Advertisement

Quantum Fluctuation Theorems

  • Ken Funo
  • Masahito Ueda
  • Takahiro SagawaEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

Recent advances in experimental techniques allow one to measure and control systems at the level of single molecules and atoms. Here gaining information about fluctuating thermodynamic quantities is crucial for understanding nonequilibrium thermodynamic behavior of small systems. To achieve this aim, stochastic thermodynamics offers a theoretical framework, and nonequilibrium equalities such as the Jarzynski equality and fluctuation theorems provide key information about the fluctuating thermodynamic quantities. We review the recent progress in quantum fluctuation theorems, including the studies of Maxwell’s demon which plays a pivotal role in connecting thermodynamics with information.

Notes

Acknowledgements

The authors thank Y. Masuyama for providing a cartoon of Maxwell’s demon in Fig. 10.3. K. F. acknowledges supports from the National Science Foundation of China under Grants No. 11375012 and 11534002, and The Recruitment Program of Global Youth Experts of China. M. U. acknowledges support by a Grant-in-Aid for Scientific Research on Innovative Areas Topological Materials Science (KAKENHI Grant No. JP15H05855). T. S. acknowledges supports from JSPS KAKENHI Grant No. JP16H02211 and No. JP25103003. Part of the research reviewed in this chapter was made possible by the COST MP1209 network “Thermodynamics in the quantum regime”.

References

  1. 1.
    J. Loschmidt, Sitzungsber. Kais. Akad. Wiss. Wien, Math. Naturwiss. Classe 73, 128 (1876)Google Scholar
  2. 2.
    C. Jarzynski, Annu. Rev. Condens. Matter. Phys. 2, 329 (2011).  https://doi.org/10.1146/annurev-conmatphys-062910-140506ADSCrossRefGoogle Scholar
  3. 3.
    U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).  https://doi.org/10.1088/0034-4885/75/12/126001ADSCrossRefGoogle Scholar
  4. 4.
    M. Campisi, P. Hanggi, Entropy 13, 2024 (2011).  https://doi.org/10.3390/e13122024ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    U. Seifert, Eur. Phys. J. B 64, 423 (2008).  https://doi.org/10.1140/epjb/e2008-00001-9ADSCrossRefGoogle Scholar
  6. 6.
    K. Sekimoto, Stochastic Energetics, Lecture Notes in Physics, vol. 799 (Springer, Berlin, 2010).  https://doi.org/10.1007/978-3-642-05411-2
  7. 7.
    D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 2401 (1993).  https://doi.org/10.1103/PhysRevLett.71.2401
  8. 8.
    G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995).  https://doi.org/10.1103/PhysRevLett.74.2694
  9. 9.
    C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).  https://doi.org/10.1103/PhysRevLett.78.2690
  10. 10.
    G.E. Crooks, Phys. Rev. E 60, 2721–2726 (1999).  https://doi.org/10.1103/PhysRevE.60.2721ADSCrossRefGoogle Scholar
  11. 11.
  12. 12.
    T. Hatano, S.I. Sasa, Phys. Rev. Lett. 86, 3463 (2001).  https://doi.org/10.1103/PhysRevLett.86.3463
  13. 13.
    U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).  https://doi.org/10.1103/PhysRevLett.95.040602
  14. 14.
    R. Kawai, J.M.R. Parrondo, C. Van den Broeck, Phys. Rev. Lett. 98, 080602 (2007).  https://doi.org/10.1103/PhysRevLett.98.080602
  15. 15.
    M. Esposito, C. Van den Broeck, Phys. Rev. Lett. 104, 090601 (2010).  https://doi.org/10.1103/PhysRevLett.104.090601
  16. 16.
    J. Liphardt, S. Dumont, S.B. Smith, I. Tinoco Jr., C. Bustamante, Science 296, 1832 (2002).  https://doi.org/10.1126/science.1071152ADSCrossRefGoogle Scholar
  17. 17.
    D. Collin, F. Ritort, C. Jarzynski, S.B. Smith, I. Tinoco Jr., C. Bustamante, Nature 437, 231 (2005).  https://doi.org/10.1038/nature04061ADSCrossRefGoogle Scholar
  18. 18.
    T.B. Batalhão, A.M. Souza, L. Mazzola, R. Auccaise, R.S. Sarthour, I.S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, R.M. Serra, Phys. Rev. Lett. 113, 140601 (2014).  https://doi.org/10.1103/PhysRevLett.113.140601
  19. 19.
    S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q. Yin, H.T. Quan, K. Kim, Nature Phys. 11, 193 (2015).  https://doi.org/10.1038/nphys3197ADSCrossRefGoogle Scholar
  20. 20.
    M. Naghiloo, D. Tan, P.M. Harrington, J.J. Alonso, E. Lutz, A. Romito, K.W. Murch, arXiv:1703.05885
  21. 21.
    M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009).  https://doi.org/10.1103/RevModPhys.81.1665
  22. 22.
    M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011).  https://doi.org/10.1103/RevModPhys.83.771
  23. 23.
  24. 24.
  25. 25.
    P. Talkner, E. Lutz, P. Hanggi, Phys. Rev. E 75, 050102.  https://doi.org/10.1103/PhysRevE.75.050102
  26. 26.
    S. Deffner, E. Lutz, Phys. Rev. Lett. 107, 140404 (2011).  https://doi.org/10.1103/PhysRevLett.107.140404
  27. 27.
    C. Jarzynski, D.K. Wójcik, Phys. Rev. Lett. 92, 230602 (2004).  https://doi.org/10.1103/PhysRevLett.92.230602
  28. 28.
    T. Monnai, Phys. Rev. E 72, 027102 (2005).  https://doi.org/10.1103/PhysRevE.72.027102ADSCrossRefGoogle Scholar
  29. 29.
    G.E. Crooks, J. Stat. Mech. P10023 (2008).  https://doi.org/10.1088/1742-5468/2008/10/P10023
  30. 30.
    M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009).  https://doi.org/10.1103/PhysRevLett.102.210401
  31. 31.
    J.M. Horowitz, Phys. Rev. E 85, 031110 (2012).  https://doi.org/10.1103/PhysRevE.85.031110ADSCrossRefGoogle Scholar
  32. 32.
    F.W.J. Hekking, J.P. Pekola, Phys. Rev. Lett. 111, 093602 (2013).  https://doi.org/10.1103/PhysRevLett.111.093602
  33. 33.
    M. Campisi, P. Talkner, P. Hanggi, Phys. Rev. Lett. 105, 140601 (2010).  https://doi.org/10.1103/PhysRevLett.105.140601
  34. 34.
    J.J. Alonso, E. Lutz, A. Romito, Phys. Rev. Lett. 116, 080403 (2016).  https://doi.org/10.1103/PhysRevLett.116.080403
  35. 35.
    C. Elouard, D.A. Herrera-Marti, M. Clusel, A. Auffeves, npj Quantum Information 3, 9 (2017).  https://doi.org/10.1038/s41534-017-0008-4
  36. 36.
    M. Caselle, G. Costagliola, A. Nada, M. Panero, A. Toniato, Phys. Rev. D 94, 034503 (2016).  https://doi.org/10.1103/PhysRevD.94.034503ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    M. Caselle, A. Nada, M. Panero, arXiv:1801.03110
  38. 38.
    A. Bartolotta, S. Deffner, Phys. Rev. X 8, 011033 (2018).  https://doi.org/10.1103/PhysRevX.8.011033CrossRefGoogle Scholar
  39. 39.
    D. Andrieux, P. Gaspard, J. Stat. Mech. P0, 2007 (2006).  https://doi.org/10.1088/1742-5468/2007/02/P02006CrossRefGoogle Scholar
  40. 40.
    K. Saito, A. Dhar, Phys. Rev. Lett. 99, 180601 (2008).  https://doi.org/10.1103/PhysRevLett.99.180601
  41. 41.
    K. Saito, Y. Utsumi, Phys. Rev. B 78, 115429 (2008).  https://doi.org/10.1103/PhysRevB.78.115429ADSCrossRefGoogle Scholar
  42. 42.
    S. Nakamura, Y. Yamauchi, M. Hashisaka, K. Chida, K. Kobayashi, T. Ono, R. Leturcq, K. Ensslin, K. Saito, Y. Utsumi, A.C. Gossard, Phys. Rev. Lett. 104, 080602 (2010).  https://doi.org/10.1103/PhysRevLett.104.080602
  43. 43.
    J.C. Maxwell, Theory of Heat (Appleton, London, 1871)Google Scholar
  44. 44.
    K. Maruyama, F. Nori, V. Vedral, Rev. Mod. Phys. 81, 1 (2009).  https://doi.org/10.1103/RevModPhys.81.1
  45. 45.
    T. Sagawa, Prog. Theo. Phys. 127, 1 (2012).  https://doi.org/10.1143/PTP.127.1ADSCrossRefGoogle Scholar
  46. 46.
    T. Sagawa, in Lectures on Quantum Computing, Thermodynamics, and Statistical Physics, ed. by M. Nakahara, S. Tanaka (World Scientific, Singapore, 2012).  https://doi.org/10.1142/9789814425193_0003
  47. 47.
    J.M.R. Parrondo, J.M. Horowitz, T. Sagawa, Nat. Phys. 11, 131 (2015).  https://doi.org/10.1038/nphys3230CrossRefGoogle Scholar
  48. 48.
    T. Sagawa, M. Ueda, Phys. Rev. Lett. 100, 080403 (2008).  https://doi.org/10.1103/PhysRevLett.100.080403
  49. 49.
    T. Sagawa, M. Ueda, Phys. Rev. Lett. 102, 250602 (2009).  https://doi.org/10.1103/PhysRevLett.102.250602
  50. 50.
    T. Sagawa, M. Ueda, Phys. Rev. Lett. 104, 090602 (2010).  https://doi.org/10.1103/PhysRevLett.104.090602
  51. 51.
    T. Sagawa, M. Ueda, Phys. Rev. Lett. 109, 180602 (2012).  https://doi.org/10.1103/PhysRevLett.109.180602
  52. 52.
    M. Morikuni, H. Tasaki, J. Stat. Phys. 143, 1 (2011).  https://doi.org/10.1007/s10955-011-0153-7ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    K. Funo, Y. Watanabe, M. Ueda, Phys. Rev. E 88, 052121 (2013).  https://doi.org/10.1103/PhysRevE.88.052121ADSCrossRefGoogle Scholar
  54. 54.
    K. Funo, Y. Murashita, M. Ueda, New J. Phys. 17, 075005 (2015).  https://doi.org/10.1088/1367-2630/17/7/075005ADSCrossRefGoogle Scholar
  55. 55.
    M. Horodecki, J. Oppenheim, Nat. Commun. 4, 2059 (2013).  https://doi.org/10.1038/ncomms3059ADSCrossRefGoogle Scholar
  56. 56.
    A.S.L. Malabarba, A.J. Short, P. Kammerlander, New J. Phys. 17, 045027 (2015).  https://doi.org/10.1088/1367-2630/17/4/045027ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    D. Kondepudi, I. Prigogine, From Heat Engines to Dissipative Structures (Wiley, New York, 1998).  https://doi.org/10.1002/9781118698723
  58. 58.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).  https://doi.org/10.2277/0521635039
  59. 59.
    C. Jarzynski, J. Stat. Mech. P09006 (2004).  https://doi.org/10.1088/1742-5468/2004/09/P09005
  60. 60.
    U. Seifert, Phys. Rev. Lett. 116, 020601 (2016).  https://doi.org/10.1103/PhysRevLett.116.020601
  61. 61.
    P. Talkner, P. Hänggi, Phys. Rev. E. 94, 022143 (2016).  https://doi.org/10.1103/PhysRevE.94.022143ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    C. Jarzynski, Phys. Rev. X 7, 011008 (2017).  https://doi.org/10.1103/PhysRevX.7.011008CrossRefGoogle Scholar
  63. 63.
    M. Esposito, C. Van den Broeck, Euro. Phys. Lett. 95, 40004 (2011).  https://doi.org/10.1209/0295-5075/95/40004ADSCrossRefGoogle Scholar
  64. 64.
    S. Deffner, E. Lutz, arXiv:1201.3888
  65. 65.
    R. Landauer, IBM, J. Res. Dev. 5, 183–191 (1961).  https://doi.org/10.1147/rd.53.0183
  66. 66.
    L. del Rio, J. Aberg, R. Renner, O. Dahlsten, V. Vedral, Nature 474, 61–63 (2011).  https://doi.org/10.1038/nature10123CrossRefGoogle Scholar
  67. 67.
    D. Reeb, M.M. Wolf, New J. Phys. 16, 103011 (2014).  https://doi.org/10.1088/1367-2630/16/10/103011ADSCrossRefGoogle Scholar
  68. 68.
    T. Sagawa, As a chapter of: G. Snider et al. (eds.), Energy Limits in Computation: A Review of Landauer’s Principle, Theory and Experiments.  https://doi.org/10.1007/978-3-319-93458-7
  69. 69.
    À.M. Alhambra, L. Masanes, J. Oppenheim, C. Perry, Phys. Rev. X 6, 041017 (2016).  https://doi.org/10.1103/PhysRevX.6.041017CrossRefGoogle Scholar
  70. 70.
    T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, 2012).  https://doi.org/10.1002/047174882X
  71. 71.
    P. Talkner, P.S. Burada, P. Hanggi, Phys. Rev. E 78, 011115 (2008).  https://doi.org/10.1103/PhysRevE.78.011115ADSCrossRefGoogle Scholar
  72. 72.
    K. Funo, H.T. Quan, Phys. Rev. Lett. 121, 040602 (2018).  https://doi.org/10.1103/PhysRevLett.121.040602
  73. 73.
    S. Deffner, O. Abah, E. Lutz, Chem. Phys. 375, 200 (2010).  https://doi.org/10.1016/j.chemphys.2010.04.042CrossRefGoogle Scholar
  74. 74.
    E.H. Lieb, M.B. Ruskai, Phys. Rev. Lett. 30, 434 (1973).  https://doi.org/10.1103/PhysRevLett.30.434
  75. 75.
  76. 76.
    H. Spohn, J.L. Lebowitz, Adv. Chem. Phys. 38, 109 (1978).  https://doi.org/10.1002/9780470142578
  77. 77.
    F.G.S.L. Brand\(\tilde{\rm a}\)o, M. Horodecki, N.H.Y. Ng, J. Oppenheim, S. Wehner, Proc. Natl. Acad. Sci. USA 112, 3275 (2015).  https://doi.org/10.1073/pnas.1411728112
  78. 78.
    P. Faist, J. Oppenheim, R. Renner, New. J. Phys. 17, 045027 (2015).  https://doi.org/10.1088/1367-2630/17/4/043003MathSciNetCrossRefGoogle Scholar
  79. 79.
    H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).  https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
  80. 80.
    T. Albash, S. Boixo, D.A. Lidar, P. Zanardi, New J. Phys. 14, 123016 (2012).  https://doi.org/10.1088/1367-2630/14/12/123016ADSMathSciNetCrossRefGoogle Scholar
  81. 81.
  82. 82.
    M. Esposito, K. Lndenberg, C. Van den Broeck, New. J. Phys. 12, 013013 (2010).  https://doi.org/10.1088/1367-2630/12/1/013013ADSMathSciNetCrossRefGoogle Scholar
  83. 83.
    J.M. Horowitz, J.M.R. Parrondo, New J. Phys. 15, 085028 (2013).  https://doi.org/10.1088/1367-2630/15/8/085028ADSCrossRefGoogle Scholar
  84. 84.
    M. Silaev, T.T. Heikkila, P. Virtanen, Phys. Rev. E 90, 022103 (2014).  https://doi.org/10.1103/PhysRevE.90.022103ADSCrossRefGoogle Scholar
  85. 85.
  86. 86.
  87. 87.
    J.M. Horowitz, T. Sagawa, J. Stat. Phys. 156, 55 (2014).  https://doi.org/10.1007/s10955-014-0991-1ADSMathSciNetCrossRefGoogle Scholar
  88. 88.
    G. Manzano, J.M. Horowitz, J.M.R. Parrondo, Phys. Rev. E 92, 032129 (2015).  https://doi.org/10.1103/PhysRevE.92.032129ADSMathSciNetCrossRefGoogle Scholar
  89. 89.
    G. Manzano, J.M. Horowitz, J.M.R. Parrondo, Phys. Rev. X 8, 031037 (2018).  https://doi.org/10.1103/PhysRevX.8.031037
  90. 90.
    A.O. Caldeira, An Introduction to Macroscopic Quantum Phenomena and Quantum Dissipation (Cambridge University Press, Cambridge, 2014).  https://doi.org/10.1017/CBO9781139035439
  91. 91.
    Y. Subasi, B.L. Hu, Phys. Rev. E 85, 011112 (2012).  https://doi.org/10.1103/PhysRevE.85.011112ADSCrossRefGoogle Scholar
  92. 92.
  93. 93.
    W.H. Zurek, in Frontiers of Nonequilibrium Statistical Physics. NATO ASI Series (Series B: Physics), vol. 135, ed. by G.T. Moore, M.O. Scully (Springer, Boston, 1986). arXiv:quant-ph/0301076
  94. 94.
  95. 95.
    M.A. Nielsen, C.M. Caves, B. Schumacher, H. Barnum, Proc. R. Soc. London A 454, 277 (1998).  https://doi.org/10.1098/rspa.1998.0160ADSCrossRefGoogle Scholar
  96. 96.
    S.W. Kim, T. Sagawa, S. De Liberato, M. Ueda, Phys. Rev. Lett. 106, 070401 (2011).  https://doi.org/10.1103/PhysRevLett.106.070401
  97. 97.
    J. Bengtsson, M. Nilsson Tengstrand, A. Wacker, P. Samuelsson, M. Ueda, H. Linke, S.M. Reimann, Phys. Rev. Lett. 120, 100601 (2018).  https://doi.org/10.1103/PhysRevLett.120.100601
  98. 98.
    H.J. Groenewold, Int. J. Theor. Phys. 4, 327 (1971).  https://doi.org/10.1007/BF00815357CrossRefGoogle Scholar
  99. 99.
  100. 100.
    F. Buscemi, M. Hayashi, M. Horodecki, Phys. Rev. Lett. 100, 210504 (2008).  https://doi.org/10.1103/PhysRevLett.100.210504
  101. 101.
    K. Jacobs, Phys. Rev. A 80, 012322 (2009).  https://doi.org/10.1103/PhysRevA.80.012322ADSCrossRefGoogle Scholar
  102. 102.
    M. Naghiloo, J.J. Alonso, A. Romito, E. Lutz, K.W. Murch, Phys. Rev. Lett. 121, 030604 (2018).  https://doi.org/10.1103/PhysRevLett.121.030604
  103. 103.
    W.H. Zurek, Phys. Rev. A 67, 012320 (2003).  https://doi.org/10.1103/PhysRevA.67.012320ADSCrossRefGoogle Scholar
  104. 104.
    K. Funo, Y. Watanabe, M. Ueda, Phys. Rev. A 88, 052319 (2013).  https://doi.org/10.1103/PhysRevA.88.052319ADSCrossRefGoogle Scholar
  105. 105.
    J.J. Park, K.-H. Kim, T. Sagawa, S.W. Kim, Phys. Rev. Lett. 111, 230402 (2013).  https://doi.org/10.1103/PhysRevLett.111.230402
  106. 106.
    D. Mandal, C. Jarzynski, Proc. Natl. Acad. Sci. USA 109, 11641 (2012).  https://doi.org/10.1073/pnas.1204263109ADSCrossRefGoogle Scholar
  107. 107.
    A. Chapman, A. Miyake, Phys. Rev. E 92, 062125 (2015).  https://doi.org/10.1103/PhysRevE.92.062125ADSCrossRefGoogle Scholar
  108. 108.
    P. Strasberg, G. Schaller, T. Brandes, M. Esposito, Phys. Rev. X 7, 021003 (2017).  https://doi.org/10.1103/PhysRevX.7.021003CrossRefGoogle Scholar
  109. 109.
    Z. Gong, Y. Ashida, M. Ueda, PRA 94, 012107 (2016).  https://doi.org/10.1103/PhysRevA.94.012107ADSCrossRefGoogle Scholar
  110. 110.
    Y. Murashita, Z. Gong, Y. Ashida, M. Ueda, Phys. Rev. A 96, 043840 (2017).  https://doi.org/10.1103/PhysRevA.96.043840ADSCrossRefGoogle Scholar
  111. 111.
    J.V. Koski, V.F. Maisi, T. Sagawa, J.P. Pekola, Phys. Rev. Lett. 113, 030601 (2014).  https://doi.org/10.1103/PhysRevLett.113.030601
  112. 112.
    Y. Masuyama, K. Funo, Y. Murashita, A. Noguchi, S. Kono, Y. Tabuchi, R. Yamazaki, M. Ueda, Y. Nakamura, Nat. Commun. 9, 1291 (2018).  https://doi.org/10.1038/s41467-018-03686-yADSCrossRefGoogle Scholar
  113. 113.
    R. Dorner, S.R. Clark, L. Heaney, R. Fazio, J. Goold, V. Vedral, Phys. Rev. Lett. 110, 230601 (2013).  https://doi.org/10.1103/PhysRevLett.110.230601
  114. 114.
    L. Mazzola, G. De Chiara, M. Paternostro, Phys. Rev. Lett. 110, 230602 (2013).  https://doi.org/10.1103/PhysRevLett.110.230602
  115. 115.
    P.A. Camatit, R.M. Serra, Phys. Rev. A 97, 042127 (2018).  https://doi.org/10.1103/PhysRevA.97.042127
  116. 116.
    A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Nature 483, 187–189 (2012).  https://doi.org/10.1038/nature10872ADSCrossRefGoogle Scholar
  117. 117.
    A. Bérut, A. Petrosyan, S. Ciliberto, Europhys. Lett. 103, 60002 (2013).  https://doi.org/10.1209/0295-5075/103/60002ADSCrossRefGoogle Scholar
  118. 118.
    E. Roldán, I.A. Martinez, J.M.R. Parrondo, D. Petrov, Nat. Phys. 10, 457–461 (2014).  https://doi.org/10.1038/nphys2940CrossRefGoogle Scholar
  119. 119.
    Y. Jun, M. Gavrilov, J. Bechhoefer, Phys. Rev. Lett. 113, 190601 (2014).  https://doi.org/10.1103/PhysRevLett.113.190601
  120. 120.
    M. Gavrilov, J. Bechhoefer, Phys. Rev. Lett. 117, 200601 (2016).  https://doi.org/10.1103/PhysRevLett.117.200601
  121. 121.
    M. Gavrilov, R. Chétrite, J. Bechhoefer, Proc. Natl. Acad. Sci. USA 114, 11097–11102 (2017).  https://doi.org/10.1073/pnas.1708689114ADSCrossRefGoogle Scholar
  122. 122.
    J. Hong, B. Lambson, S. Dhuey, J. Bokor, Sci. Adv. 11, e1501492 (2016).  https://doi.org/10.1126/sciadv.1501492ADSCrossRefGoogle Scholar
  123. 123.
    M. López-Suárez, I. Neri, L. Gammaitoni, Nat. Commun. 7, 12068 (2016).  https://doi.org/10.1038/ncomms12068ADSCrossRefGoogle Scholar
  124. 124.
    J.P.S. Peterson, R.S. Sarthour, A.M. Souza, I.S. Oliveira, J. Goold, K. Modi, D.O. Soares-Pinto, L.C. Céleri, Proc. R. Soc. A 472, 20150813 (2016).  https://doi.org/10.1098/rspa.2015.0813ADSCrossRefGoogle Scholar
  125. 125.
    S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Nat. Phys. 6, 988 (2010).  https://doi.org/10.1038/nphys1821CrossRefGoogle Scholar
  126. 126.
    J.V. Koski, A. Kutvonen, I.M. Khaymovich, T. Ala-Nissila, J.P. Pekola, Phys. Rev. Lett. 115, 260602 (2015).  https://doi.org/10.1103/PhysRevLett.115.260602
  127. 127.
    K. Chida, S. Desai, K. Nishiguchi, A. Fujiwara, Nat. Commun. 8, 15310 (2017).  https://doi.org/10.1038/ncomms15301ADSCrossRefGoogle Scholar
  128. 128.
    M.D. Vidrighin, O. Dahlsten, M. Barbieri, M.S. Kim, V. Vedral, I.A. Walmsley, Phys. Rev. Lett. 116, 050401 (2016).  https://doi.org/10.1103/PhysRevLett.116.050401
  129. 129.
    P.A. Camati, J.P.S. Peterson, T.B. Batalhão, K. Micadei, A.M. Souza, R.S. Sarthour, I.S. Oliveira, R.M. Serra, Phys. Rev. Lett. 117, 240502 (2016).  https://doi.org/10.1103/PhysRevLett.117.240502
  130. 130.
    N. Cottet, S. Jezouin, L. Bretheau, P.C. Ibarcq, Q. Ficheux, J. Anders, A. Auffèves, R. Azouit, P. Rouchon, Proc. Natl. Acad. Sci. 114, 7561 (2017).  https://doi.org/10.1073/pnas.1704827114ADSCrossRefGoogle Scholar
  131. 131.
    W.-B. Wang, X.-Y. Chang, F. Wang, P.-Y. Hou, Y.-Y. Huang, W.-G. Zhang, X.-L. Ouyang, X.-Z. Huang, Z.-Y. Zhang, L. He, L.-M. Duan, Chinese Phys. Lett. 35, 040301 (2018).  https://doi.org/10.1088/0256-307X/35/4/040301ADSCrossRefGoogle Scholar
  132. 132.
    M.A. Ciampini, L. Mancino, A. Orieux, C. Vigliar, P. Mataloni, M. Paternostro, M. Barbieri, npj Quantum Information 3, 10 (2017).  https://doi.org/10.1038/s41534-017-0011-9
  133. 133.
    T. Albash, D.A. Lidar, M. Marvian, P. Zanardi, Phys. Rev. E 88, 032146 (2013).  https://doi.org/10.1103/PhysRevE.88.032146ADSCrossRefGoogle Scholar
  134. 134.
    A.E. Rastegin, J. Stat. Mech. P06016 (2013).  https://doi.org/10.1088/1742-5468/2013/06/P06016
  135. 135.
    A. Smith, Y. Lu, S. An, X. Zhang, J.-N. Zhang, Z. Gong, H.T. Quan, C. Jarzynski, K. Kim, New J. Phys. 20, 013008 (2018).  https://doi.org/10.1088/1367-2630/aa9cd6ADSCrossRefGoogle Scholar
  136. 136.
    D. Kafri, S. Deffner, Phys. Rev. A 86, 044302 (2012).  https://doi.org/10.1103/PhysRevA.86.044302ADSCrossRefGoogle Scholar
  137. 137.
    J. Goold, M. Paternostro, K. Modi, Phys. Rev. Lett. 114, 060602 (2015).  https://doi.org/10.1103/PhysRevLett.114.060602
  138. 138.
    S. Deffner, A. Saxena, Phys. Rev. Lett. 114, 150601 (2015).  https://doi.org/10.1103/PhysRevLett.114.150601
  139. 139.
    C. Jarzynski, H.T. Quan, S. Rahav, Phys. Rev. X 5, 031038 (2015).  https://doi.org/10.1103/PhysRevX.5.031038CrossRefGoogle Scholar
  140. 140.
    L. Zhu, Z. Gong, B. Wu, H.T. Quan, Phys. Rev. E 93, 062108 (2016).  https://doi.org/10.1103/PhysRevE.93.062108ADSCrossRefGoogle Scholar
  141. 141.
    P. Solinas, S. Gasparinetti, Phys. Rev. E 92, 042150 (2015).  https://doi.org/10.1103/PhysRevE.92.042150ADSMathSciNetCrossRefGoogle Scholar
  142. 142.
    P.P. Hofer, A.A. Clerk, Phys. Rev. Lett. 116, 013603 (2016).  https://doi.org/10.1103/PhysRevLett.116.013603
  143. 143.
    M. Hayashi, H. Tajima, Phys. Rev. A 95, 032132 (2017).  https://doi.org/10.1103/PhysRevA.95.032132ADSCrossRefGoogle Scholar
  144. 144.
    M.P. Llobet, E. Bäumer, K.V. Hovhannisyan, M. Huber, A. Acin, Phys. Rev. Lett. 118, 070601 (2017).  https://doi.org/10.1103/PhysRevLett.118.070601
  145. 145.
    M. Lostaglio, Phys. Rev. Lett. 120, 040602 (2018).  https://doi.org/10.1103/PhysRevLett.120.040602
  146. 146.
    J. Aberg, Phys. Rev. X 8, 011019 (2018).  https://doi.org/10.1103/PhysRevX.8.011019CrossRefGoogle Scholar
  147. 147.
    M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854 (2008).  https://doi.org/10.1038/nature06838ADSCrossRefGoogle Scholar
  148. 148.
    E. Iyoda, K. Kaneko, T. Sagawa, Phys. Rev. Lett. 119, 100601 (2017).  https://doi.org/10.1103/PhysRevLett.119.100601
  149. 149.
    K. Kaneko, E. Iyoda, T. Sagawa, Phys. Rev. E 96, 062148 (2017).  https://doi.org/10.1103/PhysRevE.96.062148ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of PhysicsPeking UniversityBeijingChina
  2. 2.RIKEN Cluster for Pioneering ReserachWakoJapan
  3. 3.Department of PhysicsThe University of TokyoTokyoJapan
  4. 4.RIKEN Center for Emergent Matter Science (CEMS)SaitamaJapan
  5. 5.Department of Applied PhysicsThe University of TokyoTokyoJapan

Personalised recommendations