Advertisement

Quantum Thermometry

  • Antonella De PasqualeEmail author
  • Thomas M. Stace
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

We discuss the application of techniques of quantum estimation theory and quantum metrology to thermometry. The ultimate limit to the precision at which the temperature of a system at thermal equilibrium can be determined is related to the heat capacity when global measurements are performed on the system. We prove that if technical or practical limitations restrict our capabilities to local probing, the highest achievable accuracy to temperature estimation reduces to a sort of mesoscopic version of the heat capacity. Adopting a more practical perspective, we also discuss the relevance of qubit systems as optimal quantum thermometers, in order to retrieve the temperature, or to discriminate between two temperatures, characterizing a thermal reservoir. We show that quantum coherence and entanglement in a probe system can facilitate faster, or more accurate measurements of temperature. While not surprising given this has been demonstrated in phase estimation, temperature is not a conventional quantum observable, therefore these results extend the theory of parameter estimation to measurement of non-Hamiltonian quantities. Finally we point out the advantages brought by a less standard estimation technique based on sequential measurements, when applied to quantum thermometry.

Notes

Acknowledgements

ADP acknowledges financial support from the University of Florence in the framework of the University Strategic Project Program 2015 (project BRS00215).

References

  1. 1.
    P.J. Mohr, B.N. Taylor, Rev. Mod. Phys. 77, 1 (2005).  https://doi.org/10.1103/RevModPhys.77.1
  2. 2.
    W. Weng, J.D. Anstie, T.M. Stace, G. Campbell, F.N. Baynes, A.N. Luiten, Phys. Rev. Lett. 112, 160801 (2014).  https://doi.org/10.1103/PhysRevLett.112.160801
  3. 3.
    K.V. Hovhannisyan, L.A. Correa, Phys. Rev. B 98, 045101(2018).  https://doi.org/10.1103/PhysRevB.98.045101
  4. 4.
    A.E. Allahverdyan, Th.M. Nieuwenhuizen, Phys. Rev. B 66, 115309 (2002).  https://doi.org/10.1103/PhysRevB.66.115309
  5. 5.
    S. Hilt, E. Lutz, Phys. Rev. A 79, 010101 (R) (2009).  https://doi.org/10.1103/PhysRevA.79.010101
  6. 6.
    N.S. Williams, K. Le Hur, A.N. Jordan, J. Phys. A Math. Theor. 44, 385003 (2011).  https://doi.org/10.1088/1751-8113/44/38/385003
  7. 7.
    M. Brunelli, S. Olivares, M.G.A. Paris, Phys. Rev. A 84, 032105 (2011).  https://doi.org/10.1103/PhysRevA.84.032105
  8. 8.
    U. Marzolino, D. Braun, Phys. Rev. A 88, 063609 (2013).  https://doi.org/10.1103/PhysRevA.88.063609
  9. 9.
    G. Salvatori, A. Mandarino, M.G.A. Paris, Phys. Rev. A 90, 022111 (2014).  https://doi.org/10.1103/PhysRevA.90.022111
  10. 10.
    L.A. Correa, M. Mehboudi, G. Adesso, A. Sanpera, Phys. Rev. Lett. 114, 220405 (2015).  https://doi.org/10.1103/PhysRevLett.114.220405
  11. 11.
    M.G.A. Paris, J. Řeháček, Quantum State Estimation. Lecture Notes in Physics, vol. 649 (Springer, Berlin, 2004).  https://doi.org/10.1007/b98673
  12. 12.
    M.G.A. Paris, Int. J. Quantum Inf. 7, 125 (2009). arXiv:0804.2981
  13. 13.
    H. Cramér, Mathematical Methods of Statistics (Princeton University Press, Princeton, 1946)zbMATHGoogle Scholar
  14. 14.
    S.L. Braunstein, C.M. Caves, G.J. Milburn, Ann. Phys. (N.Y.) 247, 135 (1996).  https://doi.org/10.1006/aphy.1996.0040
  15. 15.
    A. Peres, Phys. Rev. A 30, 1610 (1984).  https://doi.org/10.1103/PhysRevA.30.1610
  16. 16.
    R. Jozsa, J. Mod. Opt. 41, 2315 (1994).  https://doi.org/10.1080/09500349414552171
  17. 17.
    V. Giovannetti, S. Lloyd, L. Maccone, Nat. Photon. 5, 222 (2011).  https://doi.org/10.1038/nphoton.2011.35
  18. 18.
    M. Hayashi, Asymptotic Theory of Quantum Statistical Inference: Selected Papers (World Scientific, Singapore, 2005).  https://doi.org/10.1142/5630
  19. 19.
    M. Hayashi, Quantum Information, Ch. 6–7 (Springer, Berlin, 2006).  https://doi.org/10.1007/3-540-30266-2
  20. 20.
    C.W. Helstrom, Phys. Lett. A 25 (1967).  https://doi.org/10.1016/0375-9601(67)90366-0
  21. 21.
    A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982).  https://doi.org/10.1007/978-88-7642-378-9
  22. 22.
    D.G. Fischer, M. Freyberger, Phys. Lett. A 273, 293 (2000).  https://doi.org/10.1016/S0375-9601(00)00513-2
  23. 23.
    A. Fujiwara, J. Phys. A Math. Gen. 39, 12489 (2006).  https://doi.org/10.1088/0305-4470/39/40/014
  24. 24.
    D.J.C. Bures, Trans. Am. Math. Soc. 135, 199 (1969).  https://doi.org/10.1090/S0002-9947-1969-0236719-2
  25. 25.
    V. Giovannetti, S. Lloyd, L. Maccone, Science 306, 1330 (2004).  https://doi.org/10.1126/science.1104149
  26. 26.
    V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev. Lett. 96, 010401 (2006).  https://doi.org/10.1103/PhysRevLett.96.010401
  27. 27.
    M. de Burgh, S.D. Bartlett, Phys. Rev. A 72, 042301 (2005).  https://doi.org/10.1103/PhysRevA.72.042301
  28. 28.
    Z. Ji, G. Wang, R. Duan, Y. Feng, M. Ying, IEEE Trans. Inf. Theory 54, 5172 (2008).  https://doi.org/10.1109/TIT.2008.929940
  29. 29.
    S.F. Huelga, C. Macchiavello, T. Pellizzari, A.K. Ekert, M.B. Plenio, J.I. Cirac, Phys. Rev. Lett. 79, 3865 (1997).  https://doi.org/10.1103/PhysRevLett.79.3865
  30. 30.
    R. Chaves, J.B. Brask, M. Markiewicz, J. Kołodyński, A. Acín, Phys. Rev. Lett. 111, 120401 (2013).  https://doi.org/10.1103/PhysRevLett.111.120401
  31. 31.
    J. Kolodyński, R. Demkowicz-Dobrzański, Phys. Rev. A 82, 053804 (2010).  https://doi.org/10.1103/PhysRevA.82.053804
  32. 32.
    B.M. Escher, R.L. de Matos Filho, L. Davidovich, Nat. Phys. 7, 406 (2011).  https://doi.org/10.1038/nphys1958
  33. 33.
    A. De Pasquale, D. Rossini, P. Facchi, V. Giovannetti, Phys. Rev. A 88, 052117 (2013).  https://doi.org/10.1103/PhysRevA.88.052117
  34. 34.
    C.M. Caves, Phys. Rev. D 23, 1693 (1981).  https://doi.org/10.1103/PhysRevD.23.1693
  35. 35.
    B. Yurke, S.L. McCall, J.R. Klauder, Phys. Rev. A 33, 4033 (1986).  https://doi.org/10.1103/PhysRevA.33.4033
  36. 36.
    J.P. Dowling, Phys. Rev. A 57, 4736 (1998).  https://doi.org/10.1103/PhysRevA.57.4736
  37. 37.
    S.M. Barnett, C. Fabre, A. Maître, Eur. Phys. J. D 22, 513 (2003).  https://doi.org/10.1140/epjd/e2003-00003-3
  38. 38.
    M.A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, W.P. Bowen, Nat. Photon. 7, 229 (2013).  https://doi.org/10.1038/nphoton.2012.346
  39. 39.
    T.M. Stace, Phys. Rev. A 82, 011611 (2010).  https://doi.org/10.1103/PhysRevA.82.011611
  40. 40.
    P. Zanardi, P. Giorda, M. Cozzini, Phys. Rev. Lett. 99, 100603 (2007).  https://doi.org/10.1103/PhysRevLett.99.100603
  41. 41.
    P. Zanardi, M.G.A. Paris, L.C. Venuti, Phys. Rev. A 78, 042105 (2008).  https://doi.org/10.1103/PhysRevA.78.042105
  42. 42.
    H.J.D. Miller1, J. Anders.  https://doi.org/10.1038/s41467-018-04536-7
  43. 43.
    T.M. Stace, A.N. Luiten, Phys. Rev. A 81, 033848 (2010).  https://doi.org/10.1103/PhysRevA.81.033848
  44. 44.
    C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, Ch.J. Bordé, C. Chardonnet, Phys. Rev. Lett. 98, 250801 (2007).  https://doi.org/10.1103/PhysRevLett.98.250801
  45. 45.
    G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, L. Gianfrani, Phys. Rev. Lett. 100, 200801 (2008).  https://doi.org/10.1103/PhysRevLett.100.200801
  46. 46.
    G.-W. Truong, J.D. Anstie, E.F. May, T.M. Stace, A.N. Luiten, Nat. Commun. 6, 8345 (2015).  https://doi.org/10.1038/ncomms9345
  47. 47.
    A. De Pasquale, D. Rossini, R. Fazio, V. Giovannetti, Nat. Commun. 7, 12782 (2016).  https://doi.org/10.1038/ncomms12782
  48. 48.
    A. Uhlmann, Rep. Math. Phys. 9, 273–279 (1976).  https://doi.org/10.1016/0034-4877(76)90060-4
  49. 49.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).  https://doi.org/10.1017/CBO9780511976667
  50. 50.
    S.L. Braunstein, C.M. Caves, Phys. Rev. Lett. 72, 3439 (1994).  https://doi.org/10.1103/PhysRevLett.72.3439
  51. 51.
    C. Gogolin, J. Eisert, Rep. Prog. Phys. 79, 056001 (2016).  https://doi.org/10.1088/0034-4885/79/5/056001
  52. 52.
    E. Ising, Zeitschrift für Physik A Hadrons and Nuclei 31, 253 (1925).  https://doi.org/10.1007/BF02980577
  53. 53.
    H. Bethe, Zeitschrift für Physik 71, 205 (1931).  https://doi.org/10.1007/BF01341708
  54. 54.
    F.-Y. Wu, Rev. Mod. Phys. 54, 235 (1982).  https://doi.org/10.1103/RevModPhys.54.235
  55. 55.
    J. Hubbard, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 276, 238 (1963).  https://doi.org/10.1098/rspa.1963.0204
  56. 56.
    M. Kliesch, C. Gogolin, M. Kastoryano, A. Riera, J. Eisert, Phys. Rev. X 4, 031019 (2014).  https://doi.org/10.1103/PhysRevX.4.031019
  57. 57.
    G. De Palma, A. De Pasquale, V. Giovannetti, Phys. Rev. A 95, 052115 (2017).  https://doi.org/10.1103/PhysRevA.95.052115
  58. 58.
    P. Zanardi, L. Campos Venuti, P. Giorda, Phys. Rev. A 76, 062318 (2007).  https://doi.org/10.1103/PhysRevA.76.062318
  59. 59.
    M. Mehboudi, M. Moreno-Cardoner, G. De Chiara, A. Sanpera, New J. Phys. 17, 055020 (2015).  https://doi.org/10.1088/1367-2630/17/5/055020
  60. 60.
    K. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes, Nature (London) 404, 974 (2000).  https://doi.org/10.1038/35010065
  61. 61.
    N. Linden, S. Popescu, P. Skrzypczyk, Phys. Rev. Lett. 105, 130401 (2010).  https://doi.org/10.1103/PhysRevLett.105.130401
  62. 62.
    B. Klinkert, F. Narberhaus, Cell. Mol. Life Sci. 66, 2661 (2009).  https://doi.org/10.1007/s00018-009-0041-3
  63. 63.
    R. Schirhagl, K. Chang, M. Loretz, C.L. Degen, Annu. Rev. Phys. Chem. 65, 83 (2014).  https://doi.org/10.1146/annurev-physchem-040513-103659
  64. 64.
    J. Gemmer, M. Michel, G. Mahler, Quantum Thermodynamics (Springer, Berlin, 2004).  https://doi.org/10.1007/b98082
  65. 65.
    M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011). Erratum: Rev. Mod. Phys. 83, 1653 (2011).  https://doi.org/10.1103/RevModPhys.83.771
  66. 66.
    M. Horodecki, J. Oppenheim, Nat. Commun. 4, 2059 (2013).  https://doi.org/10.1038/ncomms3059
  67. 67.
    M. Carrega, P. Solinas, A. Braggio, M. Sassetti, U. Weiss, New J. Phys. 17, 045030 (2015).  https://doi.org/10.1088/1367-2630/17/4/045030
  68. 68.
    M. Carrega, P. Solinas, A. Braggio, M. Sassetti, U. Weiss, Phys. Rev. Lett. 116, 240403 (2016).  https://doi.org/10.1103/PhysRevLett.116.240403
  69. 69.
    S. Jevtic, D. Newman, T. Rudolph, T.M. Stace, Phys. Rev. A 91, 012331 (2015).  https://doi.org/10.1103/PhysRevA.91.012331
  70. 70.
    D. Reeb, M.M. Wolf, IEEE Trans. Inf. Theory 61, 1458 (2015).  https://doi.org/10.1109/TIT.2014.2387822
  71. 71.
    L.A. Correa, M. Perarnau-Llobet, K.V. Hovhannisyan, S. Hernández-Santana, M. Mehboudi, A. Sanpera, Phys. Rev. A 96, 062103 (2017).  https://doi.org/10.1103/PhysRevA.96.062103
  72. 72.
    P.P. Hofer, J.B. Brask, N. Brunner, arXiv:1711.09827v2
  73. 73.
    M. Guţă, Phys. Rev. A 83, 062324 (2011).  https://doi.org/10.1103/PhysRevA.83.062324
  74. 74.
    D. Burgarth, V. Giovannetti, A.N. Kato, K. Yuasa, New J. Phys. 17, 113055 (2015).  https://doi.org/10.1088/1367-2630/17/11/113055
  75. 75.
    A. De Pasquale, K. Yuasa, V. Giovannetti, Phys. Rev. A 96, 012316 (2017).  https://doi.org/10.1103/PhysRevA.96.012316

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of FlorenceSesto Fiorentino (FI)Italy
  2. 2.INFN Sezione di FirenzeSesto Fiorentino (FI)Italy
  3. 3.NESTScuola Normale Superiore and Istituto Nanoscienze-CNRPisaItaly
  4. 4.ARC Centre for Engineered Quantum System, Department of PhysicsUniversity of QueenslandBrisbaneAustralia

Personalised recommendations