Advertisement

Resource Theory of Quantum Thermodynamics: Thermal Operations and Second Laws

  • Nelly Huei Ying Ng
  • Mischa Prebin WoodsEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

Resource theories are a generic approach used to manage any valuable resource, such as entanglement, purity, and asymmetry. Such frameworks are characterized by two main elements: a set of predefined (free) operations and states, that one assumes to be easily obtained at no cost. Given these ground rules, one can ask: what is achievable by using such free operations and states? This usually results in a set of state transition conditions, that tell us if a particular state \( \rho \) may evolve into another state \( \rho ' \) via the usage of free operations and states. We shall see in this chapter that thermal interactions can be modelled as a resource theory. The state transition conditions arising out of such a framework, are then referred to as “second laws”. We shall also see how such state transition conditions recover classical thermodynamics in the i.i.d. limit. Finally, we discuss how these laws are applied to study fundamental limitations to the performance of quantum heat engines.

Notes

Acknowledgements

N.N. acknowledges funding from the Alexander von Humboldt foundation. M.W. acknowledges the Swiss National Science Foundation (SNSF) via the NCCR QSIT. M.W. would like to acknowledge the COST MP1209 network “Thermodynamics in the quantum regime”, to which he was a member and from which part of the research reviewed in this chapter was made possible.

References

  1. 1.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)Google Scholar
  2. 2.
    C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev. A 53, 2046 (1996a).  https://doi.org/10.1103/PhysRevA.53.2046
  3. 3.
    P.G. Kwiat, S. Barraza-Lopez, A. Stefanov, N. Gisin, Nature 409, 1014 (2001).  https://doi.org/10.1038/35059017
  4. 4.
    H. Takahashi, J.S. Neergaard-Nielsen, M. Takeuchi, M. Takeoka, K. Hayasaka, A. Furusawa, M. Sasaki, Nat. Photonics 4, 178 (2010).  https://doi.org/10.1038/nphoton.2010.1
  5. 5.
    K.G.H. Vollbrecht, C.A. Muschik, J.I. Cirac, Phys. Rev. Lett. 107, 120502 (2011).  https://doi.org/10.1103/PhysRevLett.107.120502
  6. 6.
    F.G. Brandão, G. Gour, Phys. Rev. Lett. 115, 070503 (2015).  https://doi.org/10.1103/PhysRevLett.115.070503
  7. 7.
    G. Gour, R.W. Spekkens, New J. Phys. 10, 033023 (2008).  https://doi.org/10.1088/1367-2630/10/3/033023
  8. 8.
    M.B. Plenio, S. Virmani, Quantum Inf. Comput. 7, 1 (2007). arXiv:quant-ph/0504163
  9. 9.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).  https://doi.org/10.1103/RevModPhys.81.865
  10. 10.
    T. Baumgratz, M. Cramer, M. Plenio, Phys. Rev. Lett. 113, 140401 (2014).  https://doi.org/10.1103/PhysRevLett.113.140401
  11. 11.
    A. Winter, D. Yang, Phys. Rev. Lett. 116, 120404 (2016).  https://doi.org/10.1103/PhysRevLett.116.120404
  12. 12.
    M. Horodecki, P. Horodecki, J. Oppenheim, Phys. Rev. A 67, 062104 (2003).  https://doi.org/10.1103/PhysRevA.67.062104
  13. 13.
    F.G.S.L. Brandão, M. Horodecki, J. Oppenheim, J.M. Renes, R.W. Spekkens, Phys. Rev. Lett. 111, 250404 (2013).  https://doi.org/10.1103/PhysRevLett.111.250404
  14. 14.
    I. Marvian, R.W. Spekkens, New J. Phys. 15, 033001 (2013).  https://doi.org/10.1088/1367-2630/15/3/033001
  15. 15.
    G. Gour, M.P. Müller, V. Narasimhachar, R.W. Spekkens, N. Yunger Halpern, Physics Reports 583, 1 (2015).  https://doi.org/10.1016/j.physrep.2015.04.003
  16. 16.
    C.H. Bennett, Int. J. Theor. Phys. 21, 905 (1982).  https://doi.org/10.1007/BF02084158
  17. 17.
    R. Landauer, IBM J. Res. Dev. 5, 183 (1961).  https://doi.org/10.1147/rd.53.0183
  18. 18.
    C.H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J.A. Smolin, W.K. Wootters, Phys. Rev. Lett. 76, 722 (1996b).  https://doi.org/10.1103/PhysRevLett.76.722
  19. 19.
    M. Horodecki, J. Oppenheim, R. Horodecki, Phys. Rev. Lett. 89, 240403 (2002).  https://doi.org/10.1103/PhysRevLett.89.240403
  20. 20.
    I. Devetak, A. Harrow, A. Winter, IEEE Trans. Inf. Theory 54, 4587 (2008).  https://doi.org/10.1109/TIT.2008.928980
  21. 21.
    R. Alicki, M. Horodecki, P. Horodecki, R. Horodecki, Open Syst. Inf. Dyn. 11, 205 (2004). arXiv:quant-ph/0402012
  22. 22.
    R. Bhatia, Matrix Analysis, Graduate texts in mathematics (Springer, Berlin, 1997).  https://doi.org/10.1007/978-1-4612-0653-8
  23. 23.
    G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities (Cambridge University Press, Cambridge, 1952)Google Scholar
  24. 24.
    M.A. Nielsen, Lect. Notes, Department of physics (University of Queensland, Australia, 2002)Google Scholar
  25. 25.
    J. Scharlau, M.P. Mueller, Quantum 2, 54 (2018).  https://doi.org/10.22331/q-2018-02-22-54
  26. 26.
    W. Pusz, S.L. Woronowicz, Commun. Math. Phys. 58, 273 (1978).  https://doi.org/10.1007/BF01614224
  27. 27.
    D. Janzing, P. Wocjan, R. Zeier, R. Geiss, T. Beth, Int. J. Theor. Phys. 39, 2717 (2000). arXiv:quant-ph/0002048
  28. 28.
    F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, Proc. Natl. Acad. Sci. 112, 3275 (2015a).  https://doi.org/10.1073/pnas.1411728112
  29. 29.
    M. Horodecki, J. Oppenheim. Nat. Commun. 4 (2013).  https://doi.org/10.1038/ncomms3059
  30. 30.
    M. Lostaglio, K. Korzekwa, D. Jennings, T. Rudolph, Phys. Rev. X 5, 021001 (2015a).  https://doi.org/10.1103/PhysRevX.5.021001
  31. 31.
    P. Faist, R. Renner, Phys. Rev. X 8, 021011 (2018).  https://doi.org/10.1103/PhysRevX.8.021011
  32. 32.
    N. Yunger Halpern, J.M. Renes, Phys. Rev. E 93, 022126 (2016).  https://doi.org/10.1103/PhysRevE.93.022126
  33. 33.
    N. Yunger Halpern, J. Phys. A: Math. Theor. 51, 094001 (2018).  https://doi.org/10.1088/1751-8121/aaa62f
  34. 34.
    N.Yunger Halpern, P. Faist, J. Oppenheim, A. Winter, Nat. Commun. 7 (2016).  https://doi.org/10.1038/ncomms12051
  35. 35.
    Y. Guryanova, S. Popescu, A.J. Short, R. Silva, P. Skrzypczyk, Nat. Comm. 7 (2016).  https://doi.org/10.1038/ncomms12049
  36. 36.
    M. Lostaglio, D. Jennings, T. Rudolph, New J. Phys. 19, 043008 (2017).  https://doi.org/10.1088/1367-2630/aa617f
  37. 37.
    S. Popescu, A.B. Sainz, A.J. Short, A. Winter, Phil. Trans. Roy. Soc. A 376(2123), 20180111 (2018).  https://doi.org/10.1098/rsta.2018.0111
  38. 38.
    G. Gour, D. Jennings, F. Buscemi, R. Duan, I. Marvian, Nat. Commun. 9(5352) (2018).  https://doi.org/10.1038/s41467-018-06261-7
  39. 39.
    F. Reif, Fundamentals of Statistical and Thermal Physics: (Waveland Press, 2009)Google Scholar
  40. 40.
    C. Adkins, Equilibrium Thermodynamics (Cambridge University Press, Cambridge, 1983)Google Scholar
  41. 41.
    D. Schroeder, An Introduction to Thermal Physics (Addison Wesley, USA, 2000).  https://doi.org/10.1119/1.19116
  42. 42.
    K. Huang, Statistical Mechanics (Wiley, New York, 1987)Google Scholar
  43. 43.
    D. Egloff, O.C.O. Dahlsten, R. Renner, V. Vedral, New J. Phys. 17, 073001 (2015).  https://doi.org/10.1088/1367-2630/17/7/073001
  44. 44.
    L. Del Rio, J. Åberg, R. Renner, O. Dahlsten, V. Vedral, Nature 474, 61 (2011).  https://doi.org/10.1038/nature10123
  45. 45.
    J. Åberg, Nat. Commun. 4 (2013).  https://doi.org/10.1038/ncomms2712
  46. 46.
    G.E. Crooks, J. Stat. Phys. 90, 1481 (1998).  https://doi.org/10.1023/A:1023208217925
  47. 47.
    B. Piechocinska, Phys. Rev. A 61, 062314 (2000).  https://doi.org/10.1103/PhysRevA.61.062314
  48. 48.
    M. Esposito, C.V. den Broeck, EPL (Europhys. Lett.) 95, 40004 (2011).  https://doi.org/10.1209/0295-5075/95/40004
  49. 49.
    H. Hossein-Nejad, E.J. O’Reilly, A. Olaya-Castro, New J. Phys. 17, 075014 (2015).  https://doi.org/10.1088/1367-2630/17/7/075014
  50. 50.
    R. Gallego, J. Eisert, H. Wilming, New J. Phys. 18, 103017 (2016).  https://doi.org/10.1088/1367-2630/18/10/103017
  51. 51.
    J. Gemmer, J. Anders, New J. Phys. 17, 085006 (2015).  https://doi.org/10.1088/1367-2630/17/8/085006
  52. 52.
    M. Perarnau-Llobet, K.V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, A. Acín, Phys. Rev. X 5, 041011 (2015).  https://doi.org/10.1103/PhysRevX.5.041011
  53. 53.
    P. Skrzypczyk, A.J. Short, S. Popescu, Nat. Commun. 5 (2014).  https://doi.org/10.1038/ncomms5185
  54. 54.
    M.O. Scully, Phys. Rev. Lett. 88, 050602 (2002).  https://doi.org/10.1103/PhysRevLett.88.050602
  55. 55.
    J.G. Richens, L. Masanes, Nat. Commun. 7, 13511 (2016).  https://doi.org/10.1038/ncomms13511
  56. 56.
    J. Åberg, Phys. Rev. X 8, 011019 (2018).  https://doi.org/10.1103/PhysRevX.8.011019
  57. 57.
    Á. M. Alhambra, L. Masanes, J. Oppenheim, C. Perry, Phys. Rev. X 6, 041017 (2016).  https://doi.org/10.1103/PhysRevX.6.041017
  58. 58.
    M.P. Woods, N. Ng, S. Wehner (2015). arXiv: 1506.02322
  59. 59.
    D. Jonathan, M.B. Plenio, Phys. Rev. Lett. 83, 3566 (1999).  https://doi.org/10.1103/PhysRevLett.83.3566
  60. 60.
    M. Lostaglio, D. Jennings, T. Rudolph, Nat. Commun. 6, 6383 (2015b).  https://doi.org/10.1038/ncomms7383
  61. 61.
    F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, The second laws of quantum thermodynamics (2015b).  https://doi.org/10.1073/pnas.1411728112
  62. 62.
    K.M. Audenaert, J. Phys. A: Math. Theor. 40, 8127 (2007).  https://doi.org/10.1088/1751-8113/40/28/S18
  63. 63.
    M.P. Mueller, Phys. Rev. X 8, 041051 (2018).  https://doi.org/10.1103/PhysRevX.8.041051
  64. 64.
    Á.M. Alhambra, J. Oppenheim, C. Perry, Phys. Rev. X 6, 041016 (2016).  https://doi.org/10.1103/PhysRevX.6.041016
  65. 65.
    S. Carnot, Reflections on the Motive Power of Fire (1824)Google Scholar
  66. 66.
    M. Scully, M. Zubairy, G. Agarwal, H. Walther, Science 299, 862 (2003).  https://doi.org/10.1126/science.1078955
  67. 67.
    J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014).  https://doi.org/10.1103/PhysRevLett.112.030602
  68. 68.
    N.H.Y. Ng, M.P. Woods, S. Wehner, New J. Phys. 19, 113005 (2017).  https://doi.org/10.1088/1367-2630/aa8ced
  69. 69.
    J. Gemmer, M. Michel, G. Mahler, Quantum thermodynamics (Springer, Berlin, 2009).  https://doi.org/10.1007/978-3-540-70510-9
  70. 70.
    R. Kosloff, Entropy 15, 2100 (2013).  https://doi.org/10.3390/e15062100
  71. 71.
    R. Alicki, J. Phys. A: Math. Gen. 12, L103 (1979).  https://doi.org/10.1088/0305-4470/12/5/007
  72. 72.
    N. Brunner, M. Huber, N. Linden, S. Popescu, R. Silva, P. Skrzypczyk, Phys. Rev. E 89, 032115 (2014).  https://doi.org/10.1103/PhysRevE.89.032115
  73. 73.
    N. Linden, S. Popescu, P. Skrzypczyk, Phys. Rev. Lett. 105, 130401 (2010).  https://doi.org/10.1103/PhysRevLett.105.130401
  74. 74.
    K. Szczygielski, D. Gelbwaser-Klimovsky, R. Alicki, Phys. Rev. E 87, 012120 (2013).  https://doi.org/10.1103/PhysRevE.87.012120
  75. 75.
    R. Uzdin, A. Levy, R. Kosloff, Phys. Rev. X 5, 031044 (2015).  https://doi.org/10.1103/PhysRevX.5.031044
  76. 76.
    S. Hilt, E. Lutz, Phys. Rev. A 79, 010101 (2009).  https://doi.org/10.1103/PhysRevA.79.010101
  77. 77.
    H. Peter, G.-L. Ingold, P. Talkner et al., New J. Phys. 10, 115008 (2008).  https://doi.org/10.1088/1367-2630/10/11/115008
  78. 78.
    G.-L. Ingold, P. Hänggi, P. Talkner, Phys. Rev. E 79, 061105 (2009).  https://doi.org/10.1103/PhysRevE.79.061105
  79. 79.
    P. Calabrese, J. Cardy, Phys. Rev. Lett. 96, 136801 (2006).  https://doi.org/10.1103/PhysRevLett.96.136801
  80. 80.
    M. Cramer, C.M. Dawson, J. Eisert, T.J. Osborne, Phys. Rev. Lett. 100, 030602 (2008).  https://doi.org/10.1103/PhysRevLett.100.030602
  81. 81.
    J. Åberg, Phys. Rev. Lett. 113, 150402 (2014).  https://doi.org/10.1103/PhysRevLett.113.150402
  82. 82.
    A.S. Malabarba, A.J. Short, P. Kammerlander, New J. Phys. 17, 045027 (2015).  https://doi.org/10.1088/1367-2630/17/4/045027
  83. 83.
    M.P. Woods, R. Silva, J. Oppenheim (2016).  https://doi.org/10.1007/s00023-018-0736-9
  84. 84.
    C. Perry, P. Ćwikliński, J. Anders, M. Horodecki, J. Oppenheim, Phys. Rev. X 8, 041049 (2018).  https://doi.org/10.1103/PhysRevX.8.041049
  85. 85.
    M. Lostaglio, Á.M. Alhambra, C. Perry, Quantum 2, 52 (2018).  https://doi.org/10.22331/q-2018-02-08-52
  86. 86.
    N. Yunger Halpern, Toward physical realizations of thermodynamic resource theories, in Information and Interaction: Eddington, Wheeler, and the Limits of Knowledge, ed. by I.T. Durham, D. Rickles (Springer International Publishing, Cham, 2017), pp. 135–166.  https://doi.org/10.1007/978-3-319-43760-6
  87. 87.
    C. Jarzynski, Ann. Rev. Condens. Matter Phys. 2, 329 (2011).  https://doi.org/10.1146/annurev-conmatphys-062910-140506
  88. 88.
    M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009).  https://doi.org/10.1103/RevModPhys.81.1665
  89. 89.
    M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011).  https://doi.org/10.1103/RevModPhys.83.771
  90. 90.
    U. Seifert, Rep. Prog. Phys. 75 (2012).  https://doi.org/10.1088/0034-4885/75/12/126001
  91. 91.
    G.M. Wang, E.M. Sevick, E. Mittag, D.J. Searles, D.J. Evans, Phys. Rev. Lett. 89, 050601 (2002).  https://doi.org/10.1103/PhysRevLett.89.050601
  92. 92.
    Y. Utsumi, D.S. Golubev, M. Marthaler, K. Saito, T. Fujisawa, G. Schön, Phys. Rev. B 81, 125331 (2010).  https://doi.org/10.1103/PhysRevB.81.125331
  93. 93.
    T.B. Batalhão, A.M. Souza, L. Mazzola, R. Auccaise, R.S. Sarthour, I.S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, R.M. Serra, Phys. Rev. Lett. 113, 140601 (2014).  https://doi.org/10.1103/PhysRevLett.113.140601
  94. 94.
    S. Salek, K. Wiesner, Phys. Rev. A 96, 052114 (2017).  https://doi.org/10.1103/PhysRevA.96.052114
  95. 95.
    A.M. Alhambra, S. Wehner, M.M. Wilde, M.P. Woods, Phys. Rev. A 97(6), 062114 (2018).  https://doi.org/10.1103/PhysRevA.97.062114

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dahlem Center for Complex Quantum SystemsFreie Universität BerlinBerlinGermany
  2. 2.Institute for Theoretical PhysicsETH ZürichZürichSwitzerland

Personalised recommendations