Advertisement

Applications of AIE to Molecular Recognition: Why Is It Superior to Unimolecular Recognition?

  • Takao Noguchi
  • Daisuke Yoshihara
  • Seiji Shinkai
Chapter

Abstract

Self-assembly has been utilized for the spontaneous formation of nanoarchitectures. Therein, a small change in the molecular structure dramatically alters the resulting macroscopic self-assembly morphologies and the consequent material properties. This macroscopic expression of the small initial difference via self-assembly can be alternatively regarded as precise translation of molecular structural information. In this chapter, we offer a novel molecular recognition concept utilizing self-assembly phenomena. A small difference in guest structures affords distinctly different self-assembly modes of fluorescent (FL) chemosensors and leads to their sensory responses characteristic of the guest structures. Thus, self-assembly has now been utilized as a FL sensory system for molecular recognition, particularly, of biologically important molecules and macromolecules. Through these studies, we wish to demonstrate why the AIE-based recognition is superior to that of unimolecule-based recognition.

Keywords

Molecular recognition Fluorescence sensing Self-assembly Nonlinear response Emergent properties ATP Dicarboxylic acids Keto acids Oxime-click Glucose Dynamic covalent bond Glycosaminoglycans Chirality 

Notes

Acknowledgments

This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan, Grant-in-Aid for Scientific Research (C) (Grant Number 17K05848) and for Young Scientists B (Grant Numbers JP25810051 and JP16K17937).

References

  1. 1.
    Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006). Science 312:217CrossRefGoogle Scholar
  2. 2.
    Domaille DW, Que EL, Chang CJ (2008). Nat Chem Biol 4:168CrossRefGoogle Scholar
  3. 3.
    Hargrove AE, Nieto S, Zhang T, Sessler JL, Anslyn EV (2011). Chem Rev 111:6603CrossRefGoogle Scholar
  4. 4.
    Martínez-máñez R, Sancenón F (2003). Chem Rev 103:4419CrossRefGoogle Scholar
  5. 5.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy2nd edn. Kluwer Academic/Plenum, New YorkCrossRefGoogle Scholar
  6. 6.
    Lehn J-M (1995) Supramolecular chemistry: concepts and perspectives. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  7. 7.
    Boyer PD (1998). Angew Chem Int Ed 37:2296CrossRefGoogle Scholar
  8. 8.
    Ngo HT, Liu X, Jolliffe KA (2012). Chem Soc Rev 41:4928CrossRefGoogle Scholar
  9. 9.
    Ojida A, Takashima I, Kohira T, Nonaka H, Hamachi I (2008). J Am Chem Soc 130:12095CrossRefGoogle Scholar
  10. 10.
    Whitesides GM, Mathias JP, Seto CT (1991). Science 254:1312CrossRefGoogle Scholar
  11. 11.
    Zhang S (2003). Nat Biotechnol 21:1171CrossRefGoogle Scholar
  12. 12.
    Hoeben FJM, Jonkheijm P, Meijer EW, Schenning APHJ (2005). Chem Rev 105:1491CrossRefGoogle Scholar
  13. 13.
    Elemans JAAW, van Hameren R, Nolte RJM, Rowan AE (2006). Adv Mater 18:1251CrossRefGoogle Scholar
  14. 14.
    Palmer LC, Stupp SI (2008). Acc Chem Res 41:1674CrossRefGoogle Scholar
  15. 15.
    Frischmann PD, Mahata K, Würthner F (2013). Chem Soc Rev 42:1847CrossRefGoogle Scholar
  16. 16.
    Faul CFJ (2014). Acc Chem Res 47:3428CrossRefGoogle Scholar
  17. 17.
    Babu SS, Praveen VK, Ajayaghosh A (2014). Chem Rev 114:1973CrossRefGoogle Scholar
  18. 18.
    Yagai S, Okamura S, Nakano Y, Yamauchi M, Kishikawa K, Karatsu T, Kitamura A, Ueno A, Kuzuhara D, Yamada H, Seki T, Ito H (2014). Nat Commun 5:4013CrossRefGoogle Scholar
  19. 19.
    Sun Q-F, Iwasa J, Ogawa D, Ishido Y, Sato S, Ozeki T, Sei Y, Yamaguchi K, Fujita M (2010). Science 328:1144CrossRefGoogle Scholar
  20. 20.
    Yagai S, Goto Y, Lin X, Karatsu T, Kitamura A, Kuzuhara D, Yamada H, Kikkawa Y, Saeki A, Seki S (2012). Angew Chem Int Ed 51:6643CrossRefGoogle Scholar
  21. 21.
    Oda R, Huc I, Schmutz M, Candau SJ, MacKintosh FC (1999). Nature 399:566CrossRefGoogle Scholar
  22. 22.
    Noguchi T, Chikara C, Kuroiwa K, Kaneko K, Kimizuka N (2011). Chem Commun 47:6455CrossRefGoogle Scholar
  23. 23.
    Noguchi T, Kimizuka N (2014). Chem Commun 50:599CrossRefGoogle Scholar
  24. 24.
    Ishiba K, Noguchi T, Iguchi H, Morikawa M, Kaneko K, Kimizuka N (2017). Angew Chem Int Ed 56:2974CrossRefGoogle Scholar
  25. 25.
    Noguchi T, Shiraki T, Dawn A, Tsuchiya Y, Lien LTN, Yamamoto T, Shinkai S (2012). Chem Commun 48:8090CrossRefGoogle Scholar
  26. 26.
    Noguchi T, Dawn A, Yoshihara D, Tsuchiya Y, Yamamoto T, Shinkai S (2013). Macromol Rapid Commun 34:779CrossRefGoogle Scholar
  27. 27.
    Noguchi T, Roy B, Yoshihara D, Tsuchiya Y, Yamamoto T, Shinkai S (2014). Chem Eur J 20:13938CrossRefGoogle Scholar
  28. 28.
    Noguchi T, Roy B, Yoshihara D, Tsuchiya Y, Yamamoto T, Shinkai S (2015). Chem Sci 6:3863CrossRefGoogle Scholar
  29. 29.
    Noguchi T, Roy B, Yoshihara D, Sakamoto J, Yamamoto T, Shinkai S (2016). Angew Chem Int Ed 55:5708CrossRefGoogle Scholar
  30. 30.
    Noguchi T, Roy B, Yoshihara D, Sakamoto J, Yamamoto T, Shinkai S (2017). Angew Chem Int Ed 56:12518CrossRefGoogle Scholar
  31. 31.
    Noguchi T, Yoshihara D, Shinkai S (2017). J Synth Org Chem 75:49CrossRefGoogle Scholar
  32. 32.
    Tong H, Hong Y, Dong Y, Häußler M, Lam JWY, Li Z, Guo Z, Guo Z, Tang BZ (2006). Chem Comm (35):3705Google Scholar
  33. 33.
    Blondeau P, Segura M, P-Fernandez R, Mendoza J (2007). Chem Soc Rev 36:198CrossRefGoogle Scholar
  34. 34.
    Ikeda T, Hirata O, Takeuchi M, Shinkai S (2006). J Am Chem Soc 128:16008CrossRefGoogle Scholar
  35. 35.
    Tian W-N, Braunstein LD, Pang J, Stuhlmeier KM, Xi Q-C, Tian X, Stanton RC (1998). J Biol Chem 273:10609CrossRefGoogle Scholar
  36. 36.
    Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X (2011). Nat Cell Biol 13:310CrossRefGoogle Scholar
  37. 37.
    Freeman R, Gill R, Shweky I, Kotler M, Banin U, Willner I (2009). Angew Chem Int Ed 48:309CrossRefGoogle Scholar
  38. 38.
    Kasha M, Rawls HR, El-Bayoumi MA (1965). Pure Appl Chem 11:371CrossRefGoogle Scholar
  39. 39.
    Würthner F, Kaiser TE, Saha-Möller CR (2011). Angew Chem Int Ed 50:3376CrossRefGoogle Scholar
  40. 40.
    Babu SS, Prasanthkumar S, Ajayaghosh A (2012). Angew Chem Int Ed 51:1766CrossRefGoogle Scholar
  41. 41.
    Maggini L, Bonifazi D (2012). Chem Soc Rev 41:211CrossRefGoogle Scholar
  42. 42.
    Yoon S-J, Park SY (2011). J Mater Chem 21:8338CrossRefGoogle Scholar
  43. 43.
    Yoon S-J, Chung JW, Gierschner J, Kim KS, Choi M-G, Kim D, Park SY (2010). J Am Chem Soc 132:13675CrossRefGoogle Scholar
  44. 44.
    Ascenso J, Gil VMS (1980). Can J Chem 58:1376CrossRefGoogle Scholar
  45. 45.
    Yoshihara D, Noguchi T, Tsuchiya Y, Roy B, Yamamoto T, Shinkai S (2015). Chem Lett 44:812CrossRefGoogle Scholar
  46. 46.
    Shinkai S, Tsukagoshi K, Ishikawa Y, Kunitake T (1991) J Chem Soc. Chem Commun (15):1039Google Scholar
  47. 47.
    Fujita N, Shinkai S, James TD (2008). Chem Asian J 3:1076CrossRefGoogle Scholar
  48. 48.
    Li Y, Zhou S (2013). Chem Commun 49:5553CrossRefGoogle Scholar
  49. 49.
    Hirono S, Hayashi C, Igarashi M, Nishimura Y, Toshima K (2010). Angew Chem Int Ed 49:10096CrossRefGoogle Scholar
  50. 50.
    Yoshihara D, Noguchi T, Roy B, Sakamoto J, Yamamoto T, Shinkai S (2016). Chem Lett 45:702CrossRefGoogle Scholar
  51. 51.
    Ko S-O, Schlautman MA, Carraway ER (1998). Environ Sci Technol 32:3542CrossRefGoogle Scholar
  52. 52.
    Peyser YM, Ben-Hur M, Werber MM, Muhlrad A (1996). J Am Chem Soc 35:4409Google Scholar
  53. 53.
    Nitta R, Okada Y, Hirokawa N (2008). Nat Struct Mol Biol 15:1067CrossRefGoogle Scholar
  54. 54.
    Metzger A, Anslyn EV (1998). Angew Chem Int Ed 37:649CrossRefGoogle Scholar
  55. 55.
    Choudhury SD, Mohanty J, Pal H, Bhasikuttan AC (2010). J Am Chem Soc 132:1395CrossRefGoogle Scholar
  56. 56.
    Capila I, Linhardt RJ (2002). Angew Chem Int Ed 41:390CrossRefGoogle Scholar
  57. 57.
    Pettersson T, Fröseth B, Riska H, Klockars M (1988). Chest 94:1037CrossRefGoogle Scholar
  58. 58.
    Hillerdal G, Lindqvist U, Engström-Laurent A (1991). Cancer 67:2410CrossRefGoogle Scholar
  59. 59.
    Lokeshwar VB, Öbek C, Soloway MS, Block NL (1997). Cancer Res 57:773Google Scholar
  60. 60.
    Wong VS, Hughes V, Trull A, Wight DGD, Petrik J, Alexander GJM (1998). J Viral Hepat 5:187CrossRefGoogle Scholar
  61. 61.
    Fujimoto N, Gemba K, Asano M, Fuchimoto Y, Wada S, Ono K, Ozaki S, Kishimoto T (2013). Respir Investig 51:92CrossRefGoogle Scholar
  62. 62.
    Salanti A, Clausen TM, Agerbæk MØ, Nakouzi NA, Dahlbäck M, Oo HZ, Lee S, Gustavsson T, Rich JR, Hedberg BJ, Mao Y, Barington L, Pereira MA, LoBello J, Endo M, Fazli L, Soden J, Wang CK, Sander AF, Dagil R, Thrane S, Holst PJ, Meng L, Favero F, Weiss GJ, Nielsen MA, Freeth J, TO N, Zaia J, Tran NL, Trent J, Babcook JS, Theander TG, Sorensen PH, Daugaard M (2015). Cancer Cell 28:1CrossRefGoogle Scholar
  63. 63.
    Hunter CA, Anderson HL (2009). Angew Chem Int Ed 48:7488CrossRefGoogle Scholar
  64. 64.
    Montalvo GL, Zhang Y, Young TM, Costanzo MJ, Freeman KB, Wang J, Clements DJ, Magavern E, Kavash RW, Scott RW, Liu D, DeGrado WF (2014). ACS Chem Biol 9:967CrossRefGoogle Scholar
  65. 65.
    Bromfield SM, Posocco P, Chan CW, Calderon M, Guimond SE, Turnbull JE, Pricl S, Smith DK (2014). Chem Sci 5:1484CrossRefGoogle Scholar
  66. 66.
    Bromfield SM, Smith DK (2015). J Am Chem Soc 137:10056CrossRefGoogle Scholar
  67. 67.
    Wright AT, Zhong Z, Anslyn EV (2005). Angew Chem Int Ed 44:5679CrossRefGoogle Scholar
  68. 68.
    Sun W, Bandmann H, Schrader T (2007). Chem Eur J 13:7701CrossRefGoogle Scholar
  69. 69.
    Yeung MC-L, Yam VW-W (2011). Chem Eur J 17:11987CrossRefGoogle Scholar
  70. 70.
    Dai Q, Liu W, Zhuang X, Wu J, Zhang H, Wang P (2011). Anal Chem 83:6559CrossRefGoogle Scholar
  71. 71.
    Bromfield SM, Barnard A, Posocco P, Fermeglia M, Pricl S, Smith DK (2013). J Am Chem Soc 135:2911CrossRefGoogle Scholar
  72. 72.
    Bromfield SM, Wilde E, Smith DK (2013). Chem Soc Rev 42:9184CrossRefGoogle Scholar
  73. 73.
    Wang M, Zhang D, Zhang G, Zhu D (2008). Chem Comm (37):4469Google Scholar
  74. 74.
    Gu X, Zhang G, Zhang D (2012). Analyst 137:365CrossRefGoogle Scholar
  75. 75.
    Kwok RTK, Geng J, Lam JWY, Zhao E, Wang G, Zhan R, Liu B, Tang BZ (2014). J Mater Chem B 2:4134CrossRefGoogle Scholar
  76. 76.
    Ding Y, Shi L, Wei H (2015). Chem Sci 6:6361CrossRefGoogle Scholar
  77. 77.
    Pivovarenko VG, Vadzyuk OB, Kosterin SO (2006). J Fluoresc 16:9CrossRefGoogle Scholar
  78. 78.
    Tang L, Park J, Kim HJ, Kim Y, Kim SJ, Chin J, Kim KM (2008). J Am Chem Soc 130:12606CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Takao Noguchi
    • 1
  • Daisuke Yoshihara
    • 1
  • Seiji Shinkai
    • 1
  1. 1.Institute for Advanced StudyKyushu UniversityFukuokaJapan

Personalised recommendations