Advertisement

Ancilla-Assisted Measurement of Quantum Work

  • Gabriele De ChiaraEmail author
  • Paolo Solinas
  • Federico Cerisola
  • Augusto J. Roncaglia
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

We review the use of an external auxiliary detector for measuring the full distribution of the work performed on or extracted from a quantum system during a unitary thermodynamic process. We first illustrate two paradigmatic schemes that allow one to measure the work distribution: a Ramsey technique to measure the characteristic function and a positive operator valued measure (POVM) scheme to directly measure the work probability distribution. Then, we show that these two ideas can be understood in a unified framework for assessing work fluctuations through a generic quantum detector and describe two protocols that are able to yield complementary information. This allows us also to highlight how quantum work is affected by the presence of coherences in the system’s initial state. Finally, we describe physical implementations and experimental realisations of the first two schemes.

Notes

Acknowledgements

We thank R. Fazio, J. Goold, L. Mazzola, K. Modi, M. Paternostro and J. P. Paz for illuminating discussions. P.S. has received funding from the European Union FP7/2007-2013 under REA Grant Agreement No. 630925, COHEAT, and from MIUR-FIRB2013, Project Coca (Grant No. RBFR1379UX). FC and AJR acknowledge financial support from ANPCyT (PICT 2013-0621 and PICT 2014-3711), CONICET and UBACyT.

References

  1. 1.
    C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).  https://doi.org/10.1103/PhysRevLett.78.2690ADSCrossRefGoogle Scholar
  2. 2.
    G.E. Crooks, Phys. Rev. E 60, 2721 (1999).  https://doi.org/10.1103/PhysRevE.60.2721ADSCrossRefGoogle Scholar
  3. 3.
    J. Kurchan (2000), arXiv:cond-mat/0007360
  4. 4.
    H. Tasaki (2000), arXiv:cond-mat/0009244
  5. 5.
    M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011).  https://doi.org/10.1103/RevModPhys.83.771ADSCrossRefGoogle Scholar
  6. 6.
    M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009).  https://doi.org/10.1103/RevModPhys.81.1665ADSCrossRefGoogle Scholar
  7. 7.
    P.A.M. Dirac, The Principles of Quantum Mechanics. The International Series of Monographs on Physics, vol. 27, 4th edn. (Clarendon Press, Oxford, 1967)Google Scholar
  8. 8.
    A. Engel, R. Nolte, EPL (Europhys. Lett.) 79, 10003 (2007). https://doi.org/10.1209/0295-5075/79/10003
  9. 9.
    A.E. Allahverdyan, Phys. Rev. E 90, 032137 (2014). https://doi.org/10.1103/PhysRevE.90.032137
  10. 10.
    L. Fusco, S. Pigeon, T.J.G. Apollaro, A. Xuereb, L. Mazzola, M. Campisi, A. Ferraro, M. Paternostro, G. De Chiara, Phys. Rev. X 4, 031029 (2014).  https://doi.org/10.1103/PhysRevX.4.031029CrossRefGoogle Scholar
  11. 11.
    L. Villa, G. De Chiara, Quantum 2, 42 (2018).  https://doi.org/10.22331/q-2018-01-04-42
  12. 12.
    P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102 (2007).  https://doi.org/10.1103/PhysRevE.75.050102ADSCrossRefGoogle Scholar
  13. 13.
    M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009).  https://doi.org/10.1103/PhysRevLett.102.210401ADSCrossRefGoogle Scholar
  14. 14.
    M. Carrega, P. Solinas, M. Sassetti, U. Weiss, Phys. Rev. Lett. 116, 240403 (2016).  https://doi.org/10.1103/PhysRevLett.116.240403ADSCrossRefGoogle Scholar
  15. 15.
    A.J. Roncaglia, F. Cerisola, J.P. Paz, Phys. Rev. Lett. 113, 250601 (2014).  https://doi.org/10.1103/PhysRevLett.113.250601ADSCrossRefGoogle Scholar
  16. 16.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010).  https://doi.org/10.1017/CBO9780511976667
  17. 17.
    L.K. Grover, in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96 (ACM, New York, NY, USA, 1996), pp. 212–219.  https://doi.org/10.1145/237814.237866
  18. 18.
    M. Perarnau-Llobet, E. Bäumer, K.V. Hovhannisyan, M. Huber, A. Acin, Phys. Rev. Lett. 118, 070601 (2017).  https://doi.org/10.1103/PhysRevLett.118.070601ADSCrossRefGoogle Scholar
  19. 19.
    M. Hayashi, H. Tajima, Phys. Rev. A 95, 032132 (2017).  https://doi.org/10.1103/PhysRevA.95.032132ADSCrossRefGoogle Scholar
  20. 20.
    R. Dorner, S.R. Clark, L. Heaney, R. Fazio, J. Goold, V. Vedral, Phys. Rev. Lett. 110, 230601 (2013).  https://doi.org/10.1103/PhysRevLett.110.230601ADSCrossRefGoogle Scholar
  21. 21.
    L. Mazzola, G. De Chiara, M. Paternostro, Phys. Rev. Lett. 110, 230602 (2013).  https://doi.org/10.1103/PhysRevLett.110.230602ADSCrossRefGoogle Scholar
  22. 22.
    T.B. Batalhão, A.M. Souza, L. Mazzola, R. Auccaise, R.S. Sarthour, I.S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, R.M. Serra, Phys. Rev. Lett. 113, 140601 (2014).  https://doi.org/10.1103/PhysRevLett.113.140601ADSCrossRefGoogle Scholar
  23. 23.
    G. De Chiara, A.J. Roncaglia, J.P. Paz, New J. Phys. 17, 035004 (2015).  https://doi.org/10.1088/1367-2630/17/3/035004
  24. 24.
    F. Cerisola, Y. Margalit, S. Machluf, A.J. Roncaglia, J.P. Paz, R. Folman, Nat. Commun. 8, 1241 (2017).  https://doi.org/10.1038/s41467-017-01308-7ADSCrossRefGoogle Scholar
  25. 25.
    L. Levitov, G. Lesovik, Pis’ma Zh. Eksp. Teor. Fiz. [JETP Lett.] 58, 230 (1993)Google Scholar
  26. 26.
    L.S. Levitov, H. Lee, G.B. Lesovik, J. Math. Phys. 37, 4845 (1996).  https://doi.org/10.1063/1.531672
  27. 27.
    Y.V. Nazarov, M. Kindermann, Eur. Phys. J. B 35, 413 (2003).  https://doi.org/10.1140/epjb/e2003-00293-1ADSCrossRefGoogle Scholar
  28. 28.
    W. Belzig, Y.V. Nazarov, Phys. Rev. Lett. 87, 197006 (2001).  https://doi.org/10.1103/PhysRevLett.87.197006ADSCrossRefGoogle Scholar
  29. 29.
    W. Belzig, in Quantum Noise in Mesoscopic Physics, ed. by Y.V. Nazarov (Kluwer, Dordrecht, 2003).  https://doi.org/10.1007/978-94-010-0089-5
  30. 30.
    P. Solinas, S. Gasparinetti, Phys. Rev. E 92, 042150 (2015).  https://doi.org/10.1103/PhysRevE.92.042150ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    P. Solinas, S. Gasparinetti, Phys. Rev. A 94, 052103 (2016).  https://doi.org/10.1103/PhysRevA.94.052103ADSCrossRefGoogle Scholar
  32. 32.
    P. Solinas, H.J.D. Miller, J. Anders, Phys. Rev. A 96, 052115 (2017).  https://doi.org/10.1103/PhysRevA.96.052115ADSCrossRefGoogle Scholar
  33. 33.
    A.A. Clerk, Phys. Rev. A 84, 043824 (2011).  https://doi.org/10.1103/PhysRevA.84.043824ADSCrossRefGoogle Scholar
  34. 34.
    P.P. Hofer, A.A. Clerk, Phys. Rev. Lett. 116, 013603 (2016).  https://doi.org/10.1103/PhysRevLett.116.013603ADSCrossRefGoogle Scholar
  35. 35.
    P.P. Hofer, Quantum 1, 32 (2017).  https://doi.org/10.22331/q-2017-10-12-32
  36. 36.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics, vol. 2 (Princeton University Press, Princeton, 1955).  https://doi.org/10.23943/princeton/9780691178561.001.0001
  37. 37.
    A. Peres, Quantum Theory: Concepts and Methods, vol. 57 (Springer Science & Business Media, Berlin, 2006).  https://doi.org/10.1007/0-306-47120-5
  38. 38.
    P. Talkner, P. Hänggi, Phys. Rev. E 93, 022131 (2016).  https://doi.org/10.1103/PhysRevE.93.022131ADSCrossRefGoogle Scholar
  39. 39.
    J.A. Jones, V. Vedral, A. Ekert, G. Castagnoli, Nature 403, 869 EP (2000).  https://doi.org/10.1038/35002528
  40. 40.
    A. Ekert, M. Ericsson, P. Hayden, H. Inamori, J.A. Jones, D.K.L. Oi, V. Vedral, J. Mod. Opt. 47, 2501 (2000).  https://doi.org/10.1080/09500340008232177ADSCrossRefGoogle Scholar
  41. 41.
    M. Paris, J. Rehacek, Quantum State Estimation, 1st edn. (Springer Publishing Company, Incorporated, 2010).  https://doi.org/10.1007/b98673
  42. 42.
    R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)Google Scholar
  43. 43.
    A.J. Leggett, A. Garg, Phys. Rev. Lett. 54, 857 (1985).  https://doi.org/10.1103/PhysRevLett.54.857ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    C. Emary, N. Lambert, F. Nori, Rep. Prog. Phys. 77, 016001 (2014).  https://doi.org/10.1088/0034-4885/77/1/016001
  45. 45.
    A. Bednorz, W. Belzig, Phys. Rev. Lett. 105, 106803 (2010).  https://doi.org/10.1103/PhysRevLett.105.106803ADSCrossRefGoogle Scholar
  46. 46.
    A. Bednorz, W. Belzig, A. Nitzan, New J. Phys. 14, 013009 (2012).  https://doi.org/10.1088/1367-2630/14/1/013009
  47. 47.
    B.P. Venkatesh, G. Watanabe, P. Talkner, New J. Phys. 16, 015032 (2014).  https://doi.org/10.1088/1367-2630/16/1/015032
  48. 48.
    G. Watanabe, B.P. Venkatesh, P. Talkner, M. Campisi, P. Hänggi, Phys. Rev. E 89, 032114 (2014).  https://doi.org/10.1103/PhysRevE.89.032114
  49. 49.
    G. Watanabe, B.P. Venkatesh, P. Talkner, Phys. Rev. E 89, 052116 (2014).  https://doi.org/10.1103/PhysRevE.89.052116
  50. 50.
    D. Sokolovski, Phys. Lett. A 379, 1097 (2015).  https://doi.org/10.1016/j.physleta.2015.02.018
  51. 51.
    M. Campisi, R. Blattmann, S. Kohler, D. Zueco, P. Hänggi, New J. Phys. 15, 105028 (2013). https://doi.org/10.1088/1367-2630/15/10/105028
  52. 52.
    J. Goold, U. Poschinger, K. Modi, Phys. Rev. E 90, 020101 (2014). https://doi.org/10.1103/ PhysRevE.90.020101
  53. 53.
    T.H. Johnson, F. Cosco, M.T. Mitchison, D. Jaksch, S.R. Clark, Phys. Rev. A 93, 053619 (2016).  https://doi.org/10.1103/PhysRevA.93.053619ADSCrossRefGoogle Scholar
  54. 54.
    S. Machluf, Y. Japha, R. Folman, Nat. Commun. 4, 2424 (2013). https://doi.org/10.1038/ncomms3424

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Gabriele De Chiara
    • 1
    Email author
  • Paolo Solinas
    • 2
  • Federico Cerisola
    • 3
  • Augusto J. Roncaglia
    • 3
  1. 1.School of Mathematics and PhysicsCentre for Theoretical Atomic, Molecular and Optical Physics, Queen’s UniversityBelfastUK
  2. 2.SPIN-CNRGenovaItaly
  3. 3.Departamento de Física, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires and IFIBA, CONICET, Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations