Advertisement

Trade-Off Between Work and Correlations in Quantum Thermodynamics

  • Giuseppe VitaglianoEmail author
  • Claude Klöckl
  • Marcus Huber
  • Nicolai Friis
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

Quantum thermodynamics and quantum information are two frameworks for employing quantum mechanical systems for practical tasks, exploiting genuine quantum features to obtain advantages with respect to classical implementations. While appearing disconnected at first, the main resources of these frameworks, work and correlations, have a complicated yet interesting relationship that we examine here. We review the role of correlations in quantum thermodynamics, with a particular focus on the conversion of work into correlations. We provide new insights into the fundamental work cost of correlations and the existence of optimally correlating unitaries, and discuss relevant open problems.

Notes

Acknowledgements

We are grateful to Faraj Bakhshinezhad, Felix Binder, and Felix Pollock for helpful comments and suggestions. We thank Rick Sanchez for moral support. We acknowledge support from the Austrian Science Fund (FWF) through the START project Y879-N27, the Lise-Meitner project M 2462-N27, the project P 31339-N27, and the joint Czech-Austrian project MultiQUEST (I 3053-N27 and GF17-33780L).

References

  1. 1.
    F.G.S.L. Brandão, M. Horodecki, J. Oppenheim, J.M. Renes, R.W. Spekkens, The resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013).  https://doi.org/10.1103/PhysRevLett.111.250404
  2. 2.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge).  https://doi.org/10.1017/CBO9780511976667.001
  3. 3.
    M. Horodecki, J. Oppenheim, Quantumness in the context of resource theories. Int. J. Mod. Phys. B 27, 1345019 (2013).  https://doi.org/10.1142/S0217979213450197
  4. 4.
    C. Eltschka, J. Siewert, Quantifying entanglement resources. J. Phys. A: Math. Theor. 47, 424005 (2014).  https://doi.org/10.1088/1751-8113/47/42/424005
  5. 5.
    J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, The role of quantum information in thermodynamics – a topical review. J. Phys. A: Math. Theor. 49, 143001 (2016).  https://doi.org/10.1088/1751-8113/49/14/143001
  6. 6.
    J. Millen, A. Xuereb, Perspective on quantum thermodynamics. New J. Phys. 18, 011002 (2016).  https://doi.org/10.1088/1367-2630/18/1/011002
  7. 7.
    S. Vinjanampathy, J. Anders, Quantum thermodynamics. Contemp. Phys. 57, 1 (2016).  https://doi.org/10.1080/00107514.2016.1201896
  8. 8.
    M. Huber, M. Perarnau-Llobet, K.V. Hovhannisyan, P. Skrzypczyk, C. Klöckl, N. Brunner, A. Acín, Thermodynamic cost of creating correlations. New J. Phys. 17, 065008 (2015).  https://doi.org/10.1088/1367-2630/17/6/065008
  9. 9.
    D.E. Bruschi, M. Perarnau-Llobet, N. Friis, K.V. Hovhannisyan, M. Huber, The thermodynamics of creating correlations: Limitations and optimal protocols. Phys. Rev. E 91, 032118 (2015).  https://doi.org/10.1103/PhysRevE.91.032118
  10. 10.
    G.L. Giorgi, S. Campbell, Correlation approach to work extraction from finite quantum systems. J. Phys. B: At. Mol. Opt. Phys. 48, 035501 (2015).  https://doi.org/10.1088/0953-4075/48/3/035501
  11. 11.
    N. Friis, M. Huber, M. Perarnau-Llobet, Energetics of correlations in interacting systems. Phys. Rev. E 93, 042135 (2016).  https://doi.org/10.1103/PhysRevE.93.042135
  12. 12.
    G. Francica, J. Goold, F. Plastina, M. Paternostro, Daemonic ergotropy: enhanced work extraction from quantum correlations. npj Quantum Inf. 3, 12 (2017).  https://doi.org/10.1038/s41534-017-0012-8
  13. 13.
    V. Vedral, The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197–234 (2002).  https://doi.org/10.1103/RevModPhys.74.197
  14. 14.
    E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957).  https://doi.org/10.1103/PhysRev.106.620
  15. 15.
    N.J. Cerf, C. Adami, Quantum extension of conditional probability. Phys. Rev. A 60, 893 (1999).  https://doi.org/10.1103/PhysRevA.60.893
  16. 16.
    L. Del Rio, J. Åberg, R. Renner, O. Dahlsten, V. Vedral, Nature 474, 61–63 (2011),  https://doi.org/10.1038/nature10123
  17. 17.
    N. Friis, S. Bulusu, R.A. Bertlmann, Geometry of two-qubit states with negative conditional entropy. J. Phys. A: Math. Theor. 50, 125301 (2017).  https://doi.org/10.1088/1751-8121/aa5dfd
  18. 18.
    A. Stokes, P. Deb, A. Beige, Using thermodynamics to identify quantum subsystems. J. Mod. Opt. 64, S7–S19 (2017).  https://doi.org/10.1080/09500340.2017.1295108
  19. 19.
    H. Weimer, M.J. Henrich, F. Rempp, H. Schröder, G. Mahler, Local effective dynamics of quantum systems: a generalized approach to work and heat. Europhys. Lett. 83, 30008 (2008).  https://doi.org/10.1209/0295-5075/83/30008
  20. 20.
    J. Teifel, G. Mahler, Autonomous modular quantum systems: contextual Jarzynski relations. Phys. Rev. E 83, 041131 (2011).  https://doi.org/10.1103/PhysRevE.83.041131
  21. 21.
    M.H. Partovi, Entanglement versus Stosszahlansatz: Disappearance of the thermodynamic arrow in a high-correlation environment. Phys. Rev. E 77, 021110 (2008).  https://doi.org/10.1103/PhysRevE.77.021110
  22. 22.
    D. Jennings, T. Rudolph, Entanglement and the thermodynamic arrow of time. Phys. Rev. E 81, 061130 (2010).  https://doi.org/10.1103/PhysRevE.81.061130
  23. 23.
    S. Jevtic, D. Jennings, T. Rudolph, Maximally and minimally correlated states attainable within a closed evolving system. Phys. Rev. Lett. 108, 110403 (2012a).  https://doi.org/10.1103/PhysRevLett.108.110403
  24. 24.
    S. Jevtic, D. Jennings, T. Rudolph, Quantum mutual information along unitary orbits. Phys. Rev. A 85, 052121 (2012b).  https://doi.org/10.1103/PhysRevA.85.052121
  25. 25.
    F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. U.S.A. 11, 3275–3279 (2015).  https://doi.org/10.1073/pnas.1411728112
  26. 26.
    S. Alipour, F. Benatti, F. Bakhshinezhad, M. Afsary, S. Marcantoni, A.T. Rezakhani, Correlations in quantum thermodynamics: Heat, work, and entropy production. Sci. Rep. 6, 35568 (2016).  https://doi.org/10.1038/srep35568
  27. 27.
    M.N. Bera, A. Riera, M. Lewenstein, A. Winter, Generalized laws of thermodynamics in the presence of correlations. Nat. Commun. 8, 2180 (2017).  https://doi.org/10.1038/s41467-017-02370-x
  28. 28.
    M.P. Müller, Correlating thermal machines and the second law at the nanoscale. Phys. Rev. X 8, 041051 (2018).  https://doi.org/10.1103/PhysRevX.8.041051
  29. 29.
    L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, in Kinetische Theorie II: Irreversible Prozesse Einführung und Originaltexte (Vieweg+Teubner Verlag, Wiesbaden, 1970) pp. 115–225.  https://doi.org/10.1007/978-3-322-84986-1_3
  30. 30.
    L. Boltzmann, Zu Hrn. Zermelos Abhandlung über die mechanische Erklärung irreversiler Vorgänge (On the mechanical explanation of irreversible processes). Ann. Phys. 60, 392–398 (1897).  https://doi.org/10.1002/andp.18972960216
  31. 31.
    L. del Rio, A. Hutter, R. Renner, S. Wehner, Relative Thermalization. Phys. Rev. E 94, 022104 (2016).  https://doi.org/10.1103/PhysRevE.94.022104
  32. 32.
    K. Micadei, J.P.S. Peterson, A.M. Souza, R.S. Sarthour, I.S. Oliveira, G.T. Landi, T.B. Batalhão, R.M. Serra, E. Lutz, Reversing the thermodynamic arrow of time using quantum correlations (2017). arXiv:1711.03323
  33. 33.
    M. Perarnau-Llobet, K.V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, A. Acín, Extractable work from correlations. Phys. Rev. X 5, 041011 (2015).  https://doi.org/10.1103/PhysRevX.5.041011
  34. 34.
    A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Maximal work extraction from finite quantum systems. Europhys. Lett. 67, 565 (2004).  https://doi.org/10.1209/epl/i2004-10101-2
  35. 35.
    W. Pusz, S.L. Woronowicz, Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58, 273–290 (1978).  https://doi.org/10.1007/BF01614224
  36. 36.
    R. Alicki, M. Fannes, Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 87, 042123 (2013).  https://doi.org/10.1103/PhysRevE.87.042123
  37. 37.
    A. Lenard, Thermodynamical proof of the Gibbs formula for elementary quantum system. J. Stat. Phys. 19, 575–586 (1978).  https://doi.org/10.1007/BF01011769
  38. 38.
    K.V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, A. Acín, Entanglement generation is not necessary for optimal work extraction. Phys. Rev. Lett. 111, 240401 (2013).  https://doi.org/10.1103/PhysRevLett.111.240401
  39. 39.
    F.C. Binder, S. Vinjanampathy, K. Modi, J. Goold, Quantacell: powerful charging of quantum batteries. New J. Phys. 17, 075015 (2015).  https://doi.org/10.1088/1367-2630/17/7/075015
  40. 40.
    N. Friis, M. Huber, Precision and work fluctuations in gaussian battery charging. Quantum 2, 61 (2018).  https://doi.org/10.22331/q-2018-04-23-61
  41. 41.
    F. Campaioli, F.A. Pollock, F.C. Binder, L.C. Céleri, J. Goold, S. Vinjanampathy, K. Modi, Enhancing the charging power of quantum batteries. Phys. Rev. Lett. 118, 150601 (2017).  https://doi.org/10.1103/PhysRevLett.118.150601
  42. 42.
    D. Ferraro, M. Campisi, G.M. Andolina, V. Pellegrini, M. Polini, High-power collective charging of a solid-state quantum battery. Phys. Rev. Lett. 120, 117702 (2018).  https://doi.org/10.1103/PhysRevLett.120.117702
  43. 43.
    E.G. Brown, N. Friis, M. Huber, Passivity and practical work extraction using Gaussian operations. New J. Phys. 18, 113028 (2016).  https://doi.org/10.1088/1367-2630/18/11/113028
  44. 44.
    M. Brunelli, M.G. Genoni, M. Barbieri, M. Paternostro, Detecting Gaussian entanglement via extractable work. Phys. Rev. A 96, 062311 (2017).  https://doi.org/10.1103/PhysRevA.96.062311
  45. 45.
    J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, A thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002).  https://doi.org/10.1103/PhysRevLett.89.180402
  46. 46.
    J. Oppenheim, K. Horodecki, M. Horodecki, P. Horodecki, R. Horodecki, A new type of complementarity between quantum and classical information. Phys. Rev. A 68, 022307 (2003).  https://doi.org/10.1103/PhysRevA.68.022307
  47. 47.
    M. Esposito, C. Van den Broeck, Second law and landauer principle far from equilibrium. Europhys. Lett. 95, 40004 (2011).  https://doi.org/10.1209/0295-5075/95/40004
  48. 48.
    D. Reeb, M.M. Wolf, An improved Landauer Principle with finite-size corrections. New J. Phys. 16, 103011 (2014).  https://doi.org/10.1088/1367-2630/16/10/103011
  49. 49.
    J. Åberg, Truly work-like work extraction via a single-shot analysis. Nat. Commun. 4, 1925 (2013).  https://doi.org/10.1038/ncomms2712
  50. 50.
    P. Skrzypczyk, A.J. Short, S. Popescu, Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 5, 4185 (2014).  https://doi.org/10.1038/ncomms5185
  51. 51.
    Y. Guryanova, N. Friis, M. Huber, Ideal projective measurements have infinite resource costs. arXiv:1805.11899

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Giuseppe Vitagliano
    • 1
    Email author
  • Claude Klöckl
    • 1
  • Marcus Huber
    • 1
  • Nicolai Friis
    • 1
  1. 1.Institute for Quantum Optics and Quantum Information - IQOQI ViennaAustrian Academy of SciencesViennaAustria

Personalised recommendations