Fluctuating Work in Coherent Quantum Systems: Proposals and Limitations

  • Elisa BäumerEmail author
  • Matteo Lostaglio
  • Martí Perarnau-Llobet
  • Rui Sampaio
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)


One of the most important goals in quantum thermodynamics is to demonstrate advantages of themodynamic protocols over their classical counterparts. For that, it is necessary to (i) develop theoretical tools and experimental set-ups to deal with quantum coherence in thermodynamic contexts, and to (ii) elucidate which properties are genuinely quantum in a thermodynamic process. In this short review, we discuss proposals to define and measure work fluctuations that allow to capture quantum interference phenomena. We also discuss fundamental limitations arising due to measurement back-action, as well as connections between work distributions and quantum contextuality. We hope the different results summarised here motivate further research on the role of quantum phenomena in thermodynamics.



We thank Johan Åberg, Armen Allahverdyan, Janet Anders, Peter Hänggi, Simone Gasparinetti, Paolo Solinas and Peter Talkner for useful feedback on the manuscript. E.B. acknowledges contributions from the Swiss National Science Foundation via the NCCR QSIT as well as project No. 200020_165843. M.P.-L. acknowledges support from the Alexander von Humboldt Foundation. M.L. acknowledges financial support from the the European Union’s Marie Sklodowska-Curie individual Fellowships (H2020-MSCA-IF-2017, GA794842), Spanish MINECO (Severo OchoaSEV-2015-0522 and project QIBEQI FIS2016-80773-P), Fundacio Cellex and Generalitat de Catalunya (CERCAProgramme and SGR 875). R. S. acknowledges the Magnus Ehrnrooth Foundation and the Academy of Finland through its CoE grants 284621 and 287750. All authors are grateful for support from the EU COST Action MP1209 on Thermodynamics in the Quantum Regime.


  1. 1.
    J. Goold, M. Huber, A. Riera, L. d. Rio, P. Skrzypczyk, The role of quantum information in thermodynamics a topical review. J. Phys. A, 49(14):143001, 2016.
  2. 2.
    S. Vinjanampathy, J. Anders, Quantum thermodynamics. Contemp. Phys. 57(4), 545–579 (2016). Scholar
  3. 3.
    J. Åberg, Truly work-like work extraction via a single-shot analysis. Nat. Commun. 4, 1925 (2013). Scholar
  4. 4.
    M. Campisi, P. Hänggi, P. Talkner, Colloquium. Rev. Mod. Phys. 83(3), 771–791 (2011).
  5. 5.
    M. Esposito, U. Harbola, S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81(4), 1665–1702 (2009).
  6. 6.
    M. Esposito, U. Harbola, S. Mukamel, Erratum: Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems [rev. mod. phys. 81, 1665 (2009)]. Rev. Mod. Phys., 86(3):1125–1125, Sep 2014.
  7. 7.
    C. Jarzynski, Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale. Ann. Rev. Condens. Matter Phys. 2(1), 329–351 (2011). Scholar
  8. 8.
    J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Nanoscale heat engine beyond the carnot limit. Phys. Rev. Lett. 112(3), 030602 (2014).
  9. 9.
    L.A. Correa, J.e.P. Palao, D. Alonso, G. Adesso, Quantum-enhanced absorption refrigerators. Sci. Rep 4, 3949 (2014).
  10. 10.
    R. Alicki, D. Gelbwaser-Klimovsky, Non-equilibrium quantum heat machines. New J. Phys. 17(11), 115012 (2015).
  11. 11.
    J.B. Brask, N. Brunner, Small quantum absorption refrigerator in the transient regime: Time scales, enhanced cooling, and entanglement. Phys. Rev. E 92(6), 062101 (2015).
  12. 12.
    R. Uzdin, A. Levy, R. Kosloff (2015), Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures. Phys. Rev. X. 5(3), 031044.
  13. 13.
    M.T. Mitchison, M.P. Woods, J. Prior, M. Huber, Coherence-assisted single-shot cooling by quantum absorption refrigerators. New J. Phys. 17(11), 115013 (2015).
  14. 14.
    P.P. Hofer, M. Perarnau-Llobet, J.B. Brask, R. Silva, M. Huber, N. Brunner, Autonomous quantum refrigerator in a circuit qed architecture based on a josephson junction. Phys. Rev. B 94(23), 235420 (2016).
  15. 15.
    S. Nimmrichter, J. Dai, A. Roulet, V. Scarani, Quantum and classical dynamics of a three-mode absorption refrigerator. Quantum 1, 37 (2017).
  16. 16.
    K. Brandner, M. Bauer, U. Seifert, Universal coherence-induced power losses of quantum heat engines in linear response. Phys. Rev. Lett. 119(17), 170602 (2017).
  17. 17.
    J. Klatzow, C. Weinzetl, P.M. Ledingham, J.N. Becker, D.J. Saunders, J. Nunn, I.A. Walmsley, R. Uzdin, E. Poem, Experimental demonstration of quantum effects in the operation of microscopic heat engines (2017). arXiv:1710.08716
  18. 18.
    A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Maximal work extraction from finite quantum systems. EPL (Europhysics Letters) 67(4), 565 (2004).
  19. 19.
    K. Funo, Y. Watanabe, M. Ueda, Thermodynamic work gain from entanglement. Phys. Rev. A 88(5), 052319 (2013).
  20. 20.
    M. Perarnau-Llobet, K.V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, A. Acín, Extractable work from correlations. Phys. Rev. X 5(4), 041011 (2015).
  21. 21.
    K. Korzekwa, M. Lostaglio, J. Oppenheim, D. Jennings, The extraction of work from quantum coherence. New J. Phys 18(2), 023045 (2016).
  22. 22.
    A. Misra, U. Singh, S. Bhattacharya, A.K. Pati, Energy cost of creating quantum coherence. Phys. Rev. A 93(5), 052335 (2016).
  23. 23.
    N. Lörch, C. Bruder, N. Brunner, P.P. Hofer, Optimal work extraction from quantum states by photo-assisted cooper pair tunneling. Quantum Science and Technology 3(3), 035014 (2018).
  24. 24.
    K.V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, A. Acín, Entanglement generation is not necessary for optimal work extraction. Phys. Rev. Lett. 111(24), 240401 (2013).
  25. 25.
    N. Brunner, M. Huber, N. Linden, S. Popescu, R. Silva, P. Skrzypczyk, Entanglement enhances cooling in microscopic quantum refrigerators. Phys. Rev. E 89(3), 032115 (2014).
  26. 26.
    R. Uzdin, A. Levy, R. Kosloff, Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5(3), 031044 (2015).
  27. 27.
    F. Campaioli, F.A. Pollock, F.C. Binder, L. Céleri, J. Goold, S. Vinjanampathy, K. Modi, Enhancing the charging power of quantum batteries. Phys. Rev. Lett. 118(15), 150601 (2017).
  28. 28.
    D. Ferraro, M. Campisi, G.M. Andolina, V. Pellegrini, M. Polini, High-power collective charging of a solid-state quantum battery. Phys. Rev. Lett. 120(11), 117702 (2018).
  29. 29.
    G. Watanabe, B.P. Venkatesh, P. Talkner, A. del Campo, Quantum performance of thermal machines over many cycles. Phys. Rev. Lett. 118(5), 050601 (2017).
  30. 30.
    P. Busch, P. Lahti, R.F. Werner, Colloquium: Quantum root-mean-square error and measurement uncertainty relations. Rev. Mod. Phys. 86(4), 1261–1281 (2014).
  31. 31.
    C. Jarzynski, Nonequilibrium work relations: foundations and applications. J. Euro. Phys. B 64(3), 331–340 (2008). Scholar
  32. 32.
    G.N. Bochkov, I.E. Kuzovlev, General theory of thermal fluctuations in nonlinear systems. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 72, 238–247 (1977)ADSGoogle Scholar
  33. 33.
    G. Bochkov, Y. Kuzovlev, Nonlinear fluctuation-dissipation relations and stochastic models in nonequilibrium thermodynamics: I. generalized fluctuation-dissipation theorem. Physica A: Statistical Mechanics and its Applications, 106(3):443 – 479, 1981.
  34. 34.
    S. Yukawa, A quantum analogue of the jarzynski equality. J. Phys. Soc. Japan. 69(8), 2367–2370 (2000). Scholar
  35. 35.
    T. Monnai, S. Tasaki, Quantum correction of fluctuation theorem (2003). arXiv:1707.04930
  36. 36.
    V. Chernyak, S. Mukamel, Effect of quantum collapse on the distribution of work in driven single molecules. Phys. Rev. Lett. 93(4), 048302 (2004).
  37. 37.
    A.E. Allahverdyan, T.M. Nieuwenhuizen, Fluctuations of work from quantum subensembles: The case against quantum work-fluctuation theorems. Phys. Rev. E 71(6), 066102 (2005).
  38. 38.
    A. Engel, R. Nolte, Jarzynski equation for a simple quantum system: Comparing two definitions of work. EPL (Europhysics Letters) 79(1), 10003 (2007).
  39. 39.
    M.F. Gelin, D.S. Kosov, Unified approach to the derivation of work theorems for equilibrium and steady-state, classical and quantum hamiltonian systems. Phys. Rev. E 78(1), 011116 (2008).
  40. 40.
    J. Kurchan. A quantum fluctuation theorem (2000). arXiv:cond-mat/0007360
  41. 41.
    H. Tasaki. Jarzynski relations for quantum systems and some applications (2000). arXiv:cond-mat/0009244
  42. 42.
    P. Talkner, E. Lutz, P. Hänggi, Fluctuation theorems: Work is not an observable. Phys. Rev. E 75(5), 050102 (2007).
  43. 43.
    P. Hänggi, P. Talkner, The other qft. Nature Physics 11(2), 108 (2017).
  44. 44.
    M. Campisi, P. Hänggi, P. Talkner, Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys. 83(3), 771–791 (2011).
  45. 45.
    M. Campisi, P. Hänggi, P. Talkner, Erratum: Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys., 83(4):1653–1653, (2011).
  46. 46.
    M. Campisi, P. Talkner, P. Hänggi, Fluctuation theorem for arbitrary open quantum systems. Phys. Rev. Lett. 102(21), 210401 (2009).
  47. 47.
    G. Huber, F. Schmidt-Kaler, S. Deffner, E. Lutz, Employing trapped cold ions to verify the quantum jarzynski equality. Phys. Rev. Lett. 101(7), 070403 (2008).
  48. 48.
    T.B. Batalhão, A.M. Souza, L. Mazzola, R. Auccaise, R.S. Sarthour, I.S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, R.M. Serra, Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. Phys. Rev. Lett. 113(14), 140601 (2014).
  49. 49.
    S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q. Yin, H.T. Quan, K. Kim, Experimental test of the quantum jarzynski equality with a trapped-ion system. Nature Physics 11(2), 193 (2014).
  50. 50.
    F. Cerisola, Y. Margalit, S. Machluf, A.J. Roncaglia, J.P. Paz, R. Folman, Using a quantum work meter to test non-equilibrium fluctuation theorems. Nat. Commun. 8(1), 1241 (2017).
  51. 51.
    C. Jarzynski, H.T. Quan, S. Rahav, Quantum-classical correspondence principle for work distributions. Phys. Rev. X 5(3), 031038 (2015).
  52. 52.
    L. Zhu, Z. Gong, B. Wu, H.T. Quan, Quantum-classical correspondence principle for work distributions in a chaotic system. Phys. Rev. E 93(6), 062108 (2016).
  53. 53.
    A.E. Allahverdyan, Nonequilibrium quantum fluctuations of work. Phys. Rev. E 90(3), 032137 (2014).
  54. 54.
    P. Solinas, S. Gasparinetti, Full distribution of work done on a quantum system for arbitrary initial states. Phys. Rev. E 92(4), 042150 (2015).
  55. 55.
    P. Kammerlander, J. Anders, Coherence and measurement in quantum thermodynamics. Scientific reports 6, 22174 (2016). Scholar
  56. 56.
    S. Deffner, J.P. Paz, W.H. Zurek, Quantum work and the thermodynamic cost of quantum measurements. Phys. Rev. E 94(1), 010103 (2016).
  57. 57.
    M. Perarnau-Llobet, E. Bäumer, K.V. Hovhannisyan, M. Huber, A. Acin, No-go theorem for the characterization of work fluctuations in coherent quantum systems. Phys. Rev. Lett. 118(7), 070601 (2017).
  58. 58.
    G. Watanabe, B.P. Venkatesh, P. Talkner, Generalized energy measurements and modified transient quantum fluctuation theorems. Phys. Rev. E 89(5), 052116 (2014).
  59. 59.
    B.P. Venkatesh, G. Watanabe, P. Talkner, Quantum fluctuation theorems and power measurements. New J. Phys. 17(7), 075018 (2015).
  60. 60.
    M. Esposito, C.V. den Broeck, Second law and landauer principle far from equilibrium. EPL (Europhysics Letters) 95(4), 40004 (2011).
  61. 61.
    D. Janzing, Quantum thermodynamics with missing reference frames: Decompositions of free energy into non-increasing components. J. Stat. Phys. 125(3), 761–776 (2006). Scholar
  62. 62.
    M. Lostaglio, D. Jennings, T. Rudolph, Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015). Scholar
  63. 63.
    J.J. Alonso, E. Lutz, A. Romito, Thermodynamics of weakly measured quantum systems. Phys. Rev. Lett. 116(8), 080403 (2016).
  64. 64.
    C. Elouard, D.A. Herrera-Martí, M. Clusel, A. Auffeves, The role of quantum measurement in stochastic thermodynamics. npj Quantum Information, 3(1), 9 (2017).
  65. 65.
    A.J. Roncaglia, F. Cerisola, J.P. Paz, Work measurement as a generalized quantum measurement. Phys. Rev. Lett. 113(25), 250601 (2014)
  66. 66.
    G.D. Chiara, A.J. Roncaglia, J.P. Paz, Measuring work and heat in ultracold quantum gases. New J. Phys. 17(3), 035004 (2015).
  67. 67.
    P. Talkner, P. Hänggi, Aspects of quantum work. Phys. Rev. E 93(2), 022131 (2016).
  68. 68.
    P. Solinas, H.J.D. Miller, J. Anders, Measurement-dependent corrections to work distributions arising from quantum coherences. Phys. Rev. A 96(5), 052115 (2017).
  69. 69.
    P.P. Hofer, Quasi-probability distributions for observables in dynamic systems. Quantum 1, 32 (2017). Scholar
  70. 70.
    R. Sampaio, S. Suomela, T. Ala-Nissila, J. Anders, T.G. Philbin, Quantum work in the bohmian framework. Phys. Rev. A 97(1), 012131 (2018).
  71. 71.
    M. Lostaglio, Quantum fluctuation theorems, contextuality, and work quasiprobabilities. Phys. Rev. Lett. 120(4), 040602 (2018).
  72. 72.
    A.M. Alhambra, L. Masanes, J. Oppenheim, C. Perry, Fluctuating work: From quantum thermodynamical identities to a second law equality. Phys. Rev. X 6(4), 041017 (2016).
  73. 73.
    J.G. Richens, L. Masanes, Work extraction from quantum systems with bounded fluctuations in work. Nat. Commun. 7, 13511 (2016)
  74. 74.
    J. Åberg, Fully quantum fluctuation theorems. Phys. Rev. X 8(1), 011019 (2018).
  75. 75.
    J.S. Bell, On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38(3), 447 (1966).
  76. 76.
    S. Kochen, E.P. Specker, The problem of hidden variables in quantum mechanics. In The Logico-Algebraic Approach to Quantum Mechanics, p. 293–328. Springer, 1975.
  77. 77.
    M. Howard, J. Wallman, V. Veitch, J. Emerson, Contextuality supplies the/magic/’for quantum computation. Nature 510(7505), 351–355 (2014). Scholar
  78. 78.
    N. Delfosse, P.A. Guerin, J. Bian, R. Raussendorf, Wigner function negativity and contextuality in quantum computation on rebits. Phys. Rev. X 5(2), 021003 (2015). Scholar
  79. 79.
    J. Bermejo-Vega, N. Delfosse, D.E. Browne, C. Okay, R. Raussendorf, Contextuality as a resource for models of quantum computation with qubits. Phys. Rev. Lett. 119(12), 120505 (2017).
  80. 80.
    R.W. Spekkens, Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A 71(5), 052108 (2005). Scholar
  81. 81.
    N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Bell nonlocality. Rev. Mod. Phys. 86(2), 419 (2014).
  82. 82.
    P. Solinas, S. Gasparinetti, Probing quantum interference effects in the work distribution. Phys. Rev. A 94(5), 052103 (2016).
  83. 83.
    B.-M. Xu, J. Zou, L.-S. Guo, X.-M. Kong, Effects of quantum coherence on work statistics. Phys. Rev. A 97(5), 052122 (2018).
  84. 84.
    Y. Aharonov, D.Z. Albert, L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351 (1988).
  85. 85.
    H.M. Wiseman, Weak values, quantum trajectories, and the cavity-qed experiment on wave-particle correlation. Phys. Rev. A 65(3), 032111 (2002).
  86. 86.
    H.J.D. Miller, J. Anders, Time-reversal symmetric work distributions for closed quantum dynamics in the histories framework. New J. Phys. 19(6), 062001 (2017).
  87. 87.
    J.W. Hall, Prior information: How to circumvent the standard joint-measurement uncertainty relation. Phys. Rev. A 69(5), 052113 (2004).
  88. 88.
    R.B. Griffiths, Consistent histories and the interpretation of quantum mechanics. J. Stat. Phy. 36(1–2), 219–272 (1984).
  89. 89.
    S. Goldstein, D.N. Page, Linearly positive histories: probabilities for a robust family of sequences of quantum events. Phys. Rev. Lett, 74(19):3715, 1995.
  90. 90.
    T. Sagawa, Second law-like inequalities with quantum, relative entropy: An introduction, pages 125–190. World Scientific, 2012.
  91. 91.
    M.F. Pusey, Anomalous weak values are proofs of contextuality. Phys. Rev. Lett. 113(20), 200401 (2014).
  92. 92.
    N.S. Williams, A.N. Jordan, Weak values and the leggett-garg inequality in solid-state qubits. Phys. Rev. Lett. 100(2), 026804 (2008).
  93. 93.
    R. Blattmann, K. Mølmer, Macroscopic realism of quantum work fluctuations. Physical Review A 96(1), 012115 (2017). Scholar
  94. 94.
    H.J.D. Miller, J. Anders, Leggett-garg inequalities for quantum fluctuating work. Entropy, 20(3), 2018.
  95. 95.
    D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" variables. Phys. Rev. I 85(2), 166–179 (1952).
  96. 96.
    D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" variables. Phys. Rev. II 85(2), 180–193 (1952).
  97. 97.
    L. De Broglie, L’interprétation de la mécanique ondulatoire. J. Phys. Radium. 20(12), 963–979 (1959).
  98. 98.
    P.R. Holland, The quantum theory of motion: an account of the de Broglie-Bohm causal interpretation of quantum mechanics. Cambridge university press, 1995Google Scholar
  99. 99.
    D. Dürr, S. Goldstein, N. Zanghì, Quantum physics without quantum philosophy. Springer Science & Business Media, 2013.
  100. 100.
    Y. Aharonov, D.Z. Albert, L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351–1354 (1988).
  101. 101.
    I.M. Duck, P.M. Stevenson, E.C.G. Sudarshan, The sense in which a "weak measurement" of a spin particle’s spin component yields a value 100. Phys. Rev. D 40(6), 2112–2117 (1989).
  102. 102.
    S. Kocsis, B. Braverman, S. Ravets, M.J. Stevens, R.P. Mirin, L.K. Shalm, A.M. Steinberg, Observing the average trajectories of single photons in a two-slit interferometer. Science, 332(6034):1170–1173, (2011).
  103. 103.
    D.H. Mahler, L. Rozema, K. Fisher, L. Vermeyden, K.J. Resch, H.M. Wiseman, A. Steinberg, Experimental nonlocal and surreal bohmian trajectories. Science Advances 2(2), e1501466 (2016). Scholar
  104. 104.
    Y. Xiao, Y. Kedem, J.-S. Xu, C.-F. Li, G.-C. Guo, Experimental nonlocal steering of bohmian trajectories. Opt. Express 25(13), 14463–14472 (2017). Scholar
  105. 105.
    H. Pashayan, J.J. Wallman, S.D. Bartlett, Estimating outcome probabilities of quantum circuits using quasiprobabilities. Physical review letters 115(7), 070501 (2015).
  106. 106.
    H. Pashayan, J.J. Wallman, S.D. Bartlett, Quantum features and signatures of quantum-thermal machines (2018). arXiv:1803.05586
  107. 107.
    S. Pironio, A. Acín, S. Massar, A.B. de La Giroday, D.N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T.A. Manning et al., Random numbers certified by bell theorem. Nature 464(7291), 1021 (2010). Scholar
  108. 108.
    M.D. Mazurek, M.F. Pusey, R. Kunjwal, K.J. Resch, R.W. Spekkens, An experimental test of noncontextuality without unphysical idealizations. Nat. Commun. 7:ncomms11780, (2016).
  109. 109.
    P. Skrzypczyk, A.J. Short, S. Popescu, Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 5, 4185 (2014).
  110. 110.
    J. Åberg, Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014).
  111. 111.
    D. Reeb, M.M. Wolf, An improved landauer principle with finite-size corrections. New J. Phys. 16(10), 103011 (2014).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Elisa Bäumer
    • 1
    Email author
  • Matteo Lostaglio
    • 2
  • Martí Perarnau-Llobet
    • 3
  • Rui Sampaio
    • 4
  1. 1.Institute for Theoretical PhysicsETH ZurichZürichSwitzerland
  2. 2.ICFO-Institut de Ciencies FotoniquesThe Barcelona Institute of Science and TechnologyCastelldefels (Barcelona)Spain
  3. 3.Max-Planck-Institut für QuantenoptikGarchingGermany
  4. 4.QTF Center of Excellence, Department of Applied PhysicsAalto UniversityAaltoFinland

Personalised recommendations