Advertisement

One-Shot Information-Theoretical Approaches to Fluctuation Theorems

  • Andrew J. P. GarnerEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

Traditional thermodynamics governs the behaviour of large systems that evolve between states of thermal equilibrium. For these large systems, the mean values of thermodynamic quantities (such as work, heat and entropy) provide a good characterisation of the process. Conversely, there is ever-increasing interest in the thermal behaviour of systems that evolve quickly and far from equilibrium, and that are too small for their behaviour to be well-described by mean values. Two major fields of modern thermodynamics seek to tackle such systems: non-equilibrium thermodynamics, and the nascent field of one-shot statistical mechanics. The former provides tools such as fluctuation theorems, whereas the latter applies “one-shot” Rényi entropies to thermal contexts. In this chapter, I provide a gentle introduction to recent research that draws from both fields: the application of one-shot information theory to fluctuation theorems.

Notes

Acknowledgements

The author is grateful for discussions, comments and suggestions from Felix Binder, Oscar Dahlsten, Jayne Thompson, Vlatko Vedral, and Nicole Yunger Halpern. The author is financially supported by the Foundational Questions Institute “Physics of the Observer” large grant FQXi-RFP-1614.

References

  1. 1.
    G.E. Moore, Cramming more components onto integrated circuits (Reprinted from Electronics, pp. 114–117, April 19, 1965). Proc. IEEE 86(1), 82–85 (1965).  https://doi.org/10.1109/N-SSC.2006.4785860, ISSN 1098-4232
  2. 2.
    Intel, Intel’s 10 nm technology: delivering the highest logic transistor density in the industry through the use of hyper scaling (2017), https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/09/10-nm-icf-fact-sheet.pdf
  3. 3.
    M. Fuechsle, S. Mahapatra, F.A. Zwanenburg, M. Friesen, M.A. Eriksson, M.Y. Simmons, Spectroscopy of few-electron single-crystal silicon quantum dots. Nat. Nanotechnol. 5(7), 502–505 (2010).  https://doi.org/10.1038/nnano.2010.95
  4. 4.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000). ISBN 0521635039Google Scholar
  5. 5.
    J.I. Cirac, P. Zoller, Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995).  https://doi.org/10.1103/PhysRevLett.74.4091, ISSN 0031-9007
  6. 6.
    T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464(7285), 45–53 (2010).  https://doi.org/10.1038/nature08812, ISSN 0028-0836
  7. 7.
    S.J. Blundell, K.M. Blundell, Concepts in Thermal Physics (Oxford University Press, Oxford, 2006). ISBN 978-0199562107Google Scholar
  8. 8.
    D.N. Zubarev, V. Morozov, G. Ropke, Statistical Mechanics of Nonequilibrium Processes (Akademie Verlag, 1996). ISBN 3055017080Google Scholar
  9. 9.
    C. Jarzynski, Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690–2693 (1997).  https://doi.org/10.1103/PhysRevLett.78.2690, ISSN 0031-9007
  10. 10.
    G.E. Crooks, Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J. Stat. Phys. 90(5–6), 1481–1487 (1998).  https://doi.org/10.1023/A:1023208217925, ISSN 1572-9613
  11. 11.
    G.E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60(3), 2721–2726 (1999).  https://doi.org/10.1103/PhysRevE.60.2721, ISSN 1063-651X
  12. 12.
    L. del Rio, J. Åberg, R. Renner, O.C.O. Dahlsten, V. Vedral, The thermodynamic meaning of negative entropy. Nature 474(7349), 61–63 (2011).  https://doi.org/10.1038/nature10123, ISSN 1476-4687
  13. 13.
    O.C.O. Dahlsten, R. Renner, E. Rieper, V. Vedral, Inadequacy of von Neumann entropy for characterizing extractable work. New J. Phys. 13(5), 053015 (2011).  https://doi.org/10.1088/1367-2630/13/5/053015
  14. 14.
    O.C.O. Dahlsten, Non-equilibrium statistical mechanics inspired by modern information theory. Entropy 15(12), 5346–5361 (2013).  https://doi.org/10.3390/e15125346
  15. 15.
    J. Åberg, Truly work-like work extraction via a single-shot analysis. Nat. Commun. 4, 1925 (2013).  https://doi.org/10.1038/ncomms2712, ISSN 20411723
  16. 16.
    M. Horodecki, J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4, 2059 (2013).  https://doi.org/10.1038/ncomms3059, ISSN 2041-1723
  17. 17.
    D. Egloff, O.C.O. Dahlsten, R. Renner, V. Vedral, A measure of majorization emerging from single-shot statistical mechanics. New J. Phys. 17(7), 073001 (2015).  https://doi.org/10.1088/1367-2630/17/7/073001, ISSN 1367-2630
  18. 18.
    F.G.S.L. Brandão, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. 112(11), 201411728 (2015).  https://doi.org/10.1073/pnas.1411728112, ISSN 0027-8424
  19. 19.
    M. Weilenmann, L. Kraemer, P. Faist, R. Renner, Axiomatic relation between thermodynamic and information-theoretic entropies. Phys. Rev. Lett. 117(26), 260601 (2016).  https://doi.org/10.1103/PhysRevLett.117.260601, ISSN 0031-9007
  20. 20.
    A. Rényi, On measures of entropy and information, in Proceedings of Fourth Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, pp. 547–561 (University of California Press, 1961)Google Scholar
  21. 21.
    R. Renner, S. Wolf, Smooth Renyi entropy and applications, in International Symposium on Information Theory, 2004, ISIT 2004. Proceedings, p. 232 (IEEE, 2004)Google Scholar
  22. 22.
    R. Renner, Security of quantum key distribution, Ph.D. thesis, ETH Zürich, 2005, http://arxiv.org/abs/quant-ph/0512258
  23. 23.
    M. Tomamichel, Quantum Information Processing with Finite Resources (Springer, New York, 2016).  https://doi.org/10.1007/978-3-319-21891-5, ISBN 978-3-319-21890-8
  24. 24.
    C.E. Shannon, A mathematical theory of communication. Bell Sys. Tech. J. 27(3), 379–423, 623–656 (1948).  https://doi.org/10.1002/j.1538-7305.1948.tb01338.x, ISSN 00058580
  25. 25.
    R. Hanel, S. Thurner, Generalized (c, d)-entropy and aging random walks. Entropy 15(12), 5324–5337 (2013).  https://doi.org/10.3390/e15125324, ISSN 1099-4300
  26. 26.
    D.S. Jones, Elementary Information Theory (Clarendon Press, Oxford, 1979). ISBN 9780198596363Google Scholar
  27. 27.
    V. Vedral, The role of relative entropy in quantum information theory. Rev. Modern Phys. 74(1), 197–234 (2002), http://rmp.aps.org/abstract/RMP/v74/i1/p197_1, ISSN 0034-6861
  28. 28.
    A.J.P. Garner, Q. Liu, J. Thompson, V. Vedral, M. Gu, Provably unbounded memory advantage in stochastic simulation using quantum mechanics. New J. Phys. (2017).  https://doi.org/10.1088/1367-2630/AA82DF, ISSN 1367-2630
  29. 29.
    N. Yunger Halpern, A.J.P. Garner, O.C.O. Dahlsten, V. Vedral, Introducing one-shot work into fluctuation theorems. New J. Phys. 17, 095003 (2015).  https://doi.org/10.1088/1367-2630/17/9/095003
  30. 30.
    T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 2006), https://www.wiley.com/en-sg/Elements+of+Information+Theory,+2nd+Edition-p-9780471241959. ISBN 9780471241959
  31. 31.
    T.M. Mitchell, Machine Learning (McGraw-Hill, New York, 1997). ISBN 0070428077Google Scholar
  32. 32.
    T. Van Erven, P. Harrëmos, Rényi divergence and Kullback–Leibler divergence. IEEE Trans. Inf. Theory 60(7), 3797–3820 (2014).  https://doi.org/10.1109/TIT.2014.2320500, ISSN 00189448
  33. 33.
    B. Schumacher, Quantum coding. Phys. Rev. A 51(4), 2738–2747 (1995).  https://doi.org/10.1103/PhysRevA.51.2738, ISSN 1050-2947
  34. 34.
    M. Müller-Lennert, F. Dupuis, S. Szehr, S. Fehr, M. Tomamichel, On quantum Renyi entropies: a new generalization and some properties. J. Math. Phys. 54(12), 122203 (2013).  https://doi.org/10.1063/1.4838856, ISSN 0022-2488
  35. 35.
    M.M. Wilde, A. Winter, D. Yang, Strong converse for the classical capacity of entanglement-breaking and hadamard channels via a sandwiched Rényi relative entropy. Commun. Math. Phys. 331(2), 593–622 (2014).  https://doi.org/10.1007/s00220-014-2122-x, ISSN 0010-3616
  36. 36.
    M. Tomamichel, M. Berta, M. Hayashi, Relating different quantum generalizations of the conditional Rényi entropy. J. Math. Phys. 55(8), 082206 (2014).  https://doi.org/10.1063/1.4892761, ISSN 0022-2488
  37. 37.
    R. Landauer, Irreversibility and heat generation in the computer process. IBM J. Res. Dev. 5, 183–191 (1961).  https://doi.org/10.1147/rd.53.0183
  38. 38.
    C.H. Bennett, The thermodynamics of computation a review. Int. J. Theor. Phys. 21(12), 905–940 (1982).  https://doi.org/10.1007/BF02084158, ISSN 0020-7748
  39. 39.
    C.H. Bennett, Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Modern Phys. 34(3), 501–510 (2003).  https://doi.org/10.1016/S1355-2198(03)00039-X, ISSN 13552198
  40. 40.
    R. Landauer, The physical nature of information. Phys. Lett. A 217(4), 188–193 (1996), http://www.sciencedirect.com/science/article/pii/0375960196004537
  41. 41.
    J.C. Maxwell, Theory of Heat (Longmans, Green & Co, 1902 edition, 1870)Google Scholar
  42. 42.
    H. Leff, A.F. Rex, Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (Taylor & Francis, London, 2002)Google Scholar
  43. 43.
    L. Szilard, über die Enfropieuerminderung in einem thermodynamischen System bei Eingrifen intelligenter Wesen. Zeitschrift für Physik 53, 840–856 (1929)ADSCrossRefGoogle Scholar
  44. 44.
    D. Reeb, M.M. Wolf, An improved Landauer principle with finite-size corrections. New J. Phys. 16(10), 103011 (2014).  https://doi.org/10.1088/1367-2630/16/10/103011, ISSN 1367-2630
  45. 45.
    P. Skrzypczyk, A.J. Short, S. Popescu, Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 5, 4185 (2014).  https://doi.org/10.1038/ncomms5185, ISSN 2041-1723
  46. 46.
    F.G.S.L. Brandão, M. Horodecki, J. Oppenheim, J.M. Renes, R.W. Spekkens, Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111(25), 250404 (2013).  https://doi.org/10.1103/PhysRevLett.111.250404, ISSN 0031-9007
  47. 47.
    A.M. Alhambra, L. Masanes, J. Oppenheim, C. Perry, Fluctuating work: from quantum thermodynamical identities to a second law equality. Phys. Rev. X 6(4), 041017 (2016).  https://doi.org/10.1103/PhysRevX.6.041017, ISSN 2160-3308
  48. 48.
    J. Anders, V. Giovannetti, Thermodynamics of discrete quantum processes. New J. Phys. 15(3), 033022 (2013).  https://doi.org/10.1088/1367-2630/15/3/033022, ISSN 1367-2630
  49. 49.
    C. Browne, A.J.P. Garner, O.C.O. Dahlsten, V. Vedral, Guaranteed energy-efficient bit reset in finite time. Phys. Rev. Lett. 113(10), 100603 (2014).  https://doi.org/10.1103/PhysRevLett.113.100603, ISSN 0031-9007
  50. 50.
    R. Alicki, The quantum open system as a model of the heat engine. J. Phys. A Math. Gen. 12(5), L103–L107 (1979).  https://doi.org/10.1088/0305-4470/12/5/007, ISSN 0305-4470
  51. 51.
    B. Piechocinska, Information erasure. Phys. Rev. A 61(6), 062314 (2000).  https://doi.org/10.1103/PhysRevA.61.062314, ISSN 1050-2947
  52. 52.
    R. Alicki, M. Horodecki, P. Horodecki, R. Horodecki, thermodynamics of quantum information systems Hamiltonian description. Open Syst. Inf. Dyn. (OSID) 11(03), 205–217 (2004).  https://doi.org/10.1023/B:OPSY.0000047566.72717.71, ISSN 1230-1612
  53. 53.
    E. Schrödinger, Statistical Thermodynamics, 2nd edn. (Cambridge University Press, Cambridge, 1946)zbMATHGoogle Scholar
  54. 54.
    H.T. Quan, H. Dong, Quantum Crooks fluctuation theorem and quantum Jarzynski equality in the presence of a reservoir, 6 (2008), http://arxiv.org/abs/0812.4955
  55. 55.
    D. Wu, D.A. Kofke, Phase-space overlap measures. I. fail-safe bias detection in free energies calculated by molecular simulation. J. Chem. Phys. 123(5), 054103 (2005).  https://doi.org/10.1063/1.1992483, ISSN 0021-9606
  56. 56.
    A. Gomez-Marin, J.M.R. Parrondo, C. Van den Broeck, The footprints of irreversibility. EPL (Europhys. Lett.) 82(5), 50002 (2008).  https://doi.org/10.1209/0295-5075/82/50002, ISSN 0295-5075
  57. 57.
    N. Yunger Halpern, A.J.P. Garner, O.C.O. Dahlsten, V. Vedral, Maximum one-shot dissipated work from Rényi divergences. Phys. Rev. E 97(5), 052135 (2018).  https://doi.org/10.1103/PhysRevE.97.052135, ISSN 2470-0045
  58. 58.
    O.C.O. Dahlsten, M.-S. Choi, D. Braun, A.J.P. Garner, N. Yunger Halpern, V. Vedral, Entropic equality for worst-case work at any protocol speed. New J. Phys. 19(4), 043013 (2017).  https://doi.org/10.1088/1367-2630/aa62ba, ISSN 1367-2630
  59. 59.
    N. Yunger Halpern, C. Jarzynski, Number of trials required to estimate a free-energy difference, using fluctuation relations. Phys. Rev. E 93(5), 052144 (2016).  https://doi.org/10.1103/PhysRevE.93.052144, ISSN 2470-0045D
  60. 60.
    C. Jarzynski, Rare events and the convergence of exponentially averaged work values. Phys. Rev. E 73(4), 046105 (2006).  https://doi.org/10.1103/PhysRevE.73.046105, ISSN 1539-3755
  61. 61.
    J. Kurchan, A quantum fluctuation theorem (2000), http://arxiv.org/abs/cond-mat/0007360
  62. 62.
    H. Tasaki, Jarzynski relations for quantum systems and some applications, 11 (2000), http://arxiv.org/abs/cond-mat/0009244
  63. 63.
    V. Vedral, An information theoretic equality implying the Jarzynski relation. J. Phys. A Math. Theor. 45(27), 272001 (2012).  https://doi.org/10.1088/1751-8113/45/27/272001, ISSN 1751-8113
  64. 64.
    J.M.R. Parrondo, C. Van den Broeck, R. Kawai, Entropy production and the arrow of time. New J. Phys. 11(7), 073008 (2009).  https://doi.org/10.1088/1367-2630/11/7/073008, ISSN 1367-2630
  65. 65.
    B. Wei, M.B. Plenio, Relations between dissipated work in non-equilibrium process and the family of Rényi divergences. New J. Phys. 19(2), 023002 (2017).  https://doi.org/10.1088/1367-2630/aa579e, ISSN 1367-2630
  66. 66.
    G. Gour, M.P. Müller, V. Narasimhachar, R.W. Spekkens, N. Yunger Halpern, The resource theory of informational nonequilibrium in thermodynamics. Phys. Rep. 583, 1–58 (2015).  https://doi.org/10.1016/j.physrep.2015.04.003
  67. 67.
    M. Lostaglio, D. Jennings, T. Rudolph, Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6(1), 6383 (2015).  https://doi.org/10.1038/ncomms7383, ISSN 2041-1723
  68. 68.
    M. Lostaglio, K. Korzekwa, D. Jennings, T. Rudolph, Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5(2), 021001 (2015).  https://doi.org/10.1103/PhysRevX.5.021001, ISSN 2160-3308
  69. 69.
    P. Ćwikliński, M. Studziński, M. Horodecki, J. Oppenheim, Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics. Phys. Rev. Lett. 115(21), 210403 (2015).  https://doi.org/10.1103/PhysRevLett.115.210403, ISSN 0031-9007
  70. 70.
    R. Dorner, J. Goold, C. Cormick, M. Paternostro, V. Vedral, Emergent thermodynamics in a quenched quantum many-body system. Phys. Rev. Lett. 109(16), 160601 (2012).  https://doi.org/10.1103/PhysRevLett.109.160601, ISSN 0031-9007
  71. 71.
    R. Dorner, S.R. Clark, L. Heaney, R. Fazio, J. Goold, V. Vedral, Extracting quantum work statistics and fluctuation theorems by single-qubit interferometry. Phys. Rev. Lett. 110(23), 230601 (2013).  https://doi.org/10.1103/PhysRevLett.110.230601, ISSN 0031-9007
  72. 72.
    T.B. Batalhão, A.M. Souza, R.S. Sarthour, I.S. Oliveira, M. Paternostro, E. Lutz, R.M. Serra, Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett. 115(19), 190601 (2015).  https://doi.org/10.1103/PhysRevLett.115.190601, ISSN 0031-9007
  73. 73.
    T.P. Xiong, L.L. Yan, F. Zhou, K. Rehan, D.F. Liang, L. Chen, W.L. Yang, Z.H. Ma, M. Feng, V. Vedral, Experimental verification of a Jarzynski-related information-theoretic equality by a single trapped ion. Phys. Rev. Lett. 120(1), 010601 (2018).  https://doi.org/10.1103/PhysRevLett.120.010601, ISSN 0031-9007
  74. 74.
    X.-Y. Guo, Y. Peng, C. Peng, H. Deng, Y.-R. Jin, C. Tang, X. Zhu, D. Zheng, H. Fan, Demonstration of irreversibility and dissipation relation of thermodynamics with a superconducting qubit (2017), http://arxiv.org/abs/1710.10234
  75. 75.
    J. Åberg, Fully quantum fluctuation theorems. Phys. Rev. X 8(1), 011019 (2018).  https://doi.org/10.1103/PhysRevX.8.011019, ISSN 2160-3308

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Centre for Quantum TechnologiesNational University of SingaporeSingaporeSingapore
  2. 2.Institute for Quantum Optics and Quantum InformationAustrian Academy of SciencesViennaAustria

Personalised recommendations