thermalisation’. They show such fundamental properties as pre-thermalisation, general Gibbs ensembles and light-cone like spreading of de-coherence. On the other hand they are complex enough to illustrate that our limited ability to measure only (local) few-body observables determines the relevant description of the many-body system and its physics. One consequence is the observation of quantum recurrences in systems with thousand of interacting particles. The relaxation observed in 1D superfluids is universal for a large class of many-body systems, those where the relevant physics can be described by a set of ‘long lived’ collective modes. The time window where the ‘close to integrable’ dynamics can be observed is given by the ‘lifetime’ of the quasi-particles associated with the collective modes. Based on these observations one can view (in a quantum field theory sense) a many-body quantum system at T \(=\) 0 as ‘vacuum’ and its excitations as the system to experiment with. This viewpoint leads to a new way to build thermal machines from the quasi-particles in 1D superfluids. We will give examples of how to realise these systems and point to a few interesting questions that might be addressed.

Notes

Acknowledgements

I would like o thank all my collaborators during the last years for many illuminating discussions, especially the theory in Heidelberg: J. Berges, S. Erne, V. Kasper, and Th. Gasenzer, and my long term collaborators E. Demler and J. Eisert. M. Huber provided invaluable insight into the quantum to classical transition and towards the implementation of thermal machines with 1D superfluids. None of this would have been possible without the fatalistic effort of my group at the Atominstitut, special thanks to I. Mazets for keeping me on track in theoretical matters, T. Langen, B. Rauer and Th. Schweigler for making the experiments work and their deep insight into the related physics and Joao Sabino for help with the manuscript. This work was supported by the FWF through the SFB FoQuS, the DFG-FWF Forschergruppe 2427:Thermal machines in the quantum world and by the EU through the ERC advanced grant Quantum-Relax. JS acknowledges the hospitality of the Erwin Schrödinger Institut in the framework of their thematic program Quantum Paths which enabled many discussions shaping this article. Part of the research reviewed in this chapter was made possible by the COST MP1209 network Thermodynamics in the quantum regime.

References

  1. 1.
    L. Boltzmann, Sitzungsberichte Akademie der Wissenschaften 66, 275 (1872).  https://doi.org/10.1142/9781848161337_0015
  2. 2.
    J.V. Neumann, Z. Phys. 57, 30 (1929).  https://doi.org/10.1007/BF01339852
  3. 3.
    M. Srednicki, Phys. Rev. E 50, 888 (1994).  https://doi.org/10.1103/PhysRevE.50.888
  4. 4.
    M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854 (2008).  https://doi.org/10.1038/nature06838
  5. 5.
    A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Rev. Mod Phys 83, 863 (2011).  https://doi.org/10.1103/RevModPhys.83.863
  6. 6.
    J. Eisert, M. Friesdorf, C. Gogolin, Nat. Phys. 11, 124 (2015).  https://doi.org/10.1038/nphys3215
  7. 7.
    C. Gogolin, J. Eisert, Rep. Prog. Phys. 79, 56001 (2016).  https://doi.org/10.1088/0034-4885/79/5/056001
  8. 8.
    J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, J. Phys. A Math. Theor. 49, 143001 (2016).  https://doi.org/10.1088/1751-8113/49/14/143001
  9. 9.
    L. del Rio, L. Kraemer, R. Renner (2015). arXiv:1511.08818
  10. 10.
    L. Kofman, A. Linde, A. Starobinsky, Phys. Rev. Lett. 73, 3195 (1994).  https://doi.org/10.1103/PhysRevLett.73.3195
  11. 11.
    D. Podolsky, G.N. Felder, L. Kofman, M. Peloso, Phys. Rev. D 73, 023501 (2006).  https://doi.org/10.1103/PhysRevD.73.023501
  12. 12.
    P. Braun-Munzinger, D. Magestro, K. Redlich, J. Stachel, Phys. Lett. B 518, 41 (2001).  https://doi.org/10.1016/S0370-2693(01)01069-3
  13. 13.
    J. Berges, S. Borsányi, C. Wetterich, Phys. Rev. Lett. 93, 142002 (2004).  https://doi.org/10.1103/PhysRevLett.93.142002
  14. 14.
    M. Eckstein, M. Kollar, P. Werner, Phys. Rev. Lett. 103, 056403 (2009).  https://doi.org/10.1103/PhysRevLett.103.056403
  15. 15.
    M. Moeckel, St. Kehrein, New J. Phys. 12, 055016 (2010).  https://doi.org/10.1088/1367-2630/12/5/055016
  16. 16.
    T. Schweigler, V. Kasper, S. Erne, I. Mazets, B. Rauer, F. Cataldini, T. Langen, T. Gasenzer, J. Berges, J. Schmiedmayer, Nature 545, 323 (2017).  https://doi.org/10.1038/nature22310
  17. 17.
    B.P. Lanyon, C. Maier, M. Holzaepfel, T. Baumgratz, C. Hempel, P. Jurcevic, I. Dhand, A.S. Buyskikh, A.J. Daley, M. Cramer, M.B. Plenio, R. Blatt, C.F. Roos, Nat. Phys. 13, 1158 (2017).  https://doi.org/10.1038/NPHYS4244
  18. 18.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).  https://doi.org/10.1103/RevModPhys.80.885
  19. 19.
    T. Giamarchi, A.J. Millis, O. Parcollet, H. Saleur, L.F. Cugliandolo, Strongly Interacting Quantum Systems out of Equilibrium: Lecture Notes of the Les Houches Summer School: Volume 99, August 2012, vol. 99 (Oxford University Press, 2016).  https://doi.org/10.1093/acprof:oso/9780198768166.001.0001
  20. 20.
    T. Langen, R. Geiger, J. Schmiedmayer, Ann. Rev. Cond. Mat. Phys. 6, 201 (2015).  https://doi.org/10.1146/annurev-conmatphys-031214-014548
  21. 21.
    T. Giamarchi, Quantum Physics in One Dimension (Clarendon Press, Oxford, 2004).  https://doi.org/10.1093/acprof:oso/9780198525004.001.0001
  22. 22.
    M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, Rev. Mod. Phys. 83, 1405 (2011).  https://doi.org/10.1103/RevModPhys.83.1405
  23. 23.
    N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).  https://doi.org/10.1103/PhysRevLett.17.1133
  24. 24.
    D.S. Petrov, G.V. Shlyapnikov, J.T.M. Walraven, Phys. Rev. Lett. 85, 3745 (2000).  https://doi.org/10.1103/PhysRevLett.85.3745
  25. 25.
    K.V. Kheruntsyan, D.M. Gangardt, P.D. Drummond, G.V. Shlyapnikov, Phys. Rev. Lett. 91, 040403 (2003).  https://doi.org/10.1103/PhysRevLett.91.040403
  26. 26.
    T. Langen, Non-equilibrium dynamics of one-dimensional bose gases, Ph.D. thesis, Vienna University of Technology (2013)Google Scholar
  27. 27.
    E.H. Lieb, W. Liniger, Phys. Rev. 130, 1605 (1963).  https://doi.org/10.1103/PhysRev.130.1605
  28. 28.
    E.H. Lieb, Phys. Rev. 130, 1616 (1963).  https://doi.org/10.1103/PhysRev.130.1616
  29. 29.
    C.N. Yang, J. Mat. Phys. 10, 1115 (1969).  https://doi.org/10.1063/1.1664947
  30. 30.
    B. Sutherland, Beautiful Models: 70 Years of Exactly Solved Quantum Many-body Problems (World Scientific, 2004).  https://doi.org/10.1142/5552
  31. 31.
    M. Rigol, V. Dunjko, V. Yurovsky, M. Olshanii, Phys. Rev. Lett. 98, (2007).  https://doi.org/10.1103/PhysRevLett.98.050405
  32. 32.
    J.-S. Caux, F.H.L. Essler, Phys. Rev. Lett. 110, 257203 (2013).  https://doi.org/10.1103/PhysRevLett.110.257203
  33. 33.
    L. Tonks, Phys. Rev. 50, 955 (1936).  https://doi.org/10.1103/PhysRev.50.955
  34. 34.
    M. Girardeau, J. Math. Phys. 1, 516 (1960).  https://doi.org/10.1063/1.1703687
  35. 35.
    M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).  https://doi.org/10.1103/PhysRevLett.81.938
  36. 36.
    B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G.V. Shlyapnikov, T.W. Hänsch, I. Bloch, Nature 429, 277 (2004).  https://doi.org/10.1038/nature02530
  37. 37.
    T. Kinoshita, T. Wenger, D.S. Weiss, Science 305, 1125 (2004).  https://doi.org/10.1126/science.1100700
  38. 38.
    F.D.M. Haldane, Phys. Rev. Lett. 47, 1840 (1981).  https://doi.org/10.1103/PhysRevLett.47.1840
  39. 39.
    S.-I. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).  https://doi.org/10.1143/ptp/5.4.544
  40. 40.
    J.M. Luttinger, J. Math. Phys. 4, 1154 (1963).  https://doi.org/10.1063/1.1704046
  41. 41.
    D.C. Mattis, E.H. Lieb, J. Math. Phys. 6, 304 (1965).  https://doi.org/10.1063/1.1704281
  42. 42.
    A. Imambekov, T.L. Schmidt, L.I. Glazman, Rev. Mod. Phys. 84, 1253 (2012).  https://doi.org/10.1103/RevModPhys.84.1253
  43. 43.
    M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen, Nature 397, 598 (1999).  https://doi.org/10.1038/17569
  44. 44.
    C. Blumenstein, J. Schäfer, S. Mietke, S. Meyer, A. Dollinger, M. Lochner, X.Y. Cui, L. Patthey, R. Matzdorf, R. Claessen, Nat. Phys. 7, 76 (2011).  https://doi.org/10.1038/nphys2051
  45. 45.
    Y. Jompol, C. Ford, J. Griffiths, I. Farrer, G. Jones, D. Anderson, D. Ritchie, T. Silk, A. Schofield, Science 325, 597 (2009).  https://doi.org/10.1126/science.1171769
  46. 46.
    V.V. Deshpande, M. Bockrath, L.I. Glazman, A. Yacoby, Nature 464, 209 (2010).  https://doi.org/10.1038/nature08918
  47. 47.
    S. Coleman, Phys. Rev. D 11, 2088 (1975).  https://doi.org/10.1103/PhysRevD.11.2088
  48. 48.
    S. Mandelstam, Phys. Rev. D 11, 3026 (1975).  https://doi.org/10.1103/PhysRevD.11.3026
  49. 49.
    W.E. Thirring, Ann. Phys. 3, 91 (1958).  https://doi.org/10.1016/0003-4916(58)90015-0
  50. 50.
    L.D. Faddeev, V.E. Korepin, Phys. Rep. 42, 1 (1978).  https://doi.org/10.1016/0370-1573(78)90058-3
  51. 51.
    J. Cuevas-Maraver, P.G. Kevrekidis, F. Williams (eds.), The Sine-Gordon Model and its Applications, Nonlinear systems and complexity (Springer International Publishing, Switzerland, 2014).  https://doi.org/10.1007/978-3-319-06722-3
  52. 52.
    M.B. Fogel, S.E. Trullinger, A.R. Bishop, J.A. Krumhansl, Phys. Rev. B 15, 1578 (1977).  https://doi.org/10.1103/PhysRevB.15.1578
  53. 53.
    V. Gritsev, A. Polkovnikov, E. Demler, Phys. Rev. B 75, 174511 (2007).  https://doi.org/10.1103/PhysRevB.75.174511
  54. 54.
    A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 98, 527 (1954), http://cds.cern.ch/record/430016
  55. 55.
    G.P. Brandino, J.-S. Caux, R.M. Konik, Phys. Rev. X 5, 041043 (2015).  https://doi.org/10.1103/PhysRevX.5.041043
  56. 56.
    I.E. Mazets, Eur. Phys. J. D 65, 43 (2011).  https://doi.org/10.1140/epjd/e2010-10637-5
  57. 57.
    I.E. Mazets, T. Schumm, J. Schmiedmayer, Phys. Rev. Lett. 100, 210403 (2008).  https://doi.org/10.1103/PhysRevLett.100.210403
  58. 58.
    I.E. Mazets, J. Schmiedmayer, Phys. Rev. A 79, 061603 (2009).  https://doi.org/10.1103/PhysRevA.79.061603
  59. 59.
    I.E. Mazets, J. Schmiedmayer, New J. Phys. 12, 055023 (2010).  https://doi.org/10.1088/1367-2630/12/5/055023
  60. 60.
    S. Tan, M. Pustilnik, L.I. Glazman, Phys. Rev. Lett. 105, 090404 (2010).  https://doi.org/10.1103/PhysRevLett.105.090404
  61. 61.
    Y. Tang, W. Kao, K.-Y. Li, S. Seo, K. Mallayya, M. Rigol, S. Gopalakrishnan, B.L. Lev, Phys. Rev. X 8, 021030 (2018).  https://doi.org/10.1103/PhysRevX.8.021030
  62. 62.
    P. Krüger, S. Hofferberth, I.E. Mazets, I. Lesanovsky, J. Schmiedmayer, Phys. Rev. Lett. 105, 265302 (2010).  https://doi.org/10.1103/PhysRevLett.105.265302
  63. 63.
    J.-F. Riou, L.A. Zundel, A. Reinhard, D.S. Weiss, Phys. Rev. A 90, 033401 (2014).  https://doi.org/10.1103/PhysRevA.90.033401
  64. 64.
    C. Li, T. Zhou, I. Mazets, H.-P. Stimming, Z. Zhu, Y. Zhai, W. Xiong, X. Zhou, X. Chen, J. Schmiedmayer (2018). arXiv:1804.01969
  65. 65.
    E. Haller, M. Mark, R. Hart, J.G. Danzl, L. Reichsöllner, V. Melezhik, P. Schmelcher, H.-C. Nägerl, Phys. Rev. Lett. 104, 153203 (2010).  https://doi.org/10.1103/PhysRevLett.104.153203
  66. 66.
    S. Dettmer, D. Hellweg, P. Ryytty, J. Arlt, W. Ertmer, K. Sengstock, D.S. Petrov, G. Shlyapnikov, H. Kreutzmann, L. Santos, M. Lewenstein, Phys. Rev. Lett. 87, 160406 (2001).  https://doi.org/10.1103/PhysRevLett.87.160406
  67. 67.
    J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Nature 453, 891 (2008).  https://doi.org/10.1038/nature07000
  68. 68.
    F. Serwane, G. Zürn, T. Lompe, T.B. Ottenstein, A.N. Wenz, S. Jochim, Science 332, 336 (2011).  https://doi.org/10.1126/science.1201351
  69. 69.
    T. Kinoshita, T. Wenger, D. Weiss, Nature 440, 900 (2006).  https://doi.org/10.1038/nature04693
  70. 70.
    O. Morsch, M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006).  https://doi.org/10.1103/RevModPhys.78.179
  71. 71.
    R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002).  https://doi.org/10.1016/S1049-250X(02)80011-8
  72. 72.
    J. Reichel, V. Vuletić (eds.), Atom Chips (Wiley, VCH, 2011).  https://doi.org/10.1002/9783527633357
  73. 73.
    S. Hofferberth, I. Lesanovsky, T. Schumm, A. Imambekov, V. Gritsev, E. Demler, J. Schmiedmayer, Nat. Phys. 4, 489 (2008).  https://doi.org/10.1038/nphys941
  74. 74.
    T. Jacqmin, J. Armijo, T. Berrada, K.V. Kheruntsyan, I. Bouchoule, Phys. Rev. Lett. 106, 230405 (2011).  https://doi.org/10.1103/PhysRevLett.106.230405
  75. 75.
    R. Schley, A. Berkovitz, S. Rinott, I. Shammass, A. Blumkin, J. Steinhauer, Phy. Rev. Lett. 111, 055301 (2013).  https://doi.org/10.1103/PhysRevLett.111.055301
  76. 76.
    B. Rauer, P. Grišins, I.E. Mazets, T. Schweigler, W. Rohringer, R. Geiger, T. Langen, J. Schmiedmayer, Phys. Rev. Lett. 116, 030402 (2016).  https://doi.org/10.1103/PhysRevLett.116.030402
  77. 77.
    P. Grisins, B. Rauer, T. Langen, J. Schmiedmayer, I.E. Mazets, Phys. Rev. A 93, 033634 (2016).  https://doi.org/10.1103/PhysRevA.93.033634
  78. 78.
    T. Schumm, S. Hofferberth, L.M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, P. Kruger, Nat. Phys. 1, 57 (2005).  https://doi.org/10.1038/nphys125
  79. 79.
    S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, J. Schmiedmayer, Nat. Phys. 2, 710 (2006).  https://doi.org/10.1038/nphys420
  80. 80.
    I. Lesanovsky, T. Schumm, S. Hofferberth, L.M. Andersson, P. Krüger, J. Schmiedmayer, Phys. Rev. A 73, 033619 (2006).  https://doi.org/10.1103/PhysRevA.73.033619
  81. 81.
    T. Kitagawa, S. Pielawa, A. Imambekov, J. Schmiedmayer, V. Gritsev, E. Demler, Phys. Rev. Lett. 104, 255302 (2010).  https://doi.org/10.1103/PhysRevLett.104.255302
  82. 82.
    T. Kitagawa, A. Imambekov, J. Schmiedmayer, E. Demler, New. J. Phys. 13, 073018 (2011).  https://doi.org/10.1088/1367-2630/13/7/073018
  83. 83.
    M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I.E. Mazets, D.A. Smith, E. Demler, J. Schmiedmayer, Science 337, 1318 (2012).  https://doi.org/10.1126/science.1224953
  84. 84.
    J. Estève, C. Gross, A. Weller, S. Giovanazzi, M.K. Oberthaler, Nature 455, 1216 (2008).  https://doi.org/10.1038/nature07332
  85. 85.
    T. Berrada, S.V. Frank, R. Bücker, T. Schumm, J.-F. Schaff, J. Schmiedmayer, Nat. Commun. 2077 (2013).  https://doi.org/10.1038/ncomms3077
  86. 86.
    U. Hohenester, P.K. Rekdal, A. Borzì, J. Schmiedmayer, Phys. Rev. A 75, 023602 (2007).  https://doi.org/10.1103/PhysRevA.75.023602
  87. 87.
    J. Grond, J. Schmiedmayer, U. Hohenester, Phys. Rev. A 79, 021603 (2009a).  https://doi.org/10.1103/PhysRevA.79.021603
  88. 88.
    J. Grond, G. von Winckel, J. Schmiedmayer, U. Hohenester, Phys. Rev. A 80, 053625 (2009b).  https://doi.org/10.1103/PhysRevA.80.053625
  89. 89.
    W. Ketterle, D. Durfee, D. Stamper-Kurn, Bose-Einstein condensation in atomic gases, in Proceedings of the International School of Physics Enrico FermiGoogle Scholar
  90. 90.
    D.A. Smith, S. Aigner, S. Hofferberth, M. Gring, M. Andersson, S. Wildermuth, P. Krüger, S. Schneider, T. Schumm, J. Schmiedmayer, Opt. Express 19, 8471 (2011).  https://doi.org/10.1364/OE.19.008471
  91. 91.
    R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, J. Schmiedmayer, New J. Phys. 11, 103039 (2009).  https://doi.org/10.1088/1367-2630/11/10/103039
  92. 92.
    A. Imambekov, I.E. Mazets, D.S. Petrov, V. Gritsev, S. Manz, S. Hofferberth, T. Schumm, E. Demler, J. Schmiedmayer, Phys. Rev. A 80, 033604 (2009).  https://doi.org/10.1103/PhysRevA.80.033604
  93. 93.
    S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I.E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, T. Schumm, Phys. Rev. A 81, 031610 (2010).  https://doi.org/10.1103/PhysRevA.81.031610
  94. 94.
    I.E. Mazets, Phys. Rev. A 86, 055603 (2012).  https://doi.org/10.1103/PhysRevA.86.055603
  95. 95.
    J. Schwinger, Proc. Natl. Acad. Sci. 37, 452 (1951a).  https://doi.org/10.1073/pnas.37.7.452
  96. 96.
    J. Schwinger, Proc. Natl. Acad. Sci. 37, 455 (1951b).  https://doi.org/10.1073/pnas.37.7.455
  97. 97.
    T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler, M. Kuhnert, W. Rohringer, I.E. Mazets, T. Gasenzer, J. Schmiedmayer, Science 348, 207 (2015b).  https://doi.org/10.1126/science.1257026
  98. 98.
    J. Steinhauer, Nat. Phys. 12, 959 (2016).  https://doi.org/10.1038/nphys3863
  99. 99.
    E. Altman, E. Demler, M.D. Lukin, Phys. Rev. A 70, 013603 (2004).  https://doi.org/10.1103/PhysRevA.70.013603
  100. 100.
    S. Fölling, F. Gerbier, A. Widera, O. Mandel, T. Gericke, I. Bloch, Nature 434, 481 (2005).  https://doi.org/10.1038/nature03500
  101. 101.
    T. Rom, T. Best, D. van Oosten, U. Schneider, S. Fölling, B. Paredes, I. Bloch, Nature 444, 733 (2006).  https://doi.org/10.1038/nature05319
  102. 102.
    T. Jeltes, J.M. McNamara, W. Hogervorst, W. Vassen, V. Krachmalnicoff, M. Schellekens, A. Perrin, H. Chang, D. Boiron, A. Aspect, C.I. Westbrook, Nature 445, 402 (2007).  https://doi.org/10.1038/nature05513
  103. 103.
    A. Perrin, R. Bucker, S. Manz, T. Betz, C. Koller, T. Plisson, T. Schumm, J. Schmiedmayer, Nat. Phys. 8, 195 (2012).  https://doi.org/10.1038/nphys2212
  104. 104.
    M. Kuhnert, R. Geiger, T. Langen, M. Gring, B. Rauer, T. Kitagawa, E. Demler, D. Adu Smith, J. Schmiedmayer, Phys. Rev. Lett. 110, 090405 (2013).  https://doi.org/10.1103/PhysRevLett.110.090405
  105. 105.
    V. Gritsev, E. Altman, E. Demler, A. Polkovnikov, Nat. Phys. 2, 705 (2006).  https://doi.org/10.1038/nphys410
  106. 106.
    A. Polkovnikov, E. Altman, E. Demler, Proc. Natl. Acad. Sci. 103, 6125 (2006).  https://doi.org/10.1073/pnas.0510276103
  107. 107.
    R. Geiger, T. Langen, I. Mazets, J. Schmiedmayer, New J. Phys. 16, 053034 (2014).  https://doi.org/10.1088/1367-2630/16/5/053034
  108. 108.
    P. Calabrese, J. Cardy, Phys. Rev. Lett. 96, 136801 (2006).  https://doi.org/10.1103/PhysRevLett.96.136801
  109. 109.
    E.H. Lieb, D.W. Robinson, Commun. Math. Phys. 28, 251 (1972).  https://doi.org/10.1007/BF01645779
  110. 110.
    C.-L. Hung, V. Gurarie, C. Chin, Science 341, 1213 (2013).  https://doi.org/10.1126/science.1237557
  111. 111.
    T. Langen, R. Geiger, M. Kuhnert, B. Rauer, J. Schmiedmayer, Nat. Phys. 9, 640 (2013).  https://doi.org/10.1038/nphys2739
  112. 112.
    E.T. Jaynes, Phys. Rev. 106, 620 (1957a).  https://doi.org/10.1103/PhysRev.106.620
  113. 113.
    E.T. Jaynes, Phys. Rev. 108, 171 (1957b).  https://doi.org/10.1103/PhysRev.108.171
  114. 114.
    B. Rauer, S. Erne, T. Schweigler, F. Cataldini, M. Tajik, J. Schmiedmayer, Science 359, (2018).  https://doi.org/10.1126/science.aan7938
  115. 115.
    D. Weiss (private communication)Google Scholar
  116. 116.
    H. Poincaré, Acta Math. 13, 1 (1890).  https://doi.org/10.1007/BF02392506
  117. 117.
    E. Zermelo, Annalen der Physik 293, 485 (1896).  https://doi.org/10.1002/andp.18962930314
  118. 118.
    P. Bocchieri, A. Loinger, Phys. Rev. 107, 337 (1957).  https://doi.org/10.1103/PhysRev.107.337
  119. 119.
    I.C. Percival, J. Math. Phys. 2, 235 (1961).  https://doi.org/10.1063/1.1703705
  120. 120.
    F.W. Cummings, Phys. Rev. 140, A1051 (1965).  https://doi.org/10.1103/PhysRev.140.A1051
  121. 121.
    G. Rempe, H. Walther, N. Klein, Phys. Rev. Lett. 58, 353 (1987).  https://doi.org/10.1103/PhysRevLett.58.353
  122. 122.
    M. Greiner, O. Mandel, T. Hänsch, I. Bloch, Nature 419, 51 (2002).  https://doi.org/10.1038/nature00968
  123. 123.
    S. Will, T. Best, U. Schneider, L. Hackermüller, D.-S. Lühmann, I. Bloch, Nature 465, 197 (2010).  https://doi.org/10.1038/nature09036
  124. 124.
    D.S. Petrov, D.M. Gangardt, G.V. Shlyapnikov, J. Phys. IV France 116, 5 (2004).  https://doi.org/10.1051/jp4:2004116001CrossRefGoogle Scholar
  125. 125.
    J. Berges, A. Rothkopf, J. Schmidt, Phys. Rev. Lett. 101, 041603 (2008).  https://doi.org/10.1103/PhysRevLett.101.041603
  126. 126.
    M. Schmidt, S. Erne, B. Nowak, D. Sexty, T. Gasenzer, New J. Phys. 14, 075005 (2012).  https://doi.org/10.1088/1367-2630/14/7/075005
  127. 127.
    B. Nowak, S. Erne, M. Karl, J. Schole, D. Sexty, T. Gasenzer, Strongly interacting quantum systems out of equilibrium. Lecture Notes of the Les Houches Summer School, 99 (2013). arXiv:1302.1448
  128. 128.
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International series of monographs on physics (2002).  https://doi.org/10.1093/acprof:oso/9780198509233.001.0001
  129. 129.
    M. Prüfer et al., Observation of universal quantum dynamics far from equilibrium. Nature 563, 217–220 (2018).  https://doi.org/10.1038/s41586-018-0659-0
  130. 130.
    S. Erne, R. Bücker, T. Gasenzer, J. Berges, J. Schmiedmayer, Observation of universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature 563, 225 (2018).  https://doi.org/10.1038/s41586-018-0667-0
  131. 131.
    L.-C. Ha, L.W. Clark, C.V. Parker, B.M. Anderson, C. Chin, Phys. Rev. Lett. 114, 055301 (2015).  https://doi.org/10.1103/PhysRevLett.114.055301
  132. 132.
    G. Gauthier, I. Lenton, N. McKay Parry, M. Baker, M.J. Davis, H. Rubinsztein-Dunlop, T.W. Neely, Optica 3, 1136 (2016).  https://doi.org/10.1364/OPTICA.3.001136
  133. 133.
    P. Zupancic, P.M. Preiss, R. Ma, A. Lukin, M.E. Tai, M. Rispoli, R. Islam, M. Greiner, Opt. Express 24, 13881 (2016).  https://doi.org/10.1364/OE.24.013881
  134. 134.
    M. Aidelsburger, J.L. Ville, R. Saint-Jalm, S. Nascimbène, J. Dalibard, J. Beugnon, Phys. Rev. Lett. 119, 190403 (2017).  https://doi.org/10.1103/PhysRevLett.119.190403
  135. 135.
    A.L. Gaunt, T.F. Schmidutz, I. Gotlibovych, R.P. Smith, Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013).  https://doi.org/10.1103/PhysRevLett.110.200406
  136. 136.
    M. Pezzutto, M. Paternostro, Y. Omar, New J. Phys. 18, 123018 (2016).  https://doi.org/10.1088/1367-2630/18/12/123018
  137. 137.
    P.P. Hofer, M. Perarnau-Llobet, L.D.M. Miranda, G. Haack, R. Silva, J.B. Brask, N. Brunner, New J. Phys. 19, 123037 (2017).  https://doi.org/10.1088/1367-2630/aa964f
  138. 138.
    J.O. González, L.A. Correa, G. Nocerino, J.P. Palao, D. Alonso, G. Adesso, Open Syst. Inf. Dyn. 24, 1740010 (2017).  https://doi.org/10.1142/S1230161217400108
  139. 139.
    R. Uzdin, A. Levy, R. Kosloff, Entropy 18, 124 (2016).  https://doi.org/10.3390/e18040124
  140. 140.
    M. Perarnau-Llobet, H. Wilming, A. Riera, R. Gallego, J. Eisert, Phys. Rev. Lett. 120, 120602 (2018).  https://doi.org/10.1103/PhysRevLett.120.120602
  141. 141.
    S. Seah, S. Nimmrichter, V. Scarani, Phys. Rev. E 98, 012131 (2018).  https://doi.org/10.1103/PhysRevE.98.012131
  142. 142.
    G.-B. Jo, Y. Shin, S. Will, T.A. Pasquini, M. Saba, W. Ketterle, D.E. Pritchard, M. Vengalattore, M. Prentiss, Phys. Rev. Lett. 98, 030407 (2007).  https://doi.org/10.1103/PhysRevLett.98.030407
  143. 143.
    D. Jennings, T. Rudolph, Phys. Rev. E 81, 061130 (2010).  https://doi.org/10.1103/PhysRevE.81.061130
  144. 144.
    S. Jevtic, D. Jennings, T. Rudolph, Phys. Rev. Lett. 108, 110403 (2012).  https://doi.org/10.1103/PhysRevLett.108.110403
  145. 145.
    L. del Rio, A. Hutter, R. Renner, S. Wehner, Phys. Rev. E 94, 022104 (2016).  https://doi.org/10.1103/PhysRevE.94.022104
  146. 146.
    M. Perarnau-Llobet, K.V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, A. Acín, Phys. Rev. X 5, 041011 (2015).  https://doi.org/10.1103/PhysRevX.5.041011
  147. 147.
    N. Brunner, M. Huber, N. Linden, S. Popescu, R. Silva, P. Skrzypczyk, Phys. Rev. E 89, 032115 (2014).  https://doi.org/10.1103/PhysRevE.89.032115

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Vienna Center for Quantum Science and Technology (VCQ), AtominstitutTU-WienViennaAustria

Personalised recommendations