Trade-Off Between Work and Correlations in Quantum Thermodynamics

  • Giuseppe VitaglianoEmail author
  • Claude Klöckl
  • Marcus Huber
  • Nicolai Friis
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)


Quantum thermodynamics and quantum information are two frameworks for employing quantum mechanical systems for practical tasks, exploiting genuine quantum features to obtain advantages with respect to classical implementations. While appearing disconnected at first, the main resources of these frameworks, work and correlations, have a complicated yet interesting relationship that we examine here. We review the role of correlations in quantum thermodynamics, with a particular focus on the conversion of work into correlations. We provide new insights into the fundamental work cost of correlations and the existence of optimally correlating unitaries, and discuss relevant open problems.



We are grateful to Faraj Bakhshinezhad, Felix Binder, and Felix Pollock for helpful comments and suggestions. We thank Rick Sanchez for moral support. We acknowledge support from the Austrian Science Fund (FWF) through the START project Y879-N27, the Lise-Meitner project M 2462-N27, the project P 31339-N27, and the joint Czech-Austrian project MultiQUEST (I 3053-N27 and GF17-33780L).


  1. 1.
    F.G.S.L. Brandão, M. Horodecki, J. Oppenheim, J.M. Renes, R.W. Spekkens, The resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013).
  2. 2.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge).
  3. 3.
    M. Horodecki, J. Oppenheim, Quantumness in the context of resource theories. Int. J. Mod. Phys. B 27, 1345019 (2013).
  4. 4.
    C. Eltschka, J. Siewert, Quantifying entanglement resources. J. Phys. A: Math. Theor. 47, 424005 (2014).
  5. 5.
    J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, The role of quantum information in thermodynamics – a topical review. J. Phys. A: Math. Theor. 49, 143001 (2016).
  6. 6.
    J. Millen, A. Xuereb, Perspective on quantum thermodynamics. New J. Phys. 18, 011002 (2016).
  7. 7.
    S. Vinjanampathy, J. Anders, Quantum thermodynamics. Contemp. Phys. 57, 1 (2016).
  8. 8.
    M. Huber, M. Perarnau-Llobet, K.V. Hovhannisyan, P. Skrzypczyk, C. Klöckl, N. Brunner, A. Acín, Thermodynamic cost of creating correlations. New J. Phys. 17, 065008 (2015).
  9. 9.
    D.E. Bruschi, M. Perarnau-Llobet, N. Friis, K.V. Hovhannisyan, M. Huber, The thermodynamics of creating correlations: Limitations and optimal protocols. Phys. Rev. E 91, 032118 (2015).
  10. 10.
    G.L. Giorgi, S. Campbell, Correlation approach to work extraction from finite quantum systems. J. Phys. B: At. Mol. Opt. Phys. 48, 035501 (2015).
  11. 11.
    N. Friis, M. Huber, M. Perarnau-Llobet, Energetics of correlations in interacting systems. Phys. Rev. E 93, 042135 (2016).
  12. 12.
    G. Francica, J. Goold, F. Plastina, M. Paternostro, Daemonic ergotropy: enhanced work extraction from quantum correlations. npj Quantum Inf. 3, 12 (2017).
  13. 13.
    V. Vedral, The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197–234 (2002).
  14. 14.
    E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957).
  15. 15.
    N.J. Cerf, C. Adami, Quantum extension of conditional probability. Phys. Rev. A 60, 893 (1999).
  16. 16.
    L. Del Rio, J. Åberg, R. Renner, O. Dahlsten, V. Vedral, Nature 474, 61–63 (2011),
  17. 17.
    N. Friis, S. Bulusu, R.A. Bertlmann, Geometry of two-qubit states with negative conditional entropy. J. Phys. A: Math. Theor. 50, 125301 (2017).
  18. 18.
    A. Stokes, P. Deb, A. Beige, Using thermodynamics to identify quantum subsystems. J. Mod. Opt. 64, S7–S19 (2017).
  19. 19.
    H. Weimer, M.J. Henrich, F. Rempp, H. Schröder, G. Mahler, Local effective dynamics of quantum systems: a generalized approach to work and heat. Europhys. Lett. 83, 30008 (2008).
  20. 20.
    J. Teifel, G. Mahler, Autonomous modular quantum systems: contextual Jarzynski relations. Phys. Rev. E 83, 041131 (2011).
  21. 21.
    M.H. Partovi, Entanglement versus Stosszahlansatz: Disappearance of the thermodynamic arrow in a high-correlation environment. Phys. Rev. E 77, 021110 (2008).
  22. 22.
    D. Jennings, T. Rudolph, Entanglement and the thermodynamic arrow of time. Phys. Rev. E 81, 061130 (2010).
  23. 23.
    S. Jevtic, D. Jennings, T. Rudolph, Maximally and minimally correlated states attainable within a closed evolving system. Phys. Rev. Lett. 108, 110403 (2012a).
  24. 24.
    S. Jevtic, D. Jennings, T. Rudolph, Quantum mutual information along unitary orbits. Phys. Rev. A 85, 052121 (2012b).
  25. 25.
    F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. U.S.A. 11, 3275–3279 (2015).
  26. 26.
    S. Alipour, F. Benatti, F. Bakhshinezhad, M. Afsary, S. Marcantoni, A.T. Rezakhani, Correlations in quantum thermodynamics: Heat, work, and entropy production. Sci. Rep. 6, 35568 (2016).
  27. 27.
    M.N. Bera, A. Riera, M. Lewenstein, A. Winter, Generalized laws of thermodynamics in the presence of correlations. Nat. Commun. 8, 2180 (2017).
  28. 28.
    M.P. Müller, Correlating thermal machines and the second law at the nanoscale. Phys. Rev. X 8, 041051 (2018).
  29. 29.
    L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, in Kinetische Theorie II: Irreversible Prozesse Einführung und Originaltexte (Vieweg+Teubner Verlag, Wiesbaden, 1970) pp. 115–225.
  30. 30.
    L. Boltzmann, Zu Hrn. Zermelos Abhandlung über die mechanische Erklärung irreversiler Vorgänge (On the mechanical explanation of irreversible processes). Ann. Phys. 60, 392–398 (1897).
  31. 31.
    L. del Rio, A. Hutter, R. Renner, S. Wehner, Relative Thermalization. Phys. Rev. E 94, 022104 (2016).
  32. 32.
    K. Micadei, J.P.S. Peterson, A.M. Souza, R.S. Sarthour, I.S. Oliveira, G.T. Landi, T.B. Batalhão, R.M. Serra, E. Lutz, Reversing the thermodynamic arrow of time using quantum correlations (2017). arXiv:1711.03323
  33. 33.
    M. Perarnau-Llobet, K.V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, A. Acín, Extractable work from correlations. Phys. Rev. X 5, 041011 (2015).
  34. 34.
    A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Maximal work extraction from finite quantum systems. Europhys. Lett. 67, 565 (2004).
  35. 35.
    W. Pusz, S.L. Woronowicz, Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58, 273–290 (1978).
  36. 36.
    R. Alicki, M. Fannes, Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 87, 042123 (2013).
  37. 37.
    A. Lenard, Thermodynamical proof of the Gibbs formula for elementary quantum system. J. Stat. Phys. 19, 575–586 (1978).
  38. 38.
    K.V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, A. Acín, Entanglement generation is not necessary for optimal work extraction. Phys. Rev. Lett. 111, 240401 (2013).
  39. 39.
    F.C. Binder, S. Vinjanampathy, K. Modi, J. Goold, Quantacell: powerful charging of quantum batteries. New J. Phys. 17, 075015 (2015).
  40. 40.
    N. Friis, M. Huber, Precision and work fluctuations in gaussian battery charging. Quantum 2, 61 (2018).
  41. 41.
    F. Campaioli, F.A. Pollock, F.C. Binder, L.C. Céleri, J. Goold, S. Vinjanampathy, K. Modi, Enhancing the charging power of quantum batteries. Phys. Rev. Lett. 118, 150601 (2017).
  42. 42.
    D. Ferraro, M. Campisi, G.M. Andolina, V. Pellegrini, M. Polini, High-power collective charging of a solid-state quantum battery. Phys. Rev. Lett. 120, 117702 (2018).
  43. 43.
    E.G. Brown, N. Friis, M. Huber, Passivity and practical work extraction using Gaussian operations. New J. Phys. 18, 113028 (2016).
  44. 44.
    M. Brunelli, M.G. Genoni, M. Barbieri, M. Paternostro, Detecting Gaussian entanglement via extractable work. Phys. Rev. A 96, 062311 (2017).
  45. 45.
    J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, A thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002).
  46. 46.
    J. Oppenheim, K. Horodecki, M. Horodecki, P. Horodecki, R. Horodecki, A new type of complementarity between quantum and classical information. Phys. Rev. A 68, 022307 (2003).
  47. 47.
    M. Esposito, C. Van den Broeck, Second law and landauer principle far from equilibrium. Europhys. Lett. 95, 40004 (2011).
  48. 48.
    D. Reeb, M.M. Wolf, An improved Landauer Principle with finite-size corrections. New J. Phys. 16, 103011 (2014).
  49. 49.
    J. Åberg, Truly work-like work extraction via a single-shot analysis. Nat. Commun. 4, 1925 (2013).
  50. 50.
    P. Skrzypczyk, A.J. Short, S. Popescu, Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 5, 4185 (2014).
  51. 51.
    Y. Guryanova, N. Friis, M. Huber, Ideal projective measurements have infinite resource costs. arXiv:1805.11899

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Giuseppe Vitagliano
    • 1
    Email author
  • Claude Klöckl
    • 1
  • Marcus Huber
    • 1
  • Nicolai Friis
    • 1
  1. 1.Institute for Quantum Optics and Quantum Information - IQOQI ViennaAustrian Academy of SciencesViennaAustria

Personalised recommendations