Thermodynamic Principles and Implementations of Quantum Machines

  • Arnab Ghosh
  • Wolfgang Niedenzu
  • Victor Mukherjee
  • Gershon KurizkiEmail author
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)


The efficiency of cyclic heat engines is limited by the Carnot bound. This bound follows from the second law of thermodynamics and is attained by engines that operate between two thermal baths under the reversibility condition whereby the total entropy does not increase. By contrast, the efficiency of engines powered by quantum non-thermal baths has been claimed to surpass the thermodynamic Carnot bound. The key to understanding the performance of such engines is a proper division of the energy supplied by the bath to the system into heat and work, depending on the associated change in the system entropy and ergotropy. Due to their hybrid character, the efficiency bound for quantum engines powered by a non-thermal bath does not solely follow from the laws of thermodynamics. Hence, the thermodynamic Carnot bound is inapplicable to such hybrid engines. Yet, they do not violate the principles of thermodynamics. An alternative means of boosting machine performance is the concept of heat-to-work conversion catalysis by quantum non-linear (squeezed) pumping of the piston mode. This enhancement is due to the increased ability of the squeezed piston to store ergotropy. Since the catalyzed machine is fueled by thermal baths, it adheres to the Carnot bound. We conclude by arguing that it is not quantumness per se that improves the machine performance, but rather the properties of the baths, the working fluid and the piston that boost the ergotropy and minimize the wasted heat in both the input and the output.



We acknowledge discussions with A. G. Kofman and support from ISF, DFG and VATAT. W. N. acknowledges support from an ESQ fellowship of the Austrian Academy of Sciences (ÖAW).


  1. 1.
    S.  Carnot, Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance (Bachelier, Paris, 1824).
  2. 2.
    D.  Kondepudi, I.  Prigogine, Modern Thermodynamics, 2nd ed. (Wiley, Chichester, 2015).
  3. 3.
    M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862 (2003). Scholar
  4. 4.
    R.  Dillenschneider, E.  Lutz, Energetics of quantum correlations. EPL (Europhys. Lett.) 88, 50003 (2009).
  5. 5.
    X.L. Huang, T. Wang, X.X. Yi, Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86, 051105 (2012). Scholar
  6. 6.
    O.  Abah, E.  Lutz, Efficiency of heat engines coupled to nonequilibrium reservoirs. EPL (Europhys. Lett.) 106, 20001 (2014).
  7. 7.
    J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Nanoscale heat engine beyond the carnot limit. Phys. Rev. Lett. 112, 030602 (2014).
  8. 8.
    A.Ü.C. Hardal, Ö.E. Müstecaplıoğlu, Superradiant quantum heat engine. Sci. Rep. 5, 12953 (2015). Scholar
  9. 9.
    W. Niedenzu, D. Gelbwaser-Klimovsky, A.G. Kofman, G. Kurizki, On the operation of machines powered by quantum non-thermal baths. New J. Phys. 18, 083012 (2016). Scholar
  10. 10.
    G. Manzano, F. Galve, R. Zambrini, J.M.R. Parrondo, Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E 93, 052120 (2016). Scholar
  11. 11.
    J. Klaers, S. Faelt, A. Imamoglu, E. Togan, Squeezed thermal reservoirs as a resource for a nanomechanical engine beyond the carnot limit. Phys. Rev. X 7, 031044 (2017). Scholar
  12. 12.
    B.K. Agarwalla, J.-H. Jiang, D. Segal, Quantum efficiency bound for continuous heat engines coupled to noncanonical reservoirs. Phys. Rev. B 96, 104304 (2017). Scholar
  13. 13.
    R. Alicki, M. Horodecki, P. Horodecki, R. Horodecki, Thermodynamics of quantum information systems –Hamiltonian description. Open Syst. Inf. Dyn. 11, 205 (2004). Scholar
  14. 14.
    H.T. Quan, Y. Liu, C.P. Sun, F. Nori, Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007). Scholar
  15. 15.
    J.  Gemmer, M.  Michel, G.  Mahler, Quantum Thermodynamics, 2nd ed. (Springer, Berlin, 2009).
  16. 16.
    N. Linden, S. Popescu, P. Skrzypczyk, How small can thermal machines be? The smallest possible refrigerator. Phys. Rev. Lett. 105, 130401 (2010).
  17. 17.
    R. Dorner, J. Goold, C. Cormick, M. Paternostro, V. Vedral, Emergent thermodynamics in a quenched quantum many-body system. Phys. Rev. Lett. 109, 160601 (2012).
  18. 18.
    O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, E. Lutz, Single-ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012).
  19. 19.
    D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Minimal universal quantum heat machine. Phys. Rev. E 87, 012140 (2013a). Scholar
  20. 20.
    R. Kosloff, Quantum thermodynamics: a dynamical viewpoint. Entropy 15, 2100 (2013). Scholar
  21. 21.
    A. del Campo, J. Goold, M. Paternostro, More bang for your buck: super-adiabatic quantum engines. Sci. Rep. 4, 6208 (2014). Scholar
  22. 22.
    D. Gelbwaser-Klimovsky, G. Kurizki, Heat-machine control by quantum-state preparation: from quantum engines to refrigerators. Phys. Rev. E 90, 022102 (2014). Scholar
  23. 23.
    R. Kosloff, A. Levy, Quantum heat engines and refrigerators: continuous devices. Annu. Rev. Phys. Chem. 65, 365 (2014). Scholar
  24. 24.
    P. Skrzypczyk, A.J. Short, S. Popescu, Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 5, 4185 (2014). Scholar
  25. 25.
    F. Binder, S. Vinjanampathy, K. Modi, J. Goold, Quantum thermodynamics of general quantum processes. Phys. Rev. E 91, 032119 (2015).
  26. 26.
    D. Gelbwaser-Klimovsky, W. Niedenzu, G. Kurizki, Thermodynamics of quantum systems under dynamical control. Adv. At. Mol. Opt. Phys. 64, 329 (2015). Scholar
  27. 27.
    R. Uzdin, A. Levy, R. Kosloff, Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5, 031044 (2015). Scholar
  28. 28.
    R. Uzdin, A. Levy, R. Kosloff, Quantum heat machines equivalence, work extraction beyond markovianity, and strong coupling via heat exchangers. Entropy 18, 124 (2016). Scholar
  29. 29.
    S. Vinjanampathy, J. Anders, Quantum thermodynamics. Contemp. Phys. 57, 1 (2016). Scholar
  30. 30.
    J. Roßnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, K. Singer, A single-atom heat engine. Science 352, 325 (2016). Scholar
  31. 31.
    J.  Klatzow, J.N. Becker, P.M. Ledingham, C.  Weinzetl, K.T. Kaczmarek, D.J. Saunders, J.  Nunn, I.A. Walmsley, R.  Uzdin, E.  Poem, Experimental demonstration of quantum effects in the operation of microscopic heat engines (2017). arXiv:1710.08716
  32. 32.
    C.B. Dağ, W. Niedenzu, Ö.E. Müstecaplıoğlu, G. Kurizki, Multiatom quantum coherences in micromasers as fuel for thermal and nonthermal machines. Entropy 18, 244 (2016). Scholar
  33. 33.
    W. Niedenzu, V. Mukherjee, A. Ghosh, A.G. Kofman, G. Kurizki, Quantum engine efficiency bound beyond the second law of thermodynamics. Nat. Commun. 9, 165 (2018). Scholar
  34. 34.
    A. Ghosh, C.L. Latune, L. Davidovich, G. Kurizki, Catalysis of heat-to-work conversion in quantum machines. Proc. Natl. Acad. Sci. U.S.A. 114, 12156 (2017).
  35. 35.
    R. Alicki, The quantum open system as a model of the heat engine. J. Phys. A 12, L103 (1979). Scholar
  36. 36.
    R. Kosloff, A quantum mechanical open system as a model of a heat engine. J. Chem. Phys. 80, 1625 (1984). Scholar
  37. 37.
    E. Boukobza, D.J. Tannor, Three-level systems as amplifiers and attenuators: a thermodynamic analysis. Phys. Rev. Lett. 98, 240601 (2007).
  38. 38.
    J.M.R. Parrondo, C.V. den Broeck, R. Kawai, Entropy production and the arrow of time. New J. Phys. 11, 073008 (2009).
  39. 39.
    S. Deffner, E. Lutz, Nonequilibrium entropy production for open quantum systems. Phys. Rev. Lett. 107, 140404 (2011).
  40. 40.
    E. Boukobza, H. Ritsch, Breaking the carnot limit without violating the second law: a thermodynamic analysis of off-resonant quantum light generation. Phys. Rev. A 87, 063845 (2013).
  41. 41.
    T.  Sagawa, in Lectures on Quantum Computing, Thermodynamics and Statistical Physics, ed. by M.  Nakahara, S.  Tanaka (World Scientific, Singapore, 2013), pp. 125–190.
  42. 42.
    G.  Argentieri, F.  Benatti, R.  Floreanini, M.  Pezzutto, Violations of the second law of thermodynamics by a non-completely positive dynamics. EPL (Europhys. Lett.) 107, 50007 (2014).
  43. 43.
    K. Brandner, U. Seifert, Periodic thermodynamics of open quantum systems. Phys. Rev. E 93, 062134 (2016). Scholar
  44. 44.
    H.-P. Breuer, F.  Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)Google Scholar
  45. 45.
    H. Spohn, Entropy production for quantum dynamical semigroups. J. Math. Phys. 19, 1227 (1978). Scholar
  46. 46.
    W. Pusz, S.L. Woronowicz, Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58, 273 (1978). Scholar
  47. 47.
    A. Lenard, Thermodynamical proof of the Gibbs formula for elementary quantum systems. J. Stat. Phys. 19, 575 (1978). Scholar
  48. 48.
    A.E. Allahverdyan, R.  Balian, T.M. Nieuwenhuizen, Maximal work extraction from finite quantum systems. EPL (Europhys. Lett.) 67, 565 (2004).
  49. 49.
    R. Alicki, M. Fannes, Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 87, 042123 (2013). Scholar
  50. 50.
    F.C. Binder, S. Vinjanampathy, K. Modi, J. Goold, Quantacell: powerful charging of quantum batteries. New J. Phys. 17, 075015 (2015b). Scholar
  51. 51.
    N.  Friis, M.  Huber, Precision and work fluctuations in gaussian battery charging. Quantum 2, 61 (2018).
  52. 52.
    D.  Gelbwaser-Klimovsky, R.  Alicki, G.  Kurizki, Work and energy gain of heat-pumped quantized amplifiers. EPL (Europhys. Lett.) 103, 60005 (2013).
  53. 53.
    J. Anders, V. Giovannetti, Thermodynamics of discrete quantum processes. New J. Phys. 15, 033022 (2013). Scholar
  54. 54.
    P. Skrzypczyk, R. Silva, N. Brunner, Passivity, complete passivity, and virtual temperatures. Phys. Rev. E 91, 052133 (2015). Scholar
  55. 55.
    E.G. Brown, N. Friis, M. Huber, Passivity and practical work extraction using Gaussian operations. New J. Phys. 18, 113028 (2016). Scholar
  56. 56.
    G. De Palma, A. Mari, S. Lloyd, V. Giovannetti, Passive states as optimal inputs for single-jump lossy quantum channels. Phys. Rev. A 93, 062328 (2016). Scholar
  57. 57.
    R. Alicki, From the GKLS equation to the theory of solar and fuel cells. Open Syst. Inf. Dyn. 24, 1740007 (2017). Scholar
  58. 58.
    N. Erez, G. Gordon, M. Nest, G. Kurizki, Thermodynamic control by frequent quantum measurements. Nature 452, 724 (2008). Scholar
  59. 59.
    F. Schlögl, Zur statistischen Theorie der Entropieproduktion in nicht abgeschlossenen Systemen. Z. Phys. 191, 81 (1966). Scholar
  60. 60.
    A.K. Ekert, P.L. Knight, Canonical transformation and decay into phase-sensitive reservoirs. Phys. Rev. A 42, 487 (1990). Scholar
  61. 61.
    C.W. Gardiner, P.  Zoller, Quantum Noise, 2nd ed. (Springer, Berlin, 2000)Google Scholar
  62. 62.
    V. Mukherjee, W. Niedenzu, A.G. Kofman, G. Kurizki, Speed and efficiency limits of multilevel incoherent heat engines. Phys. Rev. E 94, 062109 (2016). Scholar
  63. 63.
    T. Feldmann, R. Kosloff, Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine. Phys. Rev. E 73, 025107 (2006). Scholar
  64. 64.
    R. Kosloff, Y. Rezek, The quantum harmonic otto cycle. Entropy 19, 136 (2017). Scholar
  65. 65.
    R. Graham, Squeezing and frequency changes in harmonic oscillations. J. Mod. Opt. 34, 873 (1987). Scholar
  66. 66.
    G.S. Agarwal, S.A. Kumar, Exact quantum-statistical dynamics of an oscillator with time-dependent frequency and generation of nonclassical states. Phys. Rev. Lett. 67, 3665 (1991).
  67. 67.
    I. Averbukh, B. Sherman, G. Kurizki, Enhanced squeezing by periodic frequency modulation under parametric instability conditions. Phys. Rev. A 50, 5301 (1994). Scholar
  68. 68.
    R. Alicki, D. Gelbwaser-Klimovsky, Non-equilibrium quantum heat machines. New J. Phys. 17, 115012 (2015). Scholar
  69. 69.
    D. Türkpençe, Ö.E. Müstecaplıoğlu, Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine. Phys. Rev. E 93, 012145 (2016).
  70. 70.
    C. B. Dağ, W.  Niedenzu, F.  Ozaydin, Ö.E. Müstecaplıoğlu, G.  Kurizki, Temperature Control in Dissipative Cavities by Entangled Dimers. J. Phys. Chem. C (accepted, 2019 in press).
  71. 71.
    M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).
  72. 72.
    A.  Ghosh, D.  Gelbwaser-Klimovsky, W.  Niedenzu, A.I.  Lvovsky, I.  Mazets, M.O. Scully, G.  Kurizki, Two-level masers as heat-to-work converters. Proc. Natl. Acad. Sci. U.S.A. 115, 9941 (2018).
  73. 73.
    J. Górecki, W. Pusz, Passive states for finite classical systems. Lett. Math. Phys. 4, 433 (1980). Scholar
  74. 74.
    H.A.M. Daniëls, Passivity and equilibrium for classical Hamiltonian systems. J. Math. Phys. 22, 843 (1981). Scholar
  75. 75.
    J. da Providência, C. Fiolhais, Variational formulation of the Vlasov equation. J. Phys. A: Math. Gen. 20, 3877 (1987). Scholar
  76. 76.
    M. Wallquist, K. Hammerer, P. Zoller, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, J. Ye, H.J. Kimble, Single-atom cavity QED and optomicromechanics. Phys. Rev. A 81, 023816 (2010). Scholar
  77. 77.
    R.J. Glauber, Coherent and Incoherent States of the Radiation Field. Phys. Rev. 131, 2766 (1963).
  78. 78.
    V.V. Dodonov, ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years. J. Opt. B: Quantum Semiclass. Opt. 4, R1 (2002). Scholar
  79. 79.
    M.S. Kim, F.A.M. de Oliveira, P.L. Knight, Properties of squeezed number states and squeezed thermal states. Phys. Rev. A 40, 2494 (1989). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Arnab Ghosh
    • 1
  • Wolfgang Niedenzu
    • 1
    • 2
  • Victor Mukherjee
    • 1
  • Gershon Kurizki
    • 1
    Email author
  1. 1.Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
  2. 2.Institut für Theoretische PhysikUniversität InnsbruckInnsbruckAustria

Personalised recommendations