Advertisement

The Role of Quantum Work Statistics in Many-Body Physics

  • John GooldEmail author
  • Francesco Plastina
  • Andrea Gambassi
  • Alessandro Silva
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

In this contribution, we aim to illustrate how quantum work statistics can be used as a tool in order to gain insight on the universal features of non-equilibrium many-body systems. Focusing on the two-point measurement approach to work, we first outline the formalism and show how the related irreversible entropy production may be defined for a unitary process. We then explore the physics of sudden quenches from the point of view of work statistics and show how the characteristic function of work can be expressed as the partition function of a corresponding classical statistical physics problem in a film geometry. Connections to the concept of fidelity susceptibility are explored along with the corresponding universal critical scaling. We also review how large deviation theory applied to quantum work statistics gives further insight to universal properties. The quantum-to-classical mapping turns out to have close connections with the historical problem of orthogonality catastrophe: we therefore discuss how this relationship may be exploited in order to experimentally extract quantum work statistics in many-body systems.

Notes

Acknowledgements

J.G. is supported by a SFI Royal Society University Research Fellowship. This project has received funding under the European Unions’s Horizon 2020 research and innovation programme (great agreement no 758403-ODYSSEY).

References

  1. 1.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).  https://doi.org/10.1103/RevModPhys.80.885
  2. 2.
    A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011).  https://doi.org/10.1103/RevModPhys.83.863
  3. 3.
    M. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, Rev. Mod. Phys. 83, 1405 (2011).  https://doi.org/10.1103/RevModPhys.83.1405
  4. 4.
    J. Eisert, M. Friesdorf, C. Gogolin, Nat. Phys. 11, 124 (2015).  https://doi.org/10.1038/nphys3215
  5. 5.
    F. Borgonovi, F. Izrailev, L. Santos, V. Zelevinsky, Phys. Rep. 626, 1 (2016).  https://doi.org/10.1016/j.physrep.2016.02.005
  6. 6.
    C. Gogolin, J. Eisert, Rep. Prog. Phys. 79, 056001 (2016).  https://doi.org/10.1088/0034-4885/79/5/056001
  7. 7.
    L. D’Alessio, Y. Kafri, A. Polkovnikov, M. Rigol, Adv. Phys. 65, 239 (2016).  https://doi.org/10.1080/00018732.2016.1198134
  8. 8.
    J. Dziarmaga, Adv. Phys. 59, 1063 (2010).  https://doi.org/10.1080/00018732.2010.514702
  9. 9.
    K. Sekimoto, Stochastic Energetics, vol. 799 (Springer, Berlin, 2010).  https://doi.org/10.1007/978-3-642-05411-2
  10. 10.
    C. Jarzynski, Annu. Rev. Condens. Matter Phys. 2, 329 (2011).  https://doi.org/10.1146/annurev-conmatphys-062910-140506
  11. 11.
    U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).  https://doi.org/10.1088/0034-4885/75/12/126001
  12. 12.
    M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009).  https://doi.org/10.1103/RevModPhys.81.1665
  13. 13.
    M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011).  https://doi.org/10.1103/RevModPhys.83.771
  14. 14.
    P. Hänggi, P. Talkner, Nat. Phys. 11, 108 (2015).  https://doi.org/10.1038/nphys3167
  15. 15.
    R. Dorner, J. Goold, C. Cormick, M. Paternostro, V. Vedral, Phys. Rev. Lett. 109, 160601 (2012).  https://doi.org/10.1103/PhysRevLett.109.160601
  16. 16.
    J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, J. Phys. A: Math. Theor. 49, 143001 (2016).  https://doi.org/10.1088/1751-8113/49/14/143001
  17. 17.
    A. Silva, Phys. Rev. Lett. 101, 120603 (2008).  https://doi.org/10.1103/PhysRevLett.101.120603
  18. 18.
    A.  Gambassi, A.  Silva, (2011). arXiv:1106.2671
  19. 19.
    A. Gambassi, A. Silva, Phys. Rev. Lett. 109, 250602 (2012).  https://doi.org/10.1103/PhysRevLett.109.250602
  20. 20.
    Y.E. Shchadilova, P. Ribeiro, M. Haque, Phys. Rev. Lett. 112, 070601 (2014).  https://doi.org/10.1103/PhysRevLett.112.070601
  21. 21.
    P. Smacchia, A. Silva, Phys. Rev. Lett. 109, 037202 (2012).  https://doi.org/10.1103/PhysRevLett.109.037202
  22. 22.
    P. Smacchia, A. Silva, Phys. Rev. E 88, 042109 (2013).  https://doi.org/10.1103/PhysRevE.88.042109
  23. 23.
    M. Kolodrubetz, V. Gritsev, A. Polkovnikov, Phys. Rev. B 88, 064304 (2013).  https://doi.org/10.1103/PhysRevB.88.064304
  24. 24.
    T. Palmai, Phys. Rev. B 92, 235433 (2015).  https://doi.org/10.1103/PhysRevB.92.235433
  25. 25.
    S. Dorosz, T. Platini, D. Karevski, Phys. Rev. E 77, 051120 (2008).  https://doi.org/10.1103/PhysRevE.77.051120
  26. 26.
    E. Mascarenhas, H. Bragança, R. Dorner, M.F. Santos, V. Vedral, K. Modi, J. Goold, Phys. Rev. E 89, 062103 (2014).  https://doi.org/10.1103/PhysRevE.89.062103
  27. 27.
    L. Fusco, S. Pigeon, T.J.G. Apollaro, A. Xuereb, L. Mazzola, M. Campisi, A. Ferraro, M. Paternostro, G. De Chiara, Phys. Rev. X 4, 031029 (2014).  https://doi.org/10.1103/PhysRevX.4.031029
  28. 28.
    M. Zhong, P. Tong, Phys. Rev. E 91, 032137 (2015a).  https://doi.org/10.1103/PhysRevE.91.032137
  29. 29.
    T.J. Apollaro, G. Francica, M. Paternostro, M. Campisi, Physica Scripta 2015, 014023 (2015).  https://doi.org/10.1088/0031-8949/2015/T165/014023
  30. 30.
    M. Zhong, P. Tong, Phys. Rev. E 91, 032137 (2015b).  https://doi.org/10.1103/PhysRevE.91.032137
  31. 31.
    D.-T. Hoang, B.P. Venkatesh, S. Han, J. Jo, G. Watanabe, M.-S. Choi, (2015). arXiv:1508.02444
  32. 32.
    S. Sharma, A. Dutta, Phys. Rev. E 92, 022108 (2015).  https://doi.org/10.1103/PhysRevE.92.022108
  33. 33.
    F.A. Bayocboc, F.N.C. Paraan, Phys. Rev. E 92, 032142 (2015).  https://doi.org/10.1103/PhysRevE.92.032142
  34. 34.
    P.P. Mazza, J.-M. Stéphan, E.  Canovi, V.  Alba, M.  Brockmann, M.  Haque, (2015).  https://doi.org/10.1088/1742-5468/2016/01/013104
  35. 35.
    A. Bayat, T.J. Apollaro, S. Paganelli, G. De Chiara, H. Johannesson, S. Bose, P. Sodano, Phys. Rev. B 93, 201106 (2016).  https://doi.org/10.1103/PhysRevB.93.201106
  36. 36.
    J. Goold, T. Fogarty, N.L. Gullo, M. Paternostro, T. Busch, Phys. Rev. A 84, 063632 (2011).  https://doi.org/10.1103/PhysRevA.84.063632
  37. 37.
    M. Heyl, S. Kehrein, Phys. Rev. B 85, 155413 (2012a).  https://doi.org/10.1103/PhysRevB.85.155413
  38. 38.
    M. Heyl, S. Kehrein, Phys. Rev. Lett. 108, 190601 (2012b).  https://doi.org/10.1103/PhysRevLett.108.190601
  39. 39.
    M. Knap, A. Shashi, Y. Nishida, A. Imambekov, D.A. Abanin, E. Demler, Phys. Rev. X 2, 041020 (2012).  https://doi.org/10.1103/PhysRevX.2.041020
  40. 40.
    F. Plastina, A. Sindona, J. Goold, N. Lo Gullo, S. Lorenzo, Open Syst. Inf. ormation Dyn. 20, 1340005 (2013). arXiv:1311.1945
  41. 41.
    A. Sindona, J. Goold, N.L. Gullo, S. Lorenzo, F. Plastina, Phys. Rev. Lett. 111, 165303 (2013).  https://doi.org/10.1103/PhysRevLett.111.165303
  42. 42.
    S. Campbell, M.Á. García-March, T. Fogarty, T. Busch, Phys. Rev. A 90, 013617 (2014).  https://doi.org/10.1103/PhysRevA.90.013617
  43. 43.
    M. Schiró, A. Mitra, Phys. Rev. Lett. 112, 246401 (2014).  https://doi.org/10.1103/PhysRevLett.112.246401
  44. 44.
    A. Sindona, J. Goold, N.L. Gullo, F. Plastina, New J. Phys. 16, 045013 (2014).  https://doi.org/10.1088/1367-2630/16/4/045013
  45. 45.
    G. Roux, Phys. Rev. A 79, 021608 (2009).  https://doi.org/10.1103/PhysRevA.79.021608
  46. 46.
    B. Dóra, A. Bácsi, G. Zaránd, Phys. Rev. B 86, 161109 (2012).  https://doi.org/10.1103/PhysRevB.86.161109
  47. 47.
    S. Sotiriadis, A. Gambassi, A. Silva, Phys. Rev. E 87, 052129 (2013).  https://doi.org/10.1103/PhysRevE.87.052129
  48. 48.
    B. Dóra, F. Pollmann, J. Fortágh, G. Zaránd, Phys. Rev. Lett. 111, 046402 (2013).  https://doi.org/10.1103/PhysRevLett.111.046402
  49. 49.
    A. Bácsi, B. Dóra, Phys. Rev. B 88, 155115 (2013).  https://doi.org/10.1103/PhysRevB.88.155115
  50. 50.
    G. De Chiara, A.J. Roncaglia, J.P. Paz, New J. Phys. 17, 035004 (2015).  https://doi.org/10.1088/1367-2630/17/3/035004
  51. 51.
    T. Johnson, F. Cosco, M. Mitchison, D. Jaksch, S. Clark, Phys. Rev. A 93, 053619 (2016).  https://doi.org/10.1103/PhysRevA.93.053619
  52. 52.
    R. Lena, G. Palma, G. De Chiara, Phys. Rev. A 93, 053618 (2016).  https://doi.org/10.1103/PhysRevA.93.053618
  53. 53.
    L. Villa, G. De Chiara, Quantum 2, 42 (2018).  https://doi.org/10.22331/q-2018-01-04-42
  54. 54.
    G. Bunin, L. D’Alessio, Y. Kafri, A. Polkovnikov, Nat. Phys. 7, 913 (2011).  https://doi.org/10.1038/nphys2057
  55. 55.
    A. Russomanno, S. Sharma, A. Dutta, G.E. Santoro, J. Stat. Mech. Theory Exp. 2015, P08030 (2015).  https://doi.org/10.1088/1742-5468/2015/08/P08030
  56. 56.
    A. Dutta, A. Das, K. Sengupta, Phys. Rev. E 92, 012104 (2015).  https://doi.org/10.1103/PhysRevE.92.012104
  57. 57.
    S. Lorenzo, J. Marino, F. Plastina, G.M. Palma, T.J. Apollaro, Sci. Rep. 7, 5672 (2017).  https://doi.org/10.1038/s41598-017-06025-1
  58. 58.
    F.N.C. Paraan, A. Silva, Phys. Rev. E 80, 061130 (2009).  https://doi.org/10.1103/PhysRevE.80.061130
  59. 59.
    D.A. Wisniacki, A.J. Roncaglia, Phys. Rev. E 87, 050902 (2013).  https://doi.org/10.1103/PhysRevE.87.050902
  60. 60.
    T. Pálmai, S. Sotiriadis, Phys. Rev. E 90, 052102 (2014).  https://doi.org/10.1103/PhysRevE.90.052102
  61. 61.
    Z. Gong, S. Deffner, H.T. Quan, Phys. Rev. E 90, 062121 (2014).  https://doi.org/10.1103/PhysRevE.90.062121
  62. 62.
    S. Deffner, A. Saxena, Phys. Rev. E 92, 032137 (2015).  https://doi.org/10.1103/PhysRevE.92.032137
  63. 63.
    N. Liu, J. Goold, I. Fuentes, V. Vedral, K. Modi, D.E. Bruschi, Class. Quantum Gravity 33, 035003 (2016).  https://doi.org/10.1088/0264-9381/33/3/035003
  64. 64.
    F. Jin, R. Steinigeweg, H. De Raedt, K. Michielsen, M. Campisi, J. Gemmer, Phys. Rev. E 94, 012125 (2016).  https://doi.org/10.1103/PhysRevE.94.012125
  65. 65.
    J.  Mur-Petit, A.  Relaño, R.  Molina, D.  Jaksch, (2017).  https://doi.org/10.1038/s41467-018-04407-1
  66. 66.
    F. Cosco, M. Borrelli, P. Silvi, S. Maniscalco, G. De Chiara, Phys. Rev. A 95, 063615 (2017).  https://doi.org/10.1103/PhysRevA.95.063615
  67. 67.
    P.  Rotondo, J.  Minar, J.P. Garrahan, I.  Lesanovsky, M.  Marcuzzi, (2018).  https://doi.org/10.1103/PhysRevB.98.184303
  68. 68.
    M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013).  https://doi.org/10.1103/PhysRevLett.110.135704
  69. 69.
    M.  Heyl, Rep. Prog. Phys. (2018).  https://doi.org/10.1088/1361-6633/aaaf9a
  70. 70.
    M. Campisi, J. Goold, Phys. Rev. E 95, 062127 (2017).  https://doi.org/10.1103/PhysRevE.95.062127
  71. 71.
    A.  Chenu, I.L. Egusquiza, J.  Molina-Vilaplana, A.  del Campo, (2017).  https://doi.org/10.1038/s41598-018-30982-w
  72. 72.
    H. Touchette, Phys. Rep. 478, 1 (2009).  https://doi.org/10.1016/j.physrep.2009.05.002
  73. 73.
    P.W. Anderson, Phys. Rev. Lett. 18, 1049 (1967a).  https://doi.org/10.1103/PhysRevLett.18.1049
  74. 74.
    G. Mahan, Phys. Rev. 163, 612 (1967).  https://doi.org/10.1103/PhysRev.163.612
  75. 75.
    P. Nozières, C. De Dominicis, Phys. Rev. 178, 1097 (1969).  https://doi.org/10.1103/PhysRev.178.1097
  76. 76.
    P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102 (2007).  https://doi.org/10.1103/PhysRevE.75.050102
  77. 77.
    S. Deffner, E. Lutz, Phys. Rev. Lett. 105, 170402 (2010).  https://doi.org/10.1103/PhysRevLett.105.170402
  78. 78.
    P. Talkner, P. Hänggi, Phys. Rev. E 93, 022131 (2016).  https://doi.org/10.1103/PhysRevE.93.022131
  79. 79.
    A. Peres, Phys. Rev. A 30, 1610 (1984).  https://doi.org/10.1103/PhysRevA.30.1610
  80. 80.
    L.C. Venuti, P. Zanardi, Phys. Rev. Lett. 99, 095701 (2007).  https://doi.org/10.1103/PhysRevLett.99.095701
  81. 81.
    P. Zanardi, P. Giorda, M. Cozzini, Phys. Rev. Lett. 99, 100603 (2007).  https://doi.org/10.1103/PhysRevLett.99.100603
  82. 82.
    S.-J. Gu, Int. J. Mod. Phys. B 24, 4371 (2010).  https://doi.org/10.1142/S0217979210056335
  83. 83.
    S.  Sachdev, Quantum Phase Transitions (Wiley Online Library, 2007).  https://doi.org/10.1002/9780470022184.hmm108
  84. 84.
    H.W. Diehl, in Phase Transitions and Critical Phenomena, vol.  10, ed. by C.  Domb, J.  Lebowitz (Academic, London, 1986). ISBN 0122203100Google Scholar
  85. 85.
    H.W. Diehl, Int. J. Mod. Phys. B 11, 3503 (1997).  https://doi.org/10.1142/S0217979297001751
  86. 86.
    M.N. Barber, in Phase Transitions and Critical Phenomena, vol.  8, ed. by C.  Domb, J.  Lebowitz (Academic London, 1983). ISBN 0122203089Google Scholar
  87. 87.
    J.  Cardy, Finite-Size Scaling, vol.  2 (North Holland, 1988). ISBN 0444871098Google Scholar
  88. 88.
    M.  Krech, The Casimir Effect in Critical Systems (World Scientific, 1994).  https://doi.org/10.1142/2434
  89. 89.
    A. Gambassi, J. Phys. Conf. Ser. 161, 012037 (2009).  https://doi.org/10.1088/1742-6596/161/1/012037
  90. 90.
    R. Alicki, M. Fannes, Phys. Rev. E 87, 042123 (2013).  https://doi.org/10.1103/PhysRevE.87.042123
  91. 91.
    F.C. Binder, S. Vinjanampathy, K. Modi, J. Goold, New J. Phys. 17, 075015 (2015).  https://doi.org/10.1088/1367-2630/17/7/075015
  92. 92.
    M. Perarnau-Llobet, K.V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, A. Acín, Phys. Rev. X 5, 041011 (2015).  https://doi.org/10.1103/PhysRevX.5.041011
  93. 93.
    F. Campaioli, F.A. Pollock, F.C. Binder, L. Céleri, J. Goold, S. Vinjanampathy, K. Modi, Phys. Rev. Lett. 118, 150601 (2017).  https://doi.org/10.1103/PhysRevLett.118.150601
  94. 94.
    D. Ferraro, M. Campisi, G.M. Andolina, V. Pellegrini, M. Polini, Phys. Rev. Lett. 120, 117702 (2018).  https://doi.org/10.1103/PhysRevLett.120.117702
  95. 95.
    P.W. Anderson, Phys. Rev. Lett. 18, 1049 (1967b).  https://doi.org/10.1103/PhysRevLett.18.1049
  96. 96.
    G.D. Mahan, Many-Particle Physics, 3rd ed. (Springer Science, 2000).  https://doi.org/10.1007/978-1-4757-5714-9
  97. 97.
    A. Sindona, M. Pisarra, M. Gravina, C.V. Gomez, P. Riccardi, G. Falcone, F. Plastina, Beilstein J. Nanotechnol. 6, 755 (2015).  https://doi.org/10.3762/bjnano.6.78
  98. 98.
    R. Schmidt, M. Knap, D.A. Ivanov, J.-S. You, M. Cetina, E. Demler, Rep. Prog. Phys. 81, 024401 (2018).  https://doi.org/10.1088/1361-6633/aa9593
  99. 99.
    G. Huber, F. Schmidt-Kaler, S. Deffner, E. Lutz, Phys. Rev. Lett. 101, 070403 (2008).  https://doi.org/10.1103/PhysRevLett.101.070403
  100. 100.
    R. Dorner, S.R. Clark, L. Heaney, R. Fazio, J. Goold, V. Vedral, Phys. Rev. Lett. 110, 230601 (2013).  https://doi.org/10.1103/PhysRevLett.110.230601
  101. 101.
    L. Mazzola, G. De Chiara, M. Paternostro, Phys. Rev. Lett. 110, 230602 (2013).  https://doi.org/10.1103/PhysRevLett.110.230602
  102. 102.
    S. Kohler, D. Zueco, M. Campisi, R. Blattmann, P. Hänggi, New J. Phys. 15, 105028 (2013).  https://doi.org/10.1088/1367-2630/15/10/105028
  103. 103.
    T.B. Batalhão, A.M. Souza, L. Mazzola, R. Auccaise, R.S. Sarthour, I.S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, R.M. Serra, Phys. Rev. Lett. 113, 140601 (2014).  https://doi.org/10.1103/PhysRevLett.113.140601
  104. 104.
    S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q. Yin, H. Quan, K. Kim, Nat. Phys. 11, 193 (2015).  https://doi.org/10.1038/nphys3197
  105. 105.
    A.J. Roncaglia, F. Cerisola, J.P. Paz, Phys. Rev. Lett. 113, 250601 (2014).  https://doi.org/10.1103/PhysRevLett.113.250601
  106. 106.
    F. Cerisola, Y. Margalit, S. Machluf, A.J. Roncaglia, J.P. Paz, R. Folman, Nat. Commun. 8, 1241 (2017).  https://doi.org/10.1038/s41467-017-01308-7
  107. 107.
    M. Cetina, M. Jag, R.S. Lous, J.T. Walraven, R. Grimm, R.S. Christensen, G.M. Bruun, Phys. Rev. Lett. 115, 135302 (2015).  https://doi.org/10.1103/PhysRevLett.115.135302
  108. 108.
    M. Cetina, M. Jag, R.S. Lous, I. Fritsche, J.T. Walraven, R. Grimm, J. Levinsen, M.M. Parish, R. Schmidt, M. Knap et al., Science 354, 96 (2016).  https://doi.org/10.1126/science.aaf5134

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • John Goold
    • 1
    Email author
  • Francesco Plastina
    • 2
    • 3
  • Andrea Gambassi
    • 4
    • 5
  • Alessandro Silva
    • 6
  1. 1.School of PhysicsTrinity College DublinDublin 2Ireland
  2. 2.Dip. FisicaUniversità della CalabriaArcavacata di Rende (CS)Italy
  3. 3.INFN - Gruppo collegato di CosenzaCosenzaItaly
  4. 4.SISSA — International School for Advanced StudiesTriesteItaly
  5. 5.INFN, sezione di TriesteTriesteItaly
  6. 6.SISSA — International School for Advanced StudiesTriesteItaly

Personalised recommendations