Advertisement

Hierarchical Equations of Motion Approach to Quantum Thermodynamics

  • Akihito Kato
  • Yoshitaka TanimuraEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

We present a theoretical framework to investigate quantum thermodynamic processes under non-Markovian system-bath interactions on the basis of the hierarchical equations of motion (HEOM) approach, which is convenient to carry out numerically “exact” calculations. This formalism is valuable because it can be used to treat not only strong system-bath coupling but also system-bath correlation or entanglement, which will be essential to characterize the heat transport between the system and quantum heat baths. Using this formalism, we demonstrated an importance of the thermodynamic effect from the bath-system-bath tri-partite correlations (TPC) for a two-level heat transfer model and a three-level autonomous heat engine model under the conditions that the conventional quantum master equation approaches are failed. Our numerical calculations show that TPC contributions, which distinguish the heat current from the energy current, have to be take into account to satisfy the thermodynamic laws.

Notes

Acknowledgements

The authors are grateful for motivating us to write this article with Yoshi Oono. A. K. is supported by JSPS KAKENHI Grant Number 17H02946. Y. T. is supported by JSPS KAKENHI Grant Number A26248005.

References

  1. 1.
    M. Campisi, P. Hänggi, P. Talkner, Colloquium: quantum fluctuation relations: foundations and applications. Rev. Mod. Phys. 83(3), 771 (2011).  https://doi.org/10.1103/RevModPhys.83.771
  2. 2.
    A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83(3), 863 (2011).  https://doi.org/10.1103/RevModPhys.83.863
  3. 3.
    J. Eisert, M. Friesdorf, C. Gogolin, Quantum many-body systems out of equilibrium. Nat. Phys. 11(2), 124 (2015).  https://doi.org/10.1038/nphys3215CrossRefGoogle Scholar
  4. 4.
    M. Lostaglio, K. Korzekwa, D. Jennings, T. Rudolph, Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5(2), 021001 (2015).  https://doi.org/10.1103/PhysRevX.5.021001CrossRefGoogle Scholar
  5. 5.
    K. Korzekwa, M. Lostaglio, J. Oppenheim, D. Jennings, The extraction of work from quantum coherence. N. J. Phys. 18(2), 023045 (2016).  https://doi.org/10.1088/1367-2630/18/2/023045CrossRefGoogle Scholar
  6. 6.
    H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, New York, 2002).  https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
  7. 7.
    R. Kosloff, Quantum thermodynamics: a dynamical viewpoint. Entropy 15(12), 2100 (2013).  https://doi.org/10.3390/e15062100
  8. 8.
    P. Häggi, G.-L. Ingold, Fundamental aspects of quantum brownian motion. Chaos 15(2), 026105 (2005).  https://doi.org/10.1063/1.1853631ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    T. Harada, S. Sasa, Equality connecting energy dissipation with a violation of the fluctuation-response relation. Phys. Rev. Lett. 95(13), 130602 (2005).  https://doi.org/10.1103/PhysRevLett.95.130602
  10. 10.
    K. Saito, Energy dissipation and fluctuation response in driven quantum langevin dynamics. Europhys. Lett. 83(5), 50006 (2008).  https://doi.org/10.1209/0295-5075/83/50006ADSCrossRefGoogle Scholar
  11. 11.
    P. Hofer, M. Perarnau-Llobet, L. Miranda, M. David, G. Haack, R. Silva, J.B. Brask, N. Brunner, Markovian master equations for quantum thermal machines: local versus global approach. N. J. Phys. 19(12), 123037 (2017).  https://doi.org/10.1088/1367-2630/aa964f
  12. 12.
    J.O. González, L.A. Correa, G. Nocerino, J.P. Palao, D. Alonso, G. Adesso, Testing the validity of the ‘local’ and ‘global’ GKLS master equations on an exactly solvable model. Open System and Information Dynamics 24(4), 1740010 (2017).  https://doi.org/10.1142/S1230161217400108
  13. 13.
    M.T. Mitchison, M.B. Plenio, Non-additive dissipation in open quantum networks out of equilibrium. N. J. Phys. 20(3), 033005 (2018).  https://doi.org/10.1088/1367-2630/aa9f70CrossRefGoogle Scholar
  14. 14.
    A. Ishizaki, G. Fleming, Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. J. Chem. Phys. 130(23), 234111 (2009).  https://doi.org/10.1063/1.3155372ADSCrossRefGoogle Scholar
  15. 15.
    S. Huelga, M. Plenio, Vibrations, quanta and biology. Contemp. Phys. 54(4), 181 (2013).  https://doi.org/10.1080/00405000.2013.829687ADSCrossRefGoogle Scholar
  16. 16.
    I. de Vega, D. Alonso, Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89(1), 015001 (2017).  https://doi.org/10.1103/RevModPhys.89.015001
  17. 17.
    D. Gelbwaser-Klimovsky, A. Aspuru-Guzik, Strongly coupled quantum heat machines. J. Phys. Chem. Lett. 6(17), 3477 (2015).  https://doi.org/10.1021/acs.jpclett.5b01404CrossRefGoogle Scholar
  18. 18.
    P. Strasberg, G. Schaller, N. Lambert, T. Brandes, Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction coordinate mapping. N. J. Phys. 18(7), 073007 (2016).  https://doi.org/10.1088/1367-2630/18/7/073007CrossRefGoogle Scholar
  19. 19.
    D. Newman, F. Mintert, A. Nazir, Performance of a quantum heat engine at strong reservoir coupling. Phys. Rev. E 95(3), 032139 (2017).  https://doi.org/10.1103/PhysRevE.95.032139ADSCrossRefGoogle Scholar
  20. 20.
    M. Esposito, M.A. Ochoa, M. Galperin, Quantum thermodynamics: a nonequilibrium green’s function approach. Phys. Rev. Lett. 114(8), 080602 (2015).  https://doi.org/10.1103/PhysRevLett.114.080602
  21. 21.
    M. Esposito, M.A. Ochoa, M. Galperin, Nature of heat in strongly coupled open quantum systems. Phys. Rev. B 92(23), 235440 (2015).  https://doi.org/10.1103/PhysRevB.92.235440ADSCrossRefGoogle Scholar
  22. 22.
    A. Bruch, M. Thomas, S.V. Kusminskiy, F. von Oppen, A. Nitzan, Quantum thermodynamics of the driven resonant level model. Phys. Rev. B 93(11), 115318 (2016).  https://doi.org/10.1103/PhysRevB.93.115318ADSCrossRefGoogle Scholar
  23. 23.
    M. Carrega, P. Solinas, M. Sassetti, U. Weiss, Energy exchange in driven open quantum systems at strong coupling. Phys. Rev. Lett. 116(24), 240403 (2016).  https://doi.org/10.1103/PhysRevLett.116.240403
  24. 24.
    R. Schmidt, M.F. Carusela, J.P. Pekola, S. Suomela, J. Ankerhold, Work and heat for two-level systems in dissipative environments: strong driving and non-markovian dynamics. Phys. Rev. B 91(22), 224303 (2015).  https://doi.org/10.1103/PhysRevB.91.224303ADSCrossRefGoogle Scholar
  25. 25.
    Y. Tanimura, R. Kubo, Time evolution of a quantum system in contact with a nearly gaussian-markoffian noise bath. J. Phys. Soc. Jpn. 58(101), 101 (1989).  https://doi.org/10.1143/JPSJ.58.101ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Y. Tanimura, Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath. Phys. Rev. A 41(12), 6676 (1990).  https://doi.org/10.1103/PhysRevA.41.6676ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    A. Ishizaki, Y. Tanimura, Quantum dynamics of system strongly coupled to low-temperature colored noise bath: reduced hierarchy equations approach. J. Phys. Soc. Jpn. 74(12), 3131 (2005).  https://doi.org/10.1143/JPSJ.74.3131ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Y. Tanimura, Stochastic liouville, langevin, fokker-planck, and master equation approaches to quantum dissipative systems. J. Phys. Soc. Jpn. 75(8), 082001 (2006).  https://doi.org/10.1143/JPSJ.75.082001ADSCrossRefGoogle Scholar
  29. 29.
    Y. Tanimura, Reduced hierarchical equations of motion in real and imaginary time: correlated initial states and thermodynamic quantities. J. Chem. Phys. 141(4), 044114 (2014).  https://doi.org/10.1063/1.4890441ADSCrossRefGoogle Scholar
  30. 30.
    Y. Tanimura, Real-time and imaginary-time quantum hierarchal fokker-planck equations. J. Chem. Phys. 142(14), 144110 (2015).  https://doi.org/10.1063/1.4916647
  31. 31.
    A.G. Dijkstra, Y. Tanimura, Non-markovian entanglement dynamics in the presence of system-bath coherence. Phys. Rev. Lett. 104(25), 250401 (2010).  https://doi.org/10.1103/PhysRevLett.104.250401
  32. 32.
    A.G. Dijkstra, Y. Tanimura, System bath correlations and the nonlinear response of qubits. J. Phys. Soc. Jpn. 81(6), 063301 (2012).  https://doi.org/10.1143/JPSJ.81.063301
  33. 33.
    A. Kato, Y. Tanimura, Quantum heat transport of a two-qubit system: interplay between system-bath coherence and qubit-qubit coherence. J. Chem. Phys. 143(6), 064107 (2015).  https://doi.org/10.1063/1.4928192ADSCrossRefGoogle Scholar
  34. 34.
    A. Kato, Y. Tanimura, Quantum heat current under non-perturbative and non-markovian conditions: applications to heat machines. J. Chem. Phys. 145(22), 224105 (2016).  https://doi.org/10.1063/1.4971370ADSCrossRefGoogle Scholar
  35. 35.
    C. Kreisbeck, T. Kramer, Long-lived electronic coherence in dissipative exciton dynamics of light-harvesting complexes. J. Phys. Chem. Lett. 3(19), 2828 (2012).  https://doi.org/10.1021/jz3012029CrossRefGoogle Scholar
  36. 36.
    J. Ma, Z. Sun, X. Wang, F. Nori, Entanglement dynamics of two qubits in a common bath. Phys. Rev. A 85(6), 062323 (2012).  https://doi.org/10.1103/PhysRevA.85.062323ADSCrossRefGoogle Scholar
  37. 37.
    M. Tanaka, Y. Tanimura, Quantum dissipative dynamics of electron transfer reaction system: nonperturbative hierarchy equations approach. J. Phys. Soc. Jpn. 78(7), 073802 (2009).  https://doi.org/10.1143/JPSJ.78.073802ADSCrossRefGoogle Scholar
  38. 38.
    H. Liu, L. Zhu, S. Bai, Q. Shi, Reduced quantum dynamics with arbitrary bath spectral densities: hierarchical equations of motion based on several different bath decomposition schemes. J. Chem. Phys. 140(13), 134106 (2014).  https://doi.org/10.1063/1.4870035
  39. 39.
    Y. Tanimura, Reduced hierarchy equations of motion approach with drude plus brownian spectral distribution: probing electron transfer processes by means of two-dimensional correlation spectroscopy. J. Chem. Phys. 137(22), 22A550 (2012).  https://doi.org/10.1063/1.4766931CrossRefGoogle Scholar
  40. 40.
    Z. Tang, O.Z. Gong, H. Wang, J. Wu, Extended hierarchy equation of motion for the spin-boson model. J. Chem. Phys. 143(22), 224112 (2015).  https://doi.org/10.1063/1.4936924ADSCrossRefGoogle Scholar
  41. 41.
    C. Duan, Z. Tang, J. Cao, J. Wu, Zero-temperature localization in a sub-ohmic spin-boson model investigated by an extended hierarchy equation of motion. Phys. Rev. B 95(21), 214308 (2017).  https://doi.org/10.1103/PhysRevB.95.214308ADSCrossRefGoogle Scholar
  42. 42.
    J. Jin, X. Zheng, Y. Yan, Exact dynamics of dissipative electronic systems and quantum transport: hierarchical equations of motion approach. J. Chem. Phys. 128(23), 234703 (2008).  https://doi.org/10.1063/1.2938087ADSCrossRefGoogle Scholar
  43. 43.
    R. Härtle, G. Cohen, D.R. Reichman, A.J. Millis, Decoherence and lead-induced interdot coupling in nonequilibrium electron transport through interacting quantum dots: a hierarchical quantum master equation approach. Phys. Rev. B 88(23), 235426 (2013).  https://doi.org/10.1103/PhysRevB.88.235426ADSCrossRefGoogle Scholar
  44. 44.
    L. Ye, X. Wang, D. Hou, R.-X. Xu, X. Zheng, Y. Yan, HEOM-QUICK: a program for accurate, efficient, and universal characterization of strongly correlated quantum impurity systems. WIREs Comput. Mol. Sci. 6(6), 608 (2016).  https://doi.org/10.1002/wcms.1269CrossRefGoogle Scholar
  45. 45.
    J. Cerrillo, M. Buser, T. Brandes, Nonequilibrium quantum transport coefficients and transient dynamics of full counting statistics in the strong-coupling and non-markovian regimes. Phys. Rev. B 94(21), 214308 (2016).  https://doi.org/10.1103/PhysRevB.94.214308ADSCrossRefGoogle Scholar
  46. 46.
    E. Aurell, The characteristic functions of quantum heat with baths at different temperatures. Phys. Rev. E 97, 062117 (2018).  https://doi.org/10.1103/PhysRevE.97.062117
  47. 47.
    S. Deffner, C. Jarzynski, Information processing and the second law of thermodynamics: an inclusive, hamiltonian approach. Phys. Rev. X 3(4), 041003 (2013).  https://doi.org/10.1103/PhysRevX.3.041003CrossRefGoogle Scholar
  48. 48.
    P. Strasberg, G. Schaller, T. Brandes, M. Esposito, Quantum and information thermodynamics: a unifying framework based on repeated interactions. Phys. Rev. X 7(2), 021003 (2017).  https://doi.org/10.1103/PhysRevX.7.021003CrossRefGoogle Scholar
  49. 49.
    R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II: Nonequillibrium Statistical Mechanics (Springer, Berlin, 1985).  https://doi.org/10.1007/978-3-642-96701-6
  50. 50.
    D. Segal, A. Nitzan, Spin-boson thermal rectifier. Phys. Rev. Lett. 94(3), 034301 (2005).  https://doi.org/10.1103/PhysRevLett.94.034301
  51. 51.
    K.A. Velizhanin, H. Wang, M. Thoss, Heat transport through model molecular junctions: a multilayer multiconfiguration time-dependent hartree approach. Chem. Phys. Lett. 460(1–3), 325 (2008).  https://doi.org/10.1016/j.cplett.2008.05.065ADSCrossRefGoogle Scholar
  52. 52.
    T. Ruokola, T. Ojanen, Thermal conductance in a spin-boson model: cotunneling and low-temperature properties. Phys. Rev. B 83(4), 045417 (2011).  https://doi.org/10.1103/PhysRevB.83.045417ADSCrossRefGoogle Scholar
  53. 53.
    C. Wang, J. Ren, J. Cao, Nonequilibrium energy transfer at nanoscale: a unified theory from weak to strong coupling. Sci. Rep. 5(1), 11787 (2015).  https://doi.org/10.1038/srep11787ADSCrossRefGoogle Scholar
  54. 54.
    S. Fujino, M. Fujiwara, M. Yoshida, BiCGSafe method based on minimization of associate residual. Trans. JSCES 8, 145 (2005). [in Japanese]. https://www.jstage.jst.go.jp/article/jsces/2005/0/2005_0_20050028/_article/-char/en
  55. 55.
    J. Hu, R.X. Xu, Y.J. Yan, Communication: padé spectrum decomposition of fermi function and bose function. J. Chem. Phys. 133(10), 101106 (2010).  https://doi.org/10.1063/1.3484491ADSCrossRefGoogle Scholar
  56. 56.
    B.L. Tian, J.J. Ding, R.X. Xu, Y.J. Yan, Biexponential theory of drude dissipation via hierarchical quantum master equation. J. Chem. Phys. 133(11), 114112 (2010).  https://doi.org/10.1063/1.3491270ADSCrossRefGoogle Scholar
  57. 57.
    J. Hu, M. Luo, F. Jiang, R.-X. Xu, Y. Yan, Padé spectrum decompositions of quantum distribution functions and optimal hierarchical equations of motion construction for quantum open systems. J. Chem. Phys. 134(24), 244106 (2011).  https://doi.org/10.1063/1.3602466ADSCrossRefGoogle Scholar
  58. 58.
    J.E. Geusic, E.O. Schulz-DuBois, H.E.D. Scovil, Quantum equivalent of the carnot cycle. Phys. Rev. 156(2), 343 (1967).  https://doi.org/10.1103/PhysRev.156.343
  59. 59.
    M.P. Woods, N. Ng, S. Wehner, The maximum efficiency of nano heat engines depends on more than temperature. arXiv:1506.02322
  60. 60.
    Y. Tanimura, P.G. Wolynes, The interplay of tunneling, resonance, and dissipation in quantum barrier crossing: a numerical study. J. Chem. Phys. 96(11), 8485 (1992).  https://doi.org/10.1063/1.462301ADSCrossRefGoogle Scholar
  61. 61.
    A. Sakurai, Y. Tanimura, Self-excited current oscillations in a resonant tunneling diode described by a model based on the caldeira-leggett hamiltonian. N. J. Phys. 16(1), 015002 (2014).  https://doi.org/10.1088/1367-2630/16/1/015002CrossRefGoogle Scholar
  62. 62.
    A. Kato, Y. Tanimura, Quantum suppression of ratchet rectification in a brownian system driven by a biharmonic force. J. Phys. Chem. B 117(42), 13132 (2013).  https://doi.org/10.1021/jp403056hCrossRefGoogle Scholar
  63. 63.
    A. Sakurai, Y. Tanimura, Does \(\hbar \) play a role in multidimensional spectroscopy? Reduced hierarchy equations of motion approach to molecular vibrations. J. Phys. Chem. A 115(16), 4009 (2011).  https://doi.org/10.1021/jp1095618
  64. 64.
    J. Strümpfer, K. Schulten, Open quantum dynamics calculations with the hierarchy equations of motion on parallel computers. J. Chem. Theory Comput. 8(8), 2808 (2012).  https://doi.org/10.1021/ct3003833CrossRefGoogle Scholar
  65. 65.
    M. Tsuchimoto, Y. Tanimura, Spins dynamics in a dissipative environment: hierarchal equations of motion approach using a Graphics Processing Unit (GPU). J. Chem. Theory Comput. 11(8), 3859 (2015).  https://doi.org/10.1021/acs.jctc.5b00488CrossRefGoogle Scholar
  66. 66.
    C. Kreisbeck, T. Kramer, M. Rodríguez, B. Hein, High-performance solution of hierarchical equations of motion for studying energy transfer in light-harvesting complexes. J. Chem. Theory Comput. 7(7), 2166 (2011).  https://doi.org/10.1021/ct200126dCrossRefGoogle Scholar
  67. 67.
    C. Kreisbeck, T. Kramer, A. Aspuru-Guzik, Scalable high-performance algorithm for the simulation of exciton dynamics. Application to the light-harvesting complex II in the presence of resonant vibrational modes. J. Chem. Theory Comput. 10(9), 4045 (2014).  https://doi.org/10.1021/ct500629s
  68. 68.
    D. Suess, A. Eisfeld, W.T. Strunz, Hierarchy of stochastic pure states for open quantum system dynamics. Phys. Rev. Lett. 113(15), 150403 (2014).  https://doi.org/10.1103/PhysRevLett.113.150403
  69. 69.
    K. Song, L. Song, Q. Shi, An alternative realization of the exact non-markovian stochastic schrödinger equation. J. Chem. Phys. 144(22), 224105 (2016).  https://doi.org/10.1063/1.4953244ADSCrossRefGoogle Scholar
  70. 70.
    Y. Ke, Y. Zhao, Hierarchy of forward-backward stochastic schröinger equation. J. Chem. Phys. 145(2), 024101 (2016).  https://doi.org/10.1063/1.4955107ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute for Molecular ScienceNational Institutes of Natural SciencesOkazakiJapan
  2. 2.Department of ChemistryGraduate School of Science, Kyoto UniversityKyotoJapan

Personalised recommendations