Advertisement

Smooth Entropy in Axiomatic Thermodynamics

  • Mirjam WeilenmannEmail author
  • Lea Krämer
  • Renato Renner
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

Thermodynamics can be formulated in either of two approaches, the phenomenological approach, which refers to the macroscopic properties of systems, and the statistical approach, which describes systems in terms of their microscopic constituents. We establish a connection between these two approaches by means of a new axiomatic framework that can take errors and imprecisions into account. This link extends to systems of arbitrary sizes including very small systems, for which the treatment of imprecisions is pertinent to any realistic situation. Based on this, we identify the quantities that characterise whether certain thermodynamic processes are possible with entropy measures from information theory. In the error-tolerant case, these entropies are so-called smooth min and max entropies. Our considerations further show that in an appropriate macroscopic limit there is a single entropy measure that characterises which state transformations are possible. In the case of many independent copies of a system (the so-called i.i.d. regime), the relevant quantity is the von Neumann entropy. Transformations among microcanonical states are characterised by the Boltzmann entropy.

Notes

Acknowledgements

Philippe Faist is not listed as an author for editorial reasons. MW is supported by the EPSRC (grant number EP/P016588/1). RR acknowledges contributions from the Swiss National Science Foundation via the NCCR QSIT as well as project No. 200020 165843.

References

  1. 1.
    D. Janzing, P. Wocjan, R. Zeier, R. Geiss, T. Beth, Thermodynamic cost of reliability and low temperatures: tightening Landauer’s principle and the second law. Int. J. Theor. Phys. 39(12), 2717–2753 (2000). arXiv:quant-ph/0002048
  2. 2.
    M. Horodecki, J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4, 2059 (2013).  https://doi.org/10.1038/ncomms3059ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Renes, Work cost of thermal operations in quantum thermodynamics. Eur. Phys. J. Plus 129(7), 153 (2014).  https://doi.org/10.1140/epjp/i2014-14153-8CrossRefGoogle Scholar
  4. 4.
    E.H. Lieb, J. Yngvason, A guide to entropy and the second law of thermodynamics. Not. Am. Math. Soc. A 581, 571–581 (1998). arXiv:math-ph/9805005
  5. 5.
    E.H. Lieb, J. Yngvason, The physics and mathematics of the second law of thermodynamics. Phys. Rep. 310, 1–96 (1999).  https://doi.org/10.1016/S0370-1573(98)00082-9ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    E.H. Lieb, J. Yngvason, The mathematical structure of the second law of thermodynamics. in Current Developments in Mathematics (2001), pp. 89–129.  https://doi.org/10.4310/CDM.2001.v2001.n1.a3
  7. 7.
    E.H. Lieb, J. Yngvason, The entropy concept for non-equilibrium states. Proc. R. Soc. Math. Phys. Eng. Sci. 469(2158), 20130408 (2013).  https://doi.org/10.1098/rspa.2013.0408ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    E.H. Lieb, J. Yngvason, Entropy meters and the entropy of non-extensive systems. Proc. R. Soc. Math. Phys. Eng. Sci. 470(2167), 20140192 (2014).  https://doi.org/10.1098/rspa.2014.0192ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. Thess, The Entropy Principle (Springer, Berlin Heidelberg, 2011).  https://doi.org/10.1007/978-3-642-13349-7CrossRefzbMATHGoogle Scholar
  10. 10.
    C. Carathéodory, Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 67(3), 355–386 (1909).  https://doi.org/10.1007/BF01450409MathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Giles, Mathematical Foundations of Thermodynamics (Elsevier, Amsterdam, 1964)zbMATHGoogle Scholar
  12. 12.
    E.P. Gyftopoulos, G.P. Beretta, Thermodynamics: Foundations and Applications (Macmillian, New York, 1991)Google Scholar
  13. 13.
    G.P. Beretta, E. Zanchini, Rigorous and general definition of thermodynamic entropy. inThermodynamics, ed. by M. Tadashi, Chapter 2, InTech (2011), pp. 23–50.  https://doi.org/10.5772/13371
  14. 14.
    E. Zanchini, G.P. Beretta, Recent progress in the definition of thermodynamic entropy. Entropy 16(3), 1547–1570 (2014).  https://doi.org/10.3390/e16031547ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    G.N. Hatsopoulos, E.P. Gyftopoulos, A unified quantum theory of mechanics and thermodynamics. Part i. Postulates. Found. Phys. 6(1), 15–31 (1976).  https://doi.org/10.1007/BF00708660ADSCrossRefGoogle Scholar
  16. 16.
    G.N. Hatsopoulos, E.P. Gyftopoulos, A unified quantum theory of mechanics and thermodynamics. Part iia. Available energy. Found. Phys. 6(2), 127–141 (1976).  https://doi.org/10.1007/BF00708955
  17. 17.
    G.N. Hatsopoulos, E.P. Gyftopoulos, A unified quantum theory of mechanics and thermodynamics. Part iib. Stable equilibrium states. Found. Phys. 6(4), 439–455 (1976).  https://doi.org/10.1007/BF00715033ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    G.N. Hatsopoulos, E.P. Gyftopoulos, A unified quantum theory of mechanics and thermodynamics. Part iii. Irreducible quantal dispersions. Found. Phys. 6(5), 561–570 (1976).  https://doi.org/10.1007/BF00715108ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    L. del Rio, Resource theories of knowledge, Ph.D. thesis, ETH Zürich, 2015.  https://doi.org/10.3929/ethz-a-010553983
  20. 20.
    L.P. Krämer Gabriel, Restricted agents in thermodynamics and quantum information theory, Ph.D. thesis, ETH Zürich, 2016.  https://doi.org/10.3929/ethz-a-010858172
  21. 21.
    A. Hulse, B. Schumacher, M. Westmoreland, Axiomatic information thermodynamics. Entropy 20(4), 237 (2018).  https://doi.org/10.3390/e20040237ADSCrossRefGoogle Scholar
  22. 22.
    P. Kammerlander, R. Renner, The zeroth law of thermodynamics is redundant (2018). E-print arXiv:1804.09726
  23. 23.
    T. Fritz, Resource convertibility and ordered commutative monoids. Math. Struct. Comp. Sci. 27(6), 850–938 (2017).  https://doi.org/10.1017/S0960129515000444MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    M. Weilenmann, L. Kraemer, P. Faist, R. Renner, Axiomatic relation between thermodynamic and information-theoretic entropies. Phys. Rev. Lett. 117, 260601 (2016).  https://doi.org/10.1103/PhysRevLett.117.260601ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Á.M. Alhambra, J. Oppenheim, C. Perry, Fluctuating states: what is the probability of a thermodynamical transition? Phys. Rev. X 6(4), 041016 (2016).  https://doi.org/10.1103/PhysRevX.6.041016CrossRefGoogle Scholar
  26. 26.
    J. Gemmer, M. Michel, Thermalization of quantum systems by finite baths. Europhys. Lett. 73(1), 1 (2006).  https://doi.org/10.1209/epl/i2005-10363-0ADSCrossRefGoogle Scholar
  27. 27.
    C. Sparaciari, J. Oppenheim, T. Fritz, Resource theory for work and heat. Phys. Rev. A 96, 052112 (2017).  https://doi.org/10.1103/PhysRevA.96.052112ADSCrossRefGoogle Scholar
  28. 28.
    R. van der Meer, N.H.Y. Ng, S. Wehner, Smoothed generalized free energies for thermodynamics (2017). E-print.  https://doi.org/10.1103/PhysRevA.96.062135
  29. 29.
    M. Horodecki, J. Oppenheim, C. Sparaciari, Approximate majorization (2017). E-print.  https://doi.org/10.1088/1751-8121/aac87c
  30. 30.
    E.P. Hanson, N. Datta, Maximum and minimum entropy states yielding local continuity bounds. J. Math. Phys. 59(4), 042204 (2018).  https://doi.org/10.1063/1.5000120ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    E.P. Hanson, N. Datta, Tight uniform continuity bound for a family of entropies (2017). E-print arXiv:1707.04249
  32. 32.
    M. Weilenmann, Quantum causal structure and quantum thermodynamics, Ph.D. thesis, University of York, 2017. Available at http://etheses.whiterose.ac.uk/19454/
  33. 33.
    F. Dupuis, L. Kraemer, P. Faist, J.M. Renes, R. Renner, Generalized entropies, in XVIIth International Congress on Mathematical Physics (2013), pp. 134–153.  https://doi.org/10.1142/9789814449243_0008
  34. 34.
    J. Aberg, Catalytic coherence. Phys. Rev. Lett. 113(15), 150402 (2014).  https://doi.org/10.1103/PhysRevLett.113.150402ADSCrossRefGoogle Scholar
  35. 35.
    A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Maximal work extraction from finite quantum systems. Europhys. Lett. 67(4), 565 (2004).  https://doi.org/10.1209/epl/i2004-10101-2
  36. 36.
    M. Horodecki, P. Horodecki, J. Oppenheim, Reversible transformations from pure to mixed states and the unique measure of information. Phys. Rev. A 67(6), 062104 (2003).  https://doi.org/10.1103/PhysRevA.67.062104ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    M. Horodecki, K. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen De, U. Sen, Local information as a resource in distributed quantum systems. Phys. Rev. Lett. 90(10), 100402 (2003).  https://doi.org/10.1103/PhysRevLett.90.100402
  38. 38.
    G. Gour, M.P. Müller, V. Narasimhachar, R.W. Spekkens, N. Yunger Halpern, The resource theory of informational nonequilibrium in thermodynamics. Phys. Rep. 583, 1–58 (2015).  https://doi.org/10.1016/j.physrep.2015.04.003
  39. 39.
    R. Renner, S. Wolf, Simple and tight bounds for information reconciliation and privacy amplification, in Advances in Cryptology - ASIACRYPT 2005(Springer, Berlin, 2005), pp. 199–216.  https://doi.org/10.1007/11593447_11
  40. 40.
    R. König, R. Renner, C. Schaffner, The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55(9), 4337–4347 (2009).  https://doi.org/10.1109/TIT.2009.2025545MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957).  https://doi.org/10.1103/PhysRev.106.620ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    E.T. Jaynes, Information theory and statistical mechanics ii. Phys. Rev. 108, 171–190 (1957).  https://doi.org/10.1103/PhysRev.108.171ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    L. Kraemer, L. del Rio, Currencies in resource theories (2016). E-print arXiv:1605.01064
  44. 44.
    M. Tomamichel, Modeling quantum information, in Quantum Information Processing with Finite Resources (Springer, Berlin, 2016), pp. 11–32.  https://doi.org/10.1007/978-3-319-21891-5CrossRefzbMATHGoogle Scholar
  45. 45.
    C.H. Bennett, The thermodynamics of computation—a review. Int. J. Theor. Phys. 21(12), 905–940 (1982).  https://doi.org/10.1007/BF02084158
  46. 46.
    W. van Dam, P. Hayden, Universal entanglement transformations without communication. Phys. Rev. A 67(6), 060302 (2003).  https://doi.org/10.1103/PhysRevA.67.060302MathSciNetCrossRefGoogle Scholar
  47. 47.
    N.H.Y. Ng, L. Manc̆inska, C. Cirstoiu, J. Eisert, S. Wehner, Limits to catalysis in quantum thermodynamics. N. J. Phys. 17(8), 085004 (2015).  https://doi.org/10.1088/1367-2630/17/8/085004MathSciNetCrossRefGoogle Scholar
  48. 48.
    F.G.S.L. Brandão, G. Gour, Reversible framework for quantum resource theories. Phys. Rev. Lett. 115(7), 070503 (2015).  https://doi.org/10.1103/PhysRevLett.115.070503ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    M. Tomamichel, R. Colbeck, R. Renner, A fully quantum asymptotic equipartition property. IEEE Trans. Inf. Theory 55(12), 5840–5847 (2009).  https://doi.org/10.1109/TIT.2009.2032797MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    G. Gour, I. Marvian, R.W. Spekkens, Measuring the quality of a quantum reference frame: the relative entropy of frameness. Phys. Rev. A 80(1), 012307 (2009).  https://doi.org/10.1103/PhysRevA.80.012307ADSCrossRefGoogle Scholar
  51. 51.
    L. del Rio, J. Aberg, R. Renner, O. Dahlsten, V. Vedral, The thermodynamic meaning of negative entropy. Nature 474(7349), 61–63 (2011).  https://doi.org/10.1038/nature10123CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of YorkYorkUK
  2. 2.Institute for Theoretical PhysicsETH ZurichZurichSwitzerland
  3. 3.Institute for Theoretical PhysicsETH ZurichZurichSwitzerland

Personalised recommendations