Nonequilibrium Many-Body Quantum Dynamics: From Full Random Matrices to Real Systems

  • Lea F. SantosEmail author
  • Eduardo Jonathan Torres-Herrera
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)


We present an overview of our studies on the nonequilibrium dynamics of quantum systems that have many interacting particles. Our emphasis is on systems that show strong level repulsion, referred to as chaotic systems. We discuss how full random matrices can guide and support our studies of realistic systems. We show that features of the dynamics can be anticipated from a detailed analysis of the spectrum and the structure of the initial state projected onto the energy eigenbasis. On the other way round, if we only have access to the dynamics, we can use it to infer the properties of the spectrum of the system. Our focus is on the survival probability, but results for other observables, such as the spin density imbalance and Shannon entropy are also mentioned.



L.F.S. was supported by the NSF grant No. DMR-1603418. E.J.T.-H. acknowledges funding from CONACyT and VIEP-BUAP, Mexico. He is also grateful to LNS-BUAP for allowing use of their supercomputing facility.


  1. 1.
    F. Borgonovi, F.M. Izrailev, L.F. Santos, V.G. Zelevinsky, Quantum chaos and thermalization in isolated systems of interacting particles. Phys. Rep. 626(1), 00 (2016).
  2. 2.
    C. Gogolin, J. Eisert, Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep. Prog. Phys. 79, 056001 (2016).
  3. 3.
    L. D’Alessio, Y. Kafri, A. Polkovnikov, M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016).
  4. 4.
    D.J. Luitz, Y.B. Lev, The ergodic side of the many-body localization transition. Ann. Phys. 529, 1600350 (2017). Berlin.
  5. 5.
    V. Giovannetti, S. Lloyd, L. Maccone, Quantum limits to dynamical evolution. Phys. Rev. A 67, 052109 (2003).
  6. 6.
    M. Akila, D. Waltner, B. Gutkin, P. Braun, T. Guhr, Semiclassical identification of periodic orbits in a quantum many-body system. Phys. Rev. Lett. 118, 164101 (2017).
  7. 7.
    O. Bohigas, M.J. Giannoni, C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1 (1984).
  8. 8.
    G. Casati, F. Valz-Gris, I. Guarnieri, On the connection between quantization of nonintegrable systems and statistical theory of spectra. Lett. Nuovo Cimento 28, 279 (1980). 1971–1985.
  9. 9.
    M.C. Gutzwiller, Periodic orbits and classical quantization conditions. J. Math. Phys. 12, 343 (1971).
  10. 10.
    V. Strutinskii, A. Magner, Quasiclassical theory of nuclear shell structure (Classical motion). Sov. J. Part. Nucl. 7, 138 (1976).
  11. 11.
    M.L. Mehta, Random Matrices (Academic Press, Boston, 2004)., ISBN 9780120884094
  12. 12.
    T. Guhr, A. Mueller-Gröeling, H.A. Weidenmüller, Random matrix theories in quantum physics: common concepts. Phys. Rep. 299, 189 (1998).
  13. 13.
    E.P. Wigner, On the statistical distribution of the widths and spacings of nuclear resonance levels. Proc. Cambridge Phil. Soc. 47, 790 (1951).
  14. 14.
    E.P. Wigner, On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 325 (1958).
  15. 15.
    T. Scaffidi, E. Altman, Semiclassical theory of many-body quantum chaos and its bound. arXiv:1711.04768
  16. 16.
    E. Bianchi, L. Hackl, N. Yokomizo, Linear growth of the entanglement entropy and the Kolmogorov-Sinai rate. J. High Energy Phys. 2018, 25 (2018).
  17. 17.
    M. Schmitt, D. Sels, S. Kehrein, A. Polkovnikov, Semiclassical echo dynamics in the Sachdev-Ye-Kitaev model. arXiv:1802.06796
  18. 18.
    F. Borgonovi, F.M. Izrailev, L.F. Santos, Exponentially fast dynamics in the Fock space of chaotic many-body systems.
  19. 19.
    C. Khripkov, A. Vardi, D. Cohen, Semiclassical theory of strong localization for quantum thermalization. Phys. Rev. E 97, 022127 (2018).
  20. 20.
    R.A. Jalabert, H.M. Pastawski, Environment-independent decoherence rate in classically chaotic systems. Phys. Rev. Lett. 86, 2490 (2001).
  21. 21.
    T. Gorin, T. Prosen, T.H. Seligman, M. Žnidarič, Dynamics of loschmidt echoes and fidelity decay. Phys. Rep. 435, 33 (2006).
  22. 22.
    E.B. Rozenbaum, S. Ganeshan, V. Galitski, Lyapunov exponent and out-of-time-ordered correlator’s growth rate in a chaotic system. Phys. Rev. Lett. 118, 086801 (2017).
  23. 23.
    K. Hashimoto, K. Murata, R. Yoshii, Out-of-time-order correlators in quantum mechanics. J. High Energy Phys. 2017, 138 (2017).
  24. 24.
    E.B. Rozenbaum, S. Ganeshan, V. Galitski, Universal level statistics of the out-of-time-ordered operator. arXiv:1801.10591
  25. 25.
    J. Chávez-Carlos, B.L. del Carpio, M.A. Bastarrachea-Magnani, P. Stránský, S. Lerma-Hernández, L.F. Santos, J.G. Hirsch, Quantum and classical Lyapunov exponents in atom-field interaction systems. Phys. Rev. Lett. 122, 024101 (2019).
  26. 26.
    D.J. Luitz, Y. Bar Lev, Information propagation in isolated quantum systems. Phys. Rev. B 96, 020406 (2017).
  27. 27.
    E.J. Torres-Herrera, L.F. Santos, Quench dynamics of isolated many-body quantum systems. Phys. Rev. A 89, 043620 (2014).
  28. 28.
    E.J. Torres-Herrera, M. Vyas, L.F. Santos, General features of the relaxation dynamics of interacting quantum systems. New J. Phys. 16, 063010 (2014).
  29. 29.
    E.J. Torres-Herrera, L.F. Santos, Local quenches with global effects in interacting quantum systems. Phys. Rev. E 89, 062110 (2014).
  30. 30.
    E.J. Torres-Herrera, L.F. Santos, Nonexponential fidelity decay in isolated interacting quantum systems. Phys. Rev. A 90, 033623 (2014).
  31. 31.
    E.J. Torres-Herrera, D. Kollmar, L.F. Santos, Relaxation and thermalization of isolated many-body quantum systems. Phys. Scr. T 165, 014018 (2015).
  32. 32.
    E.J. Torres-Herrera, L.F. Santos, Isolated many-body quantum systems far from equilibrium: Relaxation process and thermalization, in AIP Conference Proceedings, vol. 1619, ed. by P. Danielewicz, V. Zelevinsky (APS, East Lansing, Michigan, 2014), pp.171–180.
  33. 33.
    E.J. Torres-Herrera, J. Karp, M. Távora, L.F. Santos, Realistic many-body quantum systems versus full random matrices: Static and dynamical properties. Entropy 18, 359 (2016).
  34. 34.
    L.F. Santos, F. Borgonovi, F.M. Izrailev, Chaos and statistical relaxation in quantum systems of interacting particles. Phys. Rev. Lett. 108, 094102 (2012).
  35. 35.
    L.F. Santos, F. Borgonovi, F.M. Izrailev, Onset of chaos and relaxation in isolated systems of interacting spins-1/2: energy shell approach. Phys. Rev. E 85, 036209 (2012).
  36. 36.
    E.J. Torres-Herrera, L.F. Santos, Extended nonergodic states in disordered many-body quantum systems. Ann. Phys. 1600284 (2017). Berlin.
  37. 37.
    E.J. Torres-Herrera, L.F. Santos, Dynamical manifestations of quantum chaos: correlation hole and bulge. Philos. Trans. Royal Soc. A 375 (2017).
  38. 38.
    E.J. Torres-Herrera, A.M. García-García, L.F. Santos, Generic dynamical features of quenched interacting quantum systems: Survival probability, density imbalance, and out-of-time-ordered correlator. Phys. Rev. B 97, 060303(R) (2018).
  39. 39.
    E.J. Torres-Herrera, L.F. Santos, Dynamics at the many-body localization transition, Phys. Rev. B 92, 014208 (2015).
  40. 40.
    E.J. Torres-Herrera, M. Távora, L.F. Santos, Survival probability of the néel state in clean and disordered systems: an overview. Braz. J. Phys. 46, 239 (2016).
  41. 41.
    M. Távora, E.J. Torres-Herrera, L.F. Santos, Inevitable power-law behavior of isolated many-body quantum systems and how it anticipates thermalization. Phys. Rev. A 94, 041603 (2016).
  42. 42.
    M. Távora, E.J. Torres-Herrera, L.F. Santos, Power-law decay exponents: A dynamical criterion for predicting thermalization. Phys. Rev. A 95, 013604 (2017).
  43. 43.
    L.F. Santos, E.J. Torres-Herrera, Analytical expressions for the evolution of many-body quantum systems quenched far from equilibrium, in AIP Conference Proceedings, vol. 1912 (2017), p. 020015.
  44. 44.
    L.F. Santos, E.J. Torres-Herrera, in Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives, ed. by M. Edelman, E.E.N. Macau, M.A.F. Sanjuan (Springer International Publishing, Cham, 2018), pp. 231–260.
  45. 45.
    M. Schiulaz, E.J. Torres-Herrera, L.F. Santos, Thouless and relaxation time scales in many-body quantum systems. arXiv:1807.07577
  46. 46.
    L. Leviandier, M. Lombardi, R. Jost, J.P. Pique, Fourier transform: a tool to measure statistical level properties in very complex spectra. Phys. Rev. Lett. 56, 2449 (1986).
  47. 47.
    T. Guhr, H. Weidenmüller, Correlations in anticrossing spectra and scattering theory. analytical aspects. Chem. Phys. 146, 21 (1990).
  48. 48.
    J. Wilkie, P. Brumer, Time-dependent manifestations of quantum chaos. Phys. Rev. Lett. 67, 1185 (1991).
  49. 49.
    Y. Alhassid, R.D. Levine, Spectral autocorrelation function in the statistical theory of energy levels. Phys. Rev. A 46, 4650 (1992).
  50. 50.
    T. Gorin, T.H. Seligman, Signatures of the correlation hole in total and partial cross sections. Phys. Rev. E 65, 026214 (2002).
  51. 51.
    F.J. Dyson, The threefold way. algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3, 1199 (1962).
  52. 52.
    E.P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548 (1955).
  53. 53.
    A. Gubin, L.F. Santos, Quantum chaos: An introduction via chains of interacting spins 1/2. Am. J. Phys. 80, 246 (2012).
  54. 54.
    F. Wegner, Inverse participation ratio in 2 + \(\varepsilon \) dimensions. Z. Phys. B 36, 209 (1980).
  55. 55.
    L.F. Santos, Integrability of a disordered Heisenberg spin-1/2 chain. J. Phys. A 37, 4723 (2004).
  56. 56.
    L.F. Santos, G. Rigolin, C.O. Escobar, Entanglement versus chaos in disordered spin systems. Phys. Rev. A 69, 042304 (2004).
  57. 57.
    L.F. Santos, M.I. Dykman, M. Shapiro, F.M. Izrailev, Strong many-particle localization and quantum computing with perpetually coupled qubits. Phys. Rev. A 71, 012317 (2005).
  58. 58.
    F. Dukesz, M. Zilbergerts, L.F. Santos, Interplay between interaction and (un)correlated disorder in one-dimensional many-particle systems: delocalization and global entanglement. New J. Phys. 11, 043026 (2009).
  59. 59.
    A. Kartiek, A. Ehud, D. Eugene, G. Sarang, A.H. Huse, K. Michael, Rare-region effects and dynamics near the many-body localization transition. Ann. Phys. 529, 1600326 (2017). Berlin.
  60. 60.
    T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, S.S.M. Wong, Random-matrix physics – spectrum and strength fluctuations. Rev. Mod. Phys. 53, 385 (1981).
  61. 61.
    M. Schiulaz, M. Távora, L.F. Santos, From few- to many-body quantum systems.
  62. 62.
    P.R. Zangara, A.D. Dente, E.J. Torres-Herrera, H.M. Pastawski, A. Iucci, L.F. Santos, Time fluctuations in isolated quantum systems of interacting particles. Phys. Rev. E 88, 032913 (2013).
  63. 63.
    M.V. Berry, M. Tabor, Proc. R. Soc. Lond. A 356, 375 (1977).
  64. 64.
    C.L. Bertrand, A.M. García-García, Anomalous Thouless energy and critical statistics on the metallic side of the many-body localization transition. Phys. Rev. B 94, 144201 (2016).
  65. 65.
    J.G. Muga, A. Ruschhaupt, A. del Campo, Time in Quantum Mechanics, vol. 2 (Springer, London, 2009).
  66. 66.
    A. Erdélyi, Asymptotic expansions of fourier integrals involving logarithmic singularities. J. Soc. Indust. Appl. Math. 4, 38 (1956).
  67. 67.
    K. Urbanowski, General properties of the evolution of unstable states at long times. Eur. Phys. J. D 54, 25 (2009).
  68. 68.
    E.J. Torres-Herrera, L.F. Santos, Signatures of chaos and thermalization in the dynamics of many-body quantum systems. arXiv:1804.06401
  69. 69.
    A. del Campo, J. Molina Vilaplana, L.F. Santos, J. Sonner, Decay of a thermofield-double state in chaotic quantum systems.
  70. 70.
    J.P. Pique, Y. Chen, R.W. Field, J.L. Kinsey, Chaos and dynamics on 0.5-300 ps time scales in vibrationally excited acetylene: Fourier transform of stimulated-emission pumping spectrum. Phys. Rev. Lett. 58, 475 (1987).
  71. 71.
    U. Hartmann, H. Weidenmüller, T. Guhr, Correlations in anticrossing spectra and scattering theory: Numerical simulations. Chem. Phys. 150, 311 (1991).
  72. 72.
    A. Delon, R. Jost, M. Lombardi, NO\(_2\) jet cooled visible excitation spectrum: Vibronic chaos induced by the X̃\(^2\)A\(_1\)\(^2\)B\(_2\) interaction. J. Chem. Phys. 95, 5701 (1991).
  73. 73.
    M. Lombardi, T.H. Seligman, Universal and nonuniversal statistical properties of levels and intensities for chaotic rydberg molecules. Phys. Rev. A 47, 3571 (1993).
  74. 74.
    A. Kudrolli, S. Sridhar, A. Pandey, R. Ramaswamy, Signatures of chaos in quantum billiards: Microwave experiments. Phys. Rev. E 49, R11 (1994).
  75. 75.
    H. Alt, H.-D. Gräf, T. Guhr, H.L. Harney, R. Hofferbert, H. Rehfeld, A. Richter, P. Schardt, Correlation-hole method for the spectra of superconducting microwave billiards. Phys. Rev. E 55, 6674 (1997).
  76. 76.
    L. Michaille, J.-P. Pique, Influence of experimental resolution on the spectral statistics used to show quantum chaos: the case of molecular vibrational chaos. Phys. Rev. Lett. 82, 2083 (1999).
  77. 77.
    T. Gorin, T. Prosen, T.H. Seligman, A random matrix formulation of fidelity decay. New J. Phys. 6, 20 (2004).
  78. 78.
    Y. Alhassid, Y.V. Fyodorov, T. Gorin, W. Ihra, B. Mehlig, Fano interference and cross-section fluctuations in molecular photodissociation. Phys. Rev. A 73, 042711 (2006).
  79. 79.
    F. Leyvraz, A. García, H. Kohler, T.H. Seligman, Fidelity under isospectral perturbations: a random matrix study. J. Phys. A 46, 275303 (2013).
  80. 80.
    D.J. Luitz, N. Laflorencie, F. Alet, Extended slow dynamical regime close to the many-body localization transition. Phys. Rev. B 93, 060201 (2016).
  81. 81.
    M. Lee, T.R. Look, S.P. Lim, D.N. Sheng, Many-body localization in spin chain systems with quasiperiodic fields. Phys. Rev. B 96, 075146 (2017).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Lea F. Santos
    • 1
    Email author
  • Eduardo Jonathan Torres-Herrera
    • 2
  1. 1.Department of PhysicsYeshiva UniversityNew YorkUSA
  2. 2.Instituto de FísicaBenemérita Universidad Autónoma de PueblaPueblaMéxico

Personalised recommendations