Advertisement

Thermodynamic Principles and Implementations of Quantum Machines

  • Arnab Ghosh
  • Wolfgang Niedenzu
  • Victor Mukherjee
  • Gershon KurizkiEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

The efficiency of cyclic heat engines is limited by the Carnot bound. This bound follows from the second law of thermodynamics and is attained by engines that operate between two thermal baths under the reversibility condition whereby the total entropy does not increase. By contrast, the efficiency of engines powered by quantum non-thermal baths has been claimed to surpass the thermodynamic Carnot bound. The key to understanding the performance of such engines is a proper division of the energy supplied by the bath to the system into heat and work, depending on the associated change in the system entropy and ergotropy. Due to their hybrid character, the efficiency bound for quantum engines powered by a non-thermal bath does not solely follow from the laws of thermodynamics. Hence, the thermodynamic Carnot bound is inapplicable to such hybrid engines. Yet, they do not violate the principles of thermodynamics. An alternative means of boosting machine performance is the concept of heat-to-work conversion catalysis by quantum non-linear (squeezed) pumping of the piston mode. This enhancement is due to the increased ability of the squeezed piston to store ergotropy. Since the catalyzed machine is fueled by thermal baths, it adheres to the Carnot bound. We conclude by arguing that it is not quantumness per se that improves the machine performance, but rather the properties of the baths, the working fluid and the piston that boost the ergotropy and minimize the wasted heat in both the input and the output.

Notes

Acknowledgements

We acknowledge discussions with A. G. Kofman and support from ISF, DFG and VATAT. W. N. acknowledges support from an ESQ fellowship of the Austrian Academy of Sciences (ÖAW).

References

  1. 1.
    S.  Carnot, Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance (Bachelier, Paris, 1824).  https://doi.org/10.3931/e-rara-9118
  2. 2.
    D.  Kondepudi, I.  Prigogine, Modern Thermodynamics, 2nd ed. (Wiley, Chichester, 2015).  https://doi.org/10.1002/9781118698723
  3. 3.
    M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862 (2003).  https://doi.org/10.1126/science.1078955ADSCrossRefGoogle Scholar
  4. 4.
    R.  Dillenschneider, E.  Lutz, Energetics of quantum correlations. EPL (Europhys. Lett.) 88, 50003 (2009).  https://doi.org/10.1209/0295-5075/88/50003
  5. 5.
    X.L. Huang, T. Wang, X.X. Yi, Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86, 051105 (2012).  https://doi.org/10.1103/PhysRevE.86.051105ADSCrossRefGoogle Scholar
  6. 6.
    O.  Abah, E.  Lutz, Efficiency of heat engines coupled to nonequilibrium reservoirs. EPL (Europhys. Lett.) 106, 20001 (2014).  https://doi.org/10.1209/0295-5075/106/20001
  7. 7.
    J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Nanoscale heat engine beyond the carnot limit. Phys. Rev. Lett. 112, 030602 (2014).  https://doi.org/10.1103/PhysRevLett.112.030602
  8. 8.
    A.Ü.C. Hardal, Ö.E. Müstecaplıoğlu, Superradiant quantum heat engine. Sci. Rep. 5, 12953 (2015).  https://doi.org/10.1038/srep12953ADSCrossRefGoogle Scholar
  9. 9.
    W. Niedenzu, D. Gelbwaser-Klimovsky, A.G. Kofman, G. Kurizki, On the operation of machines powered by quantum non-thermal baths. New J. Phys. 18, 083012 (2016).  https://doi.org/10.1088/1367-2630/18/8/083012ADSCrossRefGoogle Scholar
  10. 10.
    G. Manzano, F. Galve, R. Zambrini, J.M.R. Parrondo, Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E 93, 052120 (2016).  https://doi.org/10.1103/PhysRevE.93.052120ADSCrossRefGoogle Scholar
  11. 11.
    J. Klaers, S. Faelt, A. Imamoglu, E. Togan, Squeezed thermal reservoirs as a resource for a nanomechanical engine beyond the carnot limit. Phys. Rev. X 7, 031044 (2017).  https://doi.org/10.1103/PhysRevX.7.031044CrossRefGoogle Scholar
  12. 12.
    B.K. Agarwalla, J.-H. Jiang, D. Segal, Quantum efficiency bound for continuous heat engines coupled to noncanonical reservoirs. Phys. Rev. B 96, 104304 (2017).  https://doi.org/10.1103/PhysRevB.96.104304ADSCrossRefGoogle Scholar
  13. 13.
    R. Alicki, M. Horodecki, P. Horodecki, R. Horodecki, Thermodynamics of quantum information systems –Hamiltonian description. Open Syst. Inf. Dyn. 11, 205 (2004).  https://doi.org/10.1023/B:OPSY.0000047566.72717.71MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    H.T. Quan, Y. Liu, C.P. Sun, F. Nori, Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007).  https://doi.org/10.1103/PhysRevE.76.031105ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    J.  Gemmer, M.  Michel, G.  Mahler, Quantum Thermodynamics, 2nd ed. (Springer, Berlin, 2009).  https://doi.org/10.1007/978-3-540-70510-9
  16. 16.
    N. Linden, S. Popescu, P. Skrzypczyk, How small can thermal machines be? The smallest possible refrigerator. Phys. Rev. Lett. 105, 130401 (2010).  https://doi.org/10.1103/PhysRevLett.105.130401
  17. 17.
    R. Dorner, J. Goold, C. Cormick, M. Paternostro, V. Vedral, Emergent thermodynamics in a quenched quantum many-body system. Phys. Rev. Lett. 109, 160601 (2012).  https://doi.org/10.1103/PhysRevLett.109.160601
  18. 18.
    O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, E. Lutz, Single-ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012).  https://doi.org/10.1103/PhysRevLett.109.203006
  19. 19.
    D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Minimal universal quantum heat machine. Phys. Rev. E 87, 012140 (2013a).  https://doi.org/10.1103/PhysRevE.87.012140ADSCrossRefGoogle Scholar
  20. 20.
    R. Kosloff, Quantum thermodynamics: a dynamical viewpoint. Entropy 15, 2100 (2013).  https://doi.org/10.3390/e15062100ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    A. del Campo, J. Goold, M. Paternostro, More bang for your buck: super-adiabatic quantum engines. Sci. Rep. 4, 6208 (2014).  https://doi.org/10.1038/srep06208ADSCrossRefGoogle Scholar
  22. 22.
    D. Gelbwaser-Klimovsky, G. Kurizki, Heat-machine control by quantum-state preparation: from quantum engines to refrigerators. Phys. Rev. E 90, 022102 (2014).  https://doi.org/10.1103/PhysRevE.90.022102ADSCrossRefGoogle Scholar
  23. 23.
    R. Kosloff, A. Levy, Quantum heat engines and refrigerators: continuous devices. Annu. Rev. Phys. Chem. 65, 365 (2014).  https://doi.org/10.1146/annurev-physchem-040513-103724ADSCrossRefGoogle Scholar
  24. 24.
    P. Skrzypczyk, A.J. Short, S. Popescu, Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 5, 4185 (2014).  https://doi.org/10.1038/ncomms5185ADSCrossRefGoogle Scholar
  25. 25.
    F. Binder, S. Vinjanampathy, K. Modi, J. Goold, Quantum thermodynamics of general quantum processes. Phys. Rev. E 91, 032119 (2015).  https://doi.org/10.1103/PhysRevE.91.032119
  26. 26.
    D. Gelbwaser-Klimovsky, W. Niedenzu, G. Kurizki, Thermodynamics of quantum systems under dynamical control. Adv. At. Mol. Opt. Phys. 64, 329 (2015).  https://doi.org/10.1016/bs.aamop.2015.07.002ADSCrossRefGoogle Scholar
  27. 27.
    R. Uzdin, A. Levy, R. Kosloff, Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5, 031044 (2015).  https://doi.org/10.1103/PhysRevX.5.031044CrossRefGoogle Scholar
  28. 28.
    R. Uzdin, A. Levy, R. Kosloff, Quantum heat machines equivalence, work extraction beyond markovianity, and strong coupling via heat exchangers. Entropy 18, 124 (2016).  https://doi.org/10.3390/e18040124ADSCrossRefGoogle Scholar
  29. 29.
    S. Vinjanampathy, J. Anders, Quantum thermodynamics. Contemp. Phys. 57, 1 (2016).  https://doi.org/10.1080/00107514.2016.1201896CrossRefGoogle Scholar
  30. 30.
    J. Roßnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, K. Singer, A single-atom heat engine. Science 352, 325 (2016).  https://doi.org/10.1126/science.aad6320ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    J.  Klatzow, J.N. Becker, P.M. Ledingham, C.  Weinzetl, K.T. Kaczmarek, D.J. Saunders, J.  Nunn, I.A. Walmsley, R.  Uzdin, E.  Poem, Experimental demonstration of quantum effects in the operation of microscopic heat engines (2017). arXiv:1710.08716
  32. 32.
    C.B. Dağ, W. Niedenzu, Ö.E. Müstecaplıoğlu, G. Kurizki, Multiatom quantum coherences in micromasers as fuel for thermal and nonthermal machines. Entropy 18, 244 (2016).  https://doi.org/10.3390/e18070244ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    W. Niedenzu, V. Mukherjee, A. Ghosh, A.G. Kofman, G. Kurizki, Quantum engine efficiency bound beyond the second law of thermodynamics. Nat. Commun. 9, 165 (2018).  https://doi.org/10.1038/s41467-017-01991-6ADSCrossRefGoogle Scholar
  34. 34.
    A. Ghosh, C.L. Latune, L. Davidovich, G. Kurizki, Catalysis of heat-to-work conversion in quantum machines. Proc. Natl. Acad. Sci. U.S.A. 114, 12156 (2017).  https://doi.org/10.1073/pnas.1711381114
  35. 35.
    R. Alicki, The quantum open system as a model of the heat engine. J. Phys. A 12, L103 (1979).  https://doi.org/10.1088/0305-4470/12/5/007ADSCrossRefGoogle Scholar
  36. 36.
    R. Kosloff, A quantum mechanical open system as a model of a heat engine. J. Chem. Phys. 80, 1625 (1984).  https://doi.org/10.1063/1.446862ADSCrossRefGoogle Scholar
  37. 37.
    E. Boukobza, D.J. Tannor, Three-level systems as amplifiers and attenuators: a thermodynamic analysis. Phys. Rev. Lett. 98, 240601 (2007).  https://doi.org/10.1103/PhysRevLett.98.240601
  38. 38.
    J.M.R. Parrondo, C.V. den Broeck, R. Kawai, Entropy production and the arrow of time. New J. Phys. 11, 073008 (2009).  https://doi.org/10.1088/1367-2630/11/7/073008
  39. 39.
    S. Deffner, E. Lutz, Nonequilibrium entropy production for open quantum systems. Phys. Rev. Lett. 107, 140404 (2011).  https://doi.org/10.1103/PhysRevLett.107.140404
  40. 40.
    E. Boukobza, H. Ritsch, Breaking the carnot limit without violating the second law: a thermodynamic analysis of off-resonant quantum light generation. Phys. Rev. A 87, 063845 (2013).  https://doi.org/10.1103/PhysRevA.87.063845
  41. 41.
    T.  Sagawa, in Lectures on Quantum Computing, Thermodynamics and Statistical Physics, ed. by M.  Nakahara, S.  Tanaka (World Scientific, Singapore, 2013), pp. 125–190.  https://doi.org/10.1142/9789814425193_0003
  42. 42.
    G.  Argentieri, F.  Benatti, R.  Floreanini, M.  Pezzutto, Violations of the second law of thermodynamics by a non-completely positive dynamics. EPL (Europhys. Lett.) 107, 50007 (2014).  https://doi.org/10.1209/0295-5075/107/50007
  43. 43.
    K. Brandner, U. Seifert, Periodic thermodynamics of open quantum systems. Phys. Rev. E 93, 062134 (2016).  https://doi.org/10.1103/PhysRevE.93.062134ADSCrossRefGoogle Scholar
  44. 44.
    H.-P. Breuer, F.  Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)Google Scholar
  45. 45.
    H. Spohn, Entropy production for quantum dynamical semigroups. J. Math. Phys. 19, 1227 (1978).  https://doi.org/10.1063/1.523789ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    W. Pusz, S.L. Woronowicz, Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58, 273 (1978).  https://doi.org/10.1007/BF01614224ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    A. Lenard, Thermodynamical proof of the Gibbs formula for elementary quantum systems. J. Stat. Phys. 19, 575 (1978).  https://doi.org/10.1007/BF01011769ADSCrossRefGoogle Scholar
  48. 48.
    A.E. Allahverdyan, R.  Balian, T.M. Nieuwenhuizen, Maximal work extraction from finite quantum systems. EPL (Europhys. Lett.) 67, 565 (2004).  https://doi.org/10.1209/epl/i2004-10101-2
  49. 49.
    R. Alicki, M. Fannes, Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 87, 042123 (2013).  https://doi.org/10.1103/PhysRevE.87.042123ADSCrossRefGoogle Scholar
  50. 50.
    F.C. Binder, S. Vinjanampathy, K. Modi, J. Goold, Quantacell: powerful charging of quantum batteries. New J. Phys. 17, 075015 (2015b).  https://doi.org/10.1088/1367-2630/17/7/075015ADSCrossRefGoogle Scholar
  51. 51.
    N.  Friis, M.  Huber, Precision and work fluctuations in gaussian battery charging. Quantum 2, 61 (2018).  https://doi.org/10.22331/q-2018-04-23-61
  52. 52.
    D.  Gelbwaser-Klimovsky, R.  Alicki, G.  Kurizki, Work and energy gain of heat-pumped quantized amplifiers. EPL (Europhys. Lett.) 103, 60005 (2013).  https://doi.org/10.1209/0295-5075/103/60005
  53. 53.
    J. Anders, V. Giovannetti, Thermodynamics of discrete quantum processes. New J. Phys. 15, 033022 (2013).  https://doi.org/10.1088/1367-2630/15/3/033022ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    P. Skrzypczyk, R. Silva, N. Brunner, Passivity, complete passivity, and virtual temperatures. Phys. Rev. E 91, 052133 (2015).  https://doi.org/10.1103/PhysRevE.91.052133ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    E.G. Brown, N. Friis, M. Huber, Passivity and practical work extraction using Gaussian operations. New J. Phys. 18, 113028 (2016).  https://doi.org/10.1088/1367-2630/18/11/113028ADSCrossRefGoogle Scholar
  56. 56.
    G. De Palma, A. Mari, S. Lloyd, V. Giovannetti, Passive states as optimal inputs for single-jump lossy quantum channels. Phys. Rev. A 93, 062328 (2016).  https://doi.org/10.1103/PhysRevA.93.062328ADSCrossRefGoogle Scholar
  57. 57.
    R. Alicki, From the GKLS equation to the theory of solar and fuel cells. Open Syst. Inf. Dyn. 24, 1740007 (2017).  https://doi.org/10.1142/S1230161217400078MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    N. Erez, G. Gordon, M. Nest, G. Kurizki, Thermodynamic control by frequent quantum measurements. Nature 452, 724 (2008).  https://doi.org/10.1038/nature06873ADSCrossRefGoogle Scholar
  59. 59.
    F. Schlögl, Zur statistischen Theorie der Entropieproduktion in nicht abgeschlossenen Systemen. Z. Phys. 191, 81 (1966).  https://doi.org/10.1007/BF01362471ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    A.K. Ekert, P.L. Knight, Canonical transformation and decay into phase-sensitive reservoirs. Phys. Rev. A 42, 487 (1990).  https://doi.org/10.1103/PhysRevA.42.487ADSCrossRefGoogle Scholar
  61. 61.
    C.W. Gardiner, P.  Zoller, Quantum Noise, 2nd ed. (Springer, Berlin, 2000)Google Scholar
  62. 62.
    V. Mukherjee, W. Niedenzu, A.G. Kofman, G. Kurizki, Speed and efficiency limits of multilevel incoherent heat engines. Phys. Rev. E 94, 062109 (2016).  https://doi.org/10.1103/PhysRevE.94.062109ADSCrossRefGoogle Scholar
  63. 63.
    T. Feldmann, R. Kosloff, Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine. Phys. Rev. E 73, 025107 (2006).  https://doi.org/10.1103/PhysRevE.73.025107ADSCrossRefGoogle Scholar
  64. 64.
    R. Kosloff, Y. Rezek, The quantum harmonic otto cycle. Entropy 19, 136 (2017).  https://doi.org/10.3390/e19040136ADSCrossRefGoogle Scholar
  65. 65.
    R. Graham, Squeezing and frequency changes in harmonic oscillations. J. Mod. Opt. 34, 873 (1987).  https://doi.org/10.1080/09500348714550801ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    G.S. Agarwal, S.A. Kumar, Exact quantum-statistical dynamics of an oscillator with time-dependent frequency and generation of nonclassical states. Phys. Rev. Lett. 67, 3665 (1991).  https://doi.org/10.1103/PhysRevLett.67.3665
  67. 67.
    I. Averbukh, B. Sherman, G. Kurizki, Enhanced squeezing by periodic frequency modulation under parametric instability conditions. Phys. Rev. A 50, 5301 (1994).  https://doi.org/10.1103/PhysRevA.50.5301ADSCrossRefGoogle Scholar
  68. 68.
    R. Alicki, D. Gelbwaser-Klimovsky, Non-equilibrium quantum heat machines. New J. Phys. 17, 115012 (2015).  https://doi.org/10.1088/1367-2630/17/11/115012ADSCrossRefGoogle Scholar
  69. 69.
    D. Türkpençe, Ö.E. Müstecaplıoğlu, Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine. Phys. Rev. E 93, 012145 (2016).  https://doi.org/10.1103/PhysRevE.93.012145
  70. 70.
    C. B. Dağ, W.  Niedenzu, F.  Ozaydin, Ö.E. Müstecaplıoğlu, G.  Kurizki, Temperature Control in Dissipative Cavities by Entangled Dimers. J. Phys. Chem. C (accepted, 2019 in press).  https://doi.org/10.1021/acs.jpcc.8b11445
  71. 71.
    M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).  https://doi.org/10.1103/RevModPhys.86.1391
  72. 72.
    A.  Ghosh, D.  Gelbwaser-Klimovsky, W.  Niedenzu, A.I.  Lvovsky, I.  Mazets, M.O. Scully, G.  Kurizki, Two-level masers as heat-to-work converters. Proc. Natl. Acad. Sci. U.S.A. 115, 9941 (2018).  https://doi.org/10.1073/pnas.1805354115
  73. 73.
    J. Górecki, W. Pusz, Passive states for finite classical systems. Lett. Math. Phys. 4, 433 (1980).  https://doi.org/10.1007/BF00943428ADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    H.A.M. Daniëls, Passivity and equilibrium for classical Hamiltonian systems. J. Math. Phys. 22, 843 (1981).  https://doi.org/10.1063/1.524949ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    J. da Providência, C. Fiolhais, Variational formulation of the Vlasov equation. J. Phys. A: Math. Gen. 20, 3877 (1987).  https://doi.org/10.1088/0305-4470/20/12/034ADSCrossRefzbMATHGoogle Scholar
  76. 76.
    M. Wallquist, K. Hammerer, P. Zoller, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, J. Ye, H.J. Kimble, Single-atom cavity QED and optomicromechanics. Phys. Rev. A 81, 023816 (2010).  https://doi.org/10.1103/PhysRevA.81.023816ADSCrossRefGoogle Scholar
  77. 77.
    R.J. Glauber, Coherent and Incoherent States of the Radiation Field. Phys. Rev. 131, 2766 (1963).  https://doi.org/10.1103/PhysRev.131.2766
  78. 78.
    V.V. Dodonov, ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years. J. Opt. B: Quantum Semiclass. Opt. 4, R1 (2002).  https://doi.org/10.1088/1464-4266/4/1/201ADSMathSciNetCrossRefGoogle Scholar
  79. 79.
    M.S. Kim, F.A.M. de Oliveira, P.L. Knight, Properties of squeezed number states and squeezed thermal states. Phys. Rev. A 40, 2494 (1989).  https://doi.org/10.1103/PhysRevA.40.2494ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Arnab Ghosh
    • 1
  • Wolfgang Niedenzu
    • 1
    • 2
  • Victor Mukherjee
    • 1
  • Gershon Kurizki
    • 1
    Email author
  1. 1.Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
  2. 2.Institut für Theoretische PhysikUniversität InnsbruckInnsbruckAustria

Personalised recommendations