Advertisement

Thermodynamics from Information

  • Manabendra Nath BeraEmail author
  • Andreas Winter
  • Maciej Lewenstein
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

Thermodynamics and information have intricate inter-relations. The justification of the fact that information is physical, is done by inter-linking information and thermodynamics – through Landauer’s principle. This modern approach towards information recently has improved our understanding of thermodynamics, both in classical and quantum domains. Here we show thermodynamics as a consequence of information conservation. Our approach can be applied to most general situations, where systems and thermal-baths could be quantum, of arbitrary sizes and even could posses inter-system correlations. The approach does not rely on an a priori predetermined temperature associated to a thermal bath, which is not meaningful for finite-size cases. Hence, the thermal-baths and systems are not different, rather both are treated on an equal footing. This results in a “temperature”-independent formulation of thermodynamics. We exploit the fact that, for a fix amount of coarse-grained information, measured by the von Neumann entropy, any system can be transformed to a state that possesses minimal energy, without changing its entropy. This state is known as a completely passive state, which assumes Boltzmann–Gibb’s canonical form with an intrinsic temperature. This leads us to introduce the notions of bound and free energy, which we further use to quantify heat and work respectively. With this guiding principle of information conservation, we develop universal notions of equilibrium, heat and work, Landauer’s principle and also universal fundamental laws of thermodynamics. We show that the maximum efficiency of a quantum engine, equipped with a finite baths, is in general lower than that of an ideal Carnot’s engine. We also introduce a resource theoretic framework for intrinsic-temperature based thermodynamics, within which we address the problem of work extraction and state transformations.

Notes

Acknowledgements

We acknowledge financial support from the European Commission (FETPRO QUIC H2020-FETPROACT-2014 No. 641122), the European Research Council (AdG OSYRIS and AdG IRQUAT), the Spanish MINECO (grants no. FIS2008-01236, FISICATEAMO FIS2016-79508-P, FIS2013-40627-P, FIS2016-86681-P, and Severo Ochoa Excellence Grant SEV-2015-0522) with the support of FEDER funds, the Generalitat de Catalunya (grants no. 2017 SGR 1341, and SGR 875 and 966), CERCA Program/Generalitat de Catalunya and Fundació Privada Cellex. MNB also thanks support from the ICFO-MPQ fellowship.

References

  1. 1.
    J. Gemmer, M. Michel, G. Mahler, in Quantum thermodynamics. Lecture Notes in Physics, vol. 748 (Springer, Berlin, Heidelberg, 2009).  https://doi.org/10.1007/978-3-540-70510-9
  2. 2.
    J.M.R. Parrondo, J.M. Horowitz, T. Sagawa, Nat. Phys. 11, 131 (2015).  https://doi.org/10.1038/nphys3230
  3. 3.
    J.C. Maxwell, Theory of Heat (Longmans, Green, and Co., London, New York, Bombay, 1908). https://archive.org/details/theoryofheat00maxwrich/page/n8
  4. 4.
    H.S. Leff, A.F. Rex, Maxwell’s Demon: Entropy, Information, Computing (Taylor and Francis, London, 1990). https://press.princeton.edu/titles/4731.html
  5. 5.
    H.S. Leff, A.F. Rex, Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (Taylor and Francis, London, 2002).  https://doi.org/10.1201/9781420033991
  6. 6.
    K. Maruyama, F. Nori, V. Vedral, Rev. Modern Phys. 81, 1 (2009).  https://doi.org/10.1103/RevModPhys.81.1
  7. 7.
    L. Szilard, Z. Phys. 53, 840 (1929).  https://doi.org/10.1007/BF01341281
  8. 8.
    R. Landauer, IBM J. Res. Dev. 5, 183 (1961).  https://doi.org/10.1147/rd.53.0183
  9. 9.
    C.H. Bennett, Int. J. Theor. Phys. 21, 905 (1982).  https://doi.org/10.1007/BF02084158
  10. 10.
    M.B. Plenio, V. Vitelli, Contemp. Phys. 42, 25 (2001).  https://doi.org/10.1080/00107510010018916
  11. 11.
    L. del Rio, J. Aberg, R. Renner, O.C.O. Dahlsten, V. Vedral, Nature 474, 61 (2011).  https://doi.org/10.1038/nature10123
  12. 12.
    D. Reeb, M.M. Wolf, N. J. Phys. 16, 103011 (2014).  https://doi.org/10.1088/1367-2630/16/10/103011
  13. 13.
    C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948).  https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  14. 14.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, Cambridge, 2010).  https://doi.org/10.1017/CBO9780511976667
  15. 15.
    T.M. Cover, J.A. Thomas, Elements of Information Theory, 2nd edn. (Wiley, New York, 2005).  https://doi.org/10.1002/047174882X
  16. 16.
    R. Alicki, M. Fannes, Phys. Rev. E 87, 042123 (2013).  https://doi.org/10.1103/PhysRevE.87.042123
  17. 17.
    M. Perarnau-Llobet, K.V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, A. Acín, Phys. Rev. X 5, 041011 (2015).  https://doi.org/10.1103/PhysRevX.5.041011
  18. 18.
    M.N. Bera, A. Riera, M. Lewenstein, A. Winter, Nat. Commun. 8, 2180 (2017a).  https://doi.org/10.1038/s41467-017-02370-x
  19. 19.
    A.J. Short, N. J. Phys. 13, 053009 (2011).  https://doi.org/10.1088/1367-2630/13/5/053009
  20. 20.
    J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, J. Phys. A Math. Theor. 49, 143001 (2016).  https://doi.org/10.1088/1751-8113/49/14/143001
  21. 21.
    L. del Rio, A. Hutter, R. Renner, S. Wehner, Phys. Rev. E 94, 022104 (2016).  https://doi.org/10.1103/PhysRevE.94.022104
  22. 22.
    C. Gogolin, J. Eisert, Rep. Prog. Phys. 79, 056001 (2016).  https://doi.org/10.1088/0034-4885/79/5/056001
  23. 23.
    S. Popescu, A.J. Short, A. Winter, Nat. Phys. 2, 745 (2006).  https://doi.org/10.1038/nphys444
  24. 24.
    F.G.S.L. Brandão, M. Horodecki, J. Oppenheim, J.M. Renes, R.W. Spekkens, Phys. Rev. Lett. 111, 250404 (2013).  https://doi.org/10.1103/PhysRevLett.111.250404
  25. 25.
    O.C.O. Dahlsten, R. Renner, E. Rieper, V. Vedral, N. J. Phys. 13, 053015 (2011).  https://doi.org/10.1088/1367-2630/13/5/053015
  26. 26.
    J. Aberg, Nat. Commun. 4, 2013 (1925).  https://doi.org/10.1038/ncomms2712
  27. 27.
    M. Horodecki, J. Oppenheim, Nat. Commun. 4, 2013 (2059).  https://doi.org/10.1038/ncomms3059
  28. 28.
    P. Skrzypczyk, A.J. Short, S. Popescu, Nat. Commun. 5, 4185 (2014).  https://doi.org/10.1038/ncomms5185
  29. 29.
    F.G.S.L. Brandao, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, Proc. Natl. Acad. Sci. 112, 3275 (2015).  https://doi.org/10.1073/pnas.1411728112
  30. 30.
    P. Ćwikliński, M. Studziński, M. Horodecki, J. Oppenheim, Phys. Rev. Lett. 115, 210403 (2015).  https://doi.org/10.1103/PhysRevLett.115.210403
  31. 31.
    M. Lostaglio, K. Korzekwa, D. Jennings, T. Rudolph, Phys. Rev. X 5, 021001 (2015a).  https://doi.org/10.1103/PhysRevX.5.021001
  32. 32.
    D. Egloff, O.C.O. Dahlsten, R. Renner, V. Vedral, N. J. Phys. 17, 073001 (2015).  https://doi.org/10.1088/1367-2630/17/7/073001
  33. 33.
    M. Lostaglio, D. Jennings, T. Rudolph, Nat. Commun. 6, 6383 (2015b).  https://doi.org/10.1038/ncomms7383
  34. 34.
    M.N. Bera, A. Riera, M. Lewenstein, A. Winter (2017b), arXiv:1707.01750
  35. 35.
    M.N. Bera, A. Acín, M. Kuś, M. Mitchell, M. Lewenstein, Rep. Prog. Phys. 80, 124001 (2017c).  https://doi.org/10.1088/1361-6633/aa8731
  36. 36.
    F. Hulpke, U.V. Poulsen, A. Sanpera, A. Sen(De), U. Sen, M. Lewenstein, Found. Phys. 36, 477 (2006).  https://doi.org/10.1007/s10701-005-9035-7
  37. 37.
    C. Jarzynski, J. Stat. Phys. 98, 77 (2000).  https://doi.org/10.1023/A:1018670721277
  38. 38.
    M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys 81, 1665 (2009).  https://doi.org/10.1103/RevModPhys.81.1665
  39. 39.
    T. Sagawa, Second law-like inequalities with quantum relative entropy: an introduction, in Lectures on Quantum Computing, Thermodynamics and Statistical Physics, vol. 8 (World Scientific, Singapore, 2012), pp. 125–190.  https://doi.org/10.1142/9789814425193_0003
  40. 40.
    C. Sparaciari, J. Oppenheim, T. Fritz, Phys. Rev. A 96, 052112 (2017).  https://doi.org/10.1103/PhysRevA.96.052112
  41. 41.
    E.T. Jaynes, Phys. Rev. 106, 620 (1957a).  https://doi.org/10.1103/PhysRev.106.620
  42. 42.
    E.T. Jaynes, Phys. Rev. 108, 171 (1957b).  https://doi.org/10.1103/PhysRev.108.171
  43. 43.
    W. Pusz, S.L. Woronowicz, Commun. Math. Phys. 58, 273 (1978).  https://doi.org/10.1007/BF01614224
  44. 44.
    A. Lenard, J. Stat. Phys. 19, 575 (1978).  https://doi.org/10.1007/BF01011769
  45. 45.
    L. Masanes, J. Oppenheim, Nat. Commun. 8, 14538 (2017).  https://doi.org/10.1038/ncomms14538

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Manabendra Nath Bera
    • 1
    • 2
    Email author
  • Andreas Winter
    • 3
    • 4
  • Maciej Lewenstein
    • 1
    • 4
  1. 1.ICFO – Institut de Ciencies FotoniquesThe Barcelona Institute of Science and TechnologyCastelldefelsSpain
  2. 2.Max-Planck-Institut für QuantenoptikGarchingGermany
  3. 3.Departament de Física: Grup d’Informació QuànticaUniversitat Autònoma de BarcelonaBellaterra, BarcelonaSpain
  4. 4.ICREABarcelonaSpain

Personalised recommendations