Advertisement

Properties of Thermal Quantum States: Locality of Temperature, Decay of Correlations, and More

  • Martin KlieschEmail author
  • Arnau Riera
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

We review several properties of thermal states of spin Hamiltonians with short range interactions. In particular, we focus on those aspects in which the application of tools coming from quantum information theory has been specially successful in the recent years. This comprises the study of the correlations at finite and zero temperature, the stability against distant and/or weak perturbations, the locality of temperature and their classical simulatability. For the case of states with a finite correlation length, we review the results on their energy distribution and the equivalence of the canonical and microcanonical ensemble.

Notes

Acknowledgements

We would like to thank C. Gogolin for helpful comments. The work of MK was funded by the National Science Centre, Poland within the project Polonez (2015/19/P/ST2/ 03001) which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665778. AR acknowledges Generalitat de Catalunya (AGAUR Grant No. 2017 SGR 1341, SGR 875 and CERCA/Program), the Spanish Ministry MINECO (National Plan 15 Grant:FISICATEAMO No. FIS2016-79508-P, SEVERO OCHOA No. SEV-2015-0522), Fundació Cellex, ERC AdG OSYRIS, EU FETPRO QUIC, and the CELLEX-ICFO-MPQ fellowship.

References

  1. 1.
    C. Gogolin, J. Eisert, Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep. Prog. Phys. 79, 056001 (2016).  https://doi.org/10.1088/0034-4885/79/5/056001
  2. 2.
    E. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957a).  https://doi.org/10.1103/PhysRev.106.620
  3. 3.
    E. Jaynes, Information theory and statistical mechanics. II. Phys. Rev. 108, 171 (1957b).  https://doi.org/10.1103/PhysRev.108.171
  4. 4.
    R. Alicki, M. Fannes, Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 87, 042123 (2013).  https://doi.org/10.1103/PhysRevE.87.042123
  5. 5.
    W. Pusz, S.L. Woronowicz, Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58, 273 (1978).  https://doi.org/10.1007/BF01614224
  6. 6.
    M.B. Hastings, T. Koma, Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781 (2006).  https://doi.org/10.1007/s00220-006-0030-4
  7. 7.
    B. Nachtergaele, R. Sims, Lieb-Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265, 119 (2006).  https://doi.org/10.1007/s00220-006-1556-1
  8. 8.
    J. Cardy, Scaling and Renormalization in Statistical Physics, Lecture notes in physics (Cambridge University Press, Cambridge, 1996).  https://doi.org/10.1017/CBO9781316036440
  9. 9.
    C. Domb, J. Lebowitz, Phase Transitions and Critical Phenomena, Phase transitions and critical phenomena series (Academic Press, New York, 2000). https://books.google.es/books?id=FYvFm4xF7CgC
  10. 10.
    M. Kliesch, C. Gogolin, M.J. Kastoryano, A. Riera, J. Eisert, Locality of temperature. Phys. Rev. X 4, 031019 (2014a).  https://doi.org/10.1103/PhysRevX.4.031019
  11. 11.
    S. Hernández-Santana, A. Riera, K.V. Hovhannisyan, M. Perarnau-Llobet, L. Tagliacozzo, A. Acin, Locality of temperature in spin chains. New. J. Phys. 17, 085007 (2015).  https://doi.org/10.1088/1367-2630/17/8/085007
  12. 12.
    A. De Pasquale, D. Rossini, R. Fazio, V. Giovannetti, Local quantum thermal susceptibility. Nat. Commun. 7 (2016).  https://doi.org/10.1038/ncomms12782
  13. 13.
    G. De Palma, A. De Pasquale, V. Giovannetti, Universal locality of quantum thermal susceptibility. Phys. Rev. A 95, 052115 (2017).  https://doi.org/10.1103/PhysRevA.95.052115
  14. 14.
    M. Hartmann, G. Mahler, Measurable consequences of the local breakdown of the concept of temperature. Europhys. Lett. 70, 579 (2005).  https://doi.org/10.1209/epl/i2004-10518-5
  15. 15.
    M. Hartmann, Minimal length scales for the existence of local temperature. Contemporary Physics 47, 89 (2006).  https://doi.org/10.1080/00107510600581136
  16. 16.
    A. Ferraro, A. Garca-Saez, A. Acin, Intensive temperature and quantum correlations for refined quantum measurements. Europhys. Lett. 98, 10009 (2012).  https://doi.org/10.1209/0295-5075/98/10009
  17. 17.
    A. Garca-Saez, A. Ferraro, A. Acin, Local temperature in quantum thermal states. Phys. Rev. A 79, 052340 (2009).  https://doi.org/10.1103/PhysRevA.79.052340
  18. 18.
    A. Molnár, N. Schuch, F. Verstraete, J.I. Cirac, Approximating gibbs states of local hamiltonians efficiently with PEPS. Phys. Rev. B 91, 045138 (2015).  https://doi.org/10.1103/PhysRevB.91.045138
  19. 19.
    U. Schollwöck, The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96 (2011).  https://doi.org/10.1016/j.aop.2010.09.012
  20. 20.
    F.G.S.L. Brandao, M. Cramer, Equivalence of statistical mechanical ensembles for non-critical quantum systems, arXiv:1502.03263 [quant-ph]
  21. 21.
    M.P. Mueller, E. Adlam, L. Masanes, N. Wiebe, Thermalization and canonical typicality in translation-invariant quantum lattice systems. Commun. Math. Phys. 340, 499 (2015).  https://doi.org/10.1007/s00220-015-2473-y
  22. 22.
    F. Dyson, E. Lieb, B. Simon, Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335 (1978).  https://doi.org/10.1007/BF01106729
  23. 23.
    K.M.R. Audenaert, M. Mosonyi, F. Verstraete, Quantum state discrimination bounds for finite sample size. J. Math. Phys. 53, 122205 (2012).  https://doi.org/10.1063/1.4768252
  24. 24.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge university press, Cambridge, 2010).  https://doi.org/10.1017/CBO9780511976667
  25. 25.
    D. Ruelle, Statistical Mechanics: Rigorous Results (W. A. Benjamin, New York, 1969)Google Scholar
  26. 26.
    J. Ginibre, Reduced density matrices of quantum gases. II. cluster property. J. Math. Phys. 6, 252 (1965).  https://doi.org/10.1063/1.1704276
  27. 27.
    O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics: Equilibrium States. Models in Quantum Statistical Mechanics, 2nd edn. (Springer, Berlin, 1997).  https://doi.org/10.1007/978-3-662-09089-3
  28. 28.
    W. Greenberg, Critical temperature bounds of quantum lattice gases. Commun. Math. Phys. 13, 335 (1969).  https://doi.org/10.1007/BF01645417
  29. 29.
    Y. Park, H. Yoo, Uniqueness and clustering properties of Gibbs states for classical and quantum unbounded spin systems. J. Stat. Phys. 80, 223 (1995).  https://doi.org/10.1007/BF02178359
  30. 30.
    D.A. Klarner, Cell growth problems. Canad. J. Math 19, 23 (1967)Google Scholar
  31. 31.
    Y.M. Miranda, G. Slade, The growth constants of lattice trees and lattice animals in high dimensions. Elect. Comm. Probab. 16, 129 (2011), arXiv:1102.3682 [math.PR]
  32. 32.
    M.B. Hastings, Solving gapped Hamiltonians locally, Phys. Rev. B 73, 085115 (2006).  https://doi.org/10.1103/PhysRevB.73.085115
  33. 33.
    M. Kliesch, C. Gogolin, J. Eisert, in Many-Electron Approaches in Physics, Chemistry and Mathematics, Mathematical physics studies, ed. by V. Bach, L. Delle Site (Springer International Publishing, 2014), pp. 301–318.  https://doi.org/10.1007/978-3-319-06379-9_17
  34. 34.
    B. Nachtergaele, R. Sims, Contemporary mathematics, in Entropy and the Quantum, ed. by R. Sims, D. Ueltschi (American Mathematical Society, 2010), pp. 141–176, arXiv:1004.2086 [math-ph]
  35. 35.
    F.G.S.L. Brandão, M. Horodecki, Exponential decay of correlations implies area law. Comm. Math. Phys. 333, 761 (2015).  https://doi.org/10.1007/s00220-014-2213-8
  36. 36.
    J. Eisert, M. Cramer, M.B. Plenio, Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277 (2010).  https://doi.org/10.1103/RevModPhys.82.277
  37. 37.
    M.B. Hastings, An area law for one-dimensional quantum systems. J. Stat. Mech. Theory Exp. 2007, P08024 (2007).  https://doi.org/10.1088/1742-5468/2007/08/P08024
  38. 38.
    M.M. Wolf, F. Verstraete, M.B. Hastings, J.I. Cirac, Area laws in quantum systems: mutual information and correlations. Phys. Rev. Lett. 100, 070502 (2008).  https://doi.org/10.1103/PhysRevLett.100.070502
  39. 39.
    S. Das, S. Shankaranarayanan, How robust is the entanglement entropy-area relation? Phys. Rev. D 73, 121701 (2006).  https://doi.org/10.1103/PhysRevD.73.121701
  40. 40.
    L. Masanes, Area law for the entropy of low-energy states. Phys. Rev. A 80, 052104 (2009).  https://doi.org/10.1103/PhysRevA.80.052104
  41. 41.
    G. Vitagliano, A. Riera, J.I. Latorre, Volume-law scaling for the entanglement entropy in spin-1/2 chains. New. J. Phys. 12, 113049 (2010).  https://doi.org/10.1088/1367-2630/12/11/113049
  42. 42.
    D. Aharonov, D. Gottesman, S. Irani, J. Kempe, The power of quantum systems on a line. Commun. Math. Phys. 287, 41 (2009).  https://doi.org/10.1007/s00220-008-0710-3
  43. 43.
    D. Gottesma, S. Irani, The quantum and classical complexity of translationally invariant tiling and hamiltonian problems, in Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science FOCS ’09 (IEEE Computer Society, USA, 2009), pp. 95–104.  https://doi.org/10.1109/FOCS.2009.22
  44. 44.
    J.L. Cardy, Conformal invariance and surface critical behavior. Nucl. Phys. B 240, 514 (1984).  https://doi.org/10.1016/0550-3213(84)90241-4
  45. 45.
    J.L. Cardy, Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories. Nucl. Phys. B 275, 200 (1986).  https://doi.org/10.1016/0550-3213(86)90596-1
  46. 46.
    M. Zwolak, G. Vidal, Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm. Phys. Rev. Lett. 93, 207205 (2004).  https://doi.org/10.1103/PhysRevLett.93.207205
  47. 47.
    F. Verstraete, J.J. Garcia-Ripoll, J.I. Cirac, Matrix product density operators: simulation of finite-temperature and dissipative systems. Phys. Rev. Lett. 93, 207204 (2004).  https://doi.org/10.1103/PhysRevLett.93.207204
  48. 48.
    M. Kliesch, D. Gross, J. Eisert, Matrix-product operators and states: NP-hardness and undecidability. Phys. Rev. Lett. 113, 160503 (2014c).  https://doi.org/10.1103/PhysRevLett.113.160503
  49. 49.
    J.P. Keating, N. Linden, H.J. Wells, Spectra and eigenstates of spin chain hamiltonians. Commun. Math. Phys. 338, 81 (2015).  https://doi.org/10.1007/s00220-015-2366-0
  50. 50.
    I. Arad, T. Kuwahara, Z. Landau, Connecting global and local energy distributions in quantum spin models on a lattice. J. Stat. Mech. Theory Exp. 3, 033301 (2016).  https://doi.org/10.1088/1742-5468/2016/03/033301
  51. 51.
    A. Anshu, Concentration bounds for quantum states with finite correlation length on quantum spin lattice systems. New J. Phys. 18, 083011 (2016).  https://doi.org/10.1088/1367-2630/18/8/083011
  52. 52.
    T. Kuwahara, Connecting the probability distributions of different operators and generalization of the Chernoff-Hoeffding inequality. J. Stat. Mech. Theory Exp. 11, 113103 (2016).  https://doi.org/10.1088/1742-5468/2016/11/113103
  53. 53.
    J.W. Gibbs, Elementary Principles in Statistical Mechanics with Especial Reference to the Rational Foundation of Thermodynamics (Yale University Press, 1902)Google Scholar
  54. 54.
    H. Touchette, Equivalence and nonequivalence of ensembles: thermodynamic, macrostate, and measure levels. J. Stat. Phys. 159, 987 (2015).  https://doi.org/10.1007/s10955-015-1212-2
  55. 55.
    S. Popescu, A.J. Short, A. Winter, Entanglement and the foundations of statistical mechanics. Nat. Phys. 2, 754 (2006).  https://doi.org/10.1038/nphys444
  56. 56.
    S. Goldstein, J.L. Lebowitz, R. Tumulka, N. Zanghi, Canonical typicality. Phys. Rev. Lett 96, 050403 (2006).  https://doi.org/10.1103/PhysRevLett.96.050403
  57. 57.
    R. Lima, Equivalence of ensembles in quantum lattice systems: states. Commun. Math. Phys. 24, 180 (1972).  https://doi.org/10.1007/BF01877711
  58. 58.
    M.P. Müller, E. Adlam, L. Masanes, N. Wiebe, Thermalization and canonical typicality in translation-invariant quantum lattice systems. Commun. Math. Phys. 340, 499 (2015).  https://doi.org/10.1007/s00220-015-2473-y
  59. 59.
    Z.-X. Gong, M. Foss-Feig, S. Michalakis, A.V. Gorshkov, Persistence of locality in systems with power-law interactions. Phys. Rev. Lett. 113, 030602 (2014).  https://doi.org/10.1103/PhysRevLett.113.030602
  60. 60.
    P. Hauke, L. Tagliacozzo, Spread of correlations in long-range interacting quantum systems. Phys. Rev. Lett. 111, 207202 (2013).  https://doi.org/10.1103/PhysRevLett.111.207202
  61. 61.
    T. Matsuta, T. Koma, S. Nakamura, Improving the Lieb–Robinson bound for long-range interactions. Ann. Henri Poincaré 18, 519 (2017).  https://doi.org/10.1007/s00023-016-0526-1
  62. 62.
    S. Hernández-Santana, C. Gogolin, J.I. Cirac, A. Acin, Correlation decay in fermionic lattice systems with power-law interactions at nonzero temperature. Phys. Rev. Lett. 119, 110601 (2017).  https://doi.org/10.1103/PhysRevLett.119.110601
  63. 63.
    L. Casetti, M. Kastner, Partial equivalence of statistical ensembles and kinetic energy. Phys. A 384, 318 (2007).  https://doi.org/10.1016/j.physa.2007.05.043
  64. 64.
    T. Farrelly, F.G.S.L. Brandão, M. Cramer, Thermalization and return to equilibrium on finite quantum lattice systems. Phys. Rev. Lett. 118, 140601 (2017).  https://doi.org/10.1103/PhysRevLett.118.140601

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Theoretical Physics and Astrophysics, National Quantum Information CentreUniversity of GdańskSopotPoland
  2. 2.Institute for Theoretical PhysicsHeinrich Heine University DüsseldorfDüsseldorfGermany
  3. 3.ICFO – Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyCastelldefelsSpain
  4. 4.Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations