Advertisement

Mechanoluminescence Materials with the Characteristic of Aggregation-Induced Emission (AIE)

  • Can Wang
  • Zhen Li
Chapter

Abstract

Stimuli-responsive materials have attracted lots of attention due to the immediate transformation of different properties in response to varied external stimulus. In the last several years, pure organic mechanoluminescence (ML) materials are gradually coming into highlight, which has prospects of practical applications in fields such as pressure sensor, display, and new light source. According to the light emission derived from any application of mechanical stress to the crystal or solid state, the aggregation-induced emission (AIE) effect has contributed to the providing of new possibilities for the design of efficient mechanical luminescent materials. The examples of mechanoluminescent AIEgen possessing room-temperature phosphorescence (RTP) or both fluorescence and phosphorescence have observed by Li’s group could benefit the next studies on ML materials about mechanism and applications. To further explore the relationship between ML activity and solid-state structural requirements, the ML materials with different crystalline polymorphs have been selected, and the results point out that molecular packing plays an important role in intrinsic mechanism of ML materials.

Keywords

Stimuli-responsive Mechanoluminescence Aggregation-induced emission Fluorescence Phosphorescence Room-temperature phosphorescence Crystalline polymorph Packing mode 

References

  1. 1.
    Pasparakis G, Vamvakaki M (2011). Polym Chem 2:1234–1248CrossRefGoogle Scholar
  2. 2.
    Wang C, Chen Q, Sun F, Zhang DQ, Zhang GX, Huang YY, Zhao R, Zhu DB (2010). J Am Chem Soc 132:3092–3096CrossRefGoogle Scholar
  3. 3.
    Park IK, Singha K, Arote RB, Choi YJ, Kim WJ, Cho CS (2010). Macromol Rapid Commun 31:1122–1133CrossRefGoogle Scholar
  4. 4.
    Edinger D, Wagner E (2011). Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:33–46CrossRefGoogle Scholar
  5. 5.
    Traitel T, Goldbart R, Kost J (2008). J Biomater Sci Polym Ed 19:755–767CrossRefGoogle Scholar
  6. 6.
    Jochum FD, Theato P (2013). Chem Soc Rev 42:7468–7483CrossRefGoogle Scholar
  7. 7.
    Zink JI, Kaska WC (1973). J Am Chem Soc 95:7510–7512CrossRefGoogle Scholar
  8. 8.
    Zink JI, Klimt W (1974). J Am Chem Soc 96:4690–4692CrossRefGoogle Scholar
  9. 9.
    Chandra BP (1998) Luminescence of solids. Springer & Plenum, New YorkGoogle Scholar
  10. 10.
    Eddingsaas NC, Suslick KS (2006). Nature 444:163–163CrossRefGoogle Scholar
  11. 11.
    Eddingsaas NC, Suslick KS (2007). J Am Chem Soc 129:6718–6719CrossRefGoogle Scholar
  12. 12.
    Picard J (1939). Science 89:460CrossRefGoogle Scholar
  13. 13.
    Jha P, Chandra BP (2014). Luminescence 29:977–993CrossRefGoogle Scholar
  14. 14.
    Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D (2001). Chem Commun (18):1740–1741Google Scholar
  15. 15.
    Fan X, Sun J, Wang F, Chu Z, Wang P, Dong Y, Hu R, Tang BZ, Zou D (2008). Chem Commun 26:2989–2991CrossRefGoogle Scholar
  16. 16.
    Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ (2015). Chem Rev 115:11718–11940CrossRefGoogle Scholar
  17. 17.
    Kwok RTK, Leung CWT, Lam JWY, Tang BZ (2015). Chem Soc Rev 44:4228–4238CrossRefGoogle Scholar
  18. 18.
    Li JW, Qian Y, Xie LH, Yi YP, Li WW, Huang W (2015). J Phys Chem C 119:2133–2141CrossRefGoogle Scholar
  19. 19.
    Xu SD, Liu TT, Mu YX, Wang YF, Chi ZG, Lo CC, Liu SW, Zhang Y, Lien A, Xu JR (2015). Angew Chem Int Ed 54:874–878CrossRefGoogle Scholar
  20. 20.
    Kwon MS, Yu Y, Coburn C, Phillips AW, Chung K, Shanker A, Jung J, Kim G, Pipe K, Forrest SR, Youk J, Gierschner J, Kim J (2015). Nat Commun 6:8947–8956CrossRefGoogle Scholar
  21. 21.
    Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W (2014). Adv Mater 26:7931–7958CrossRefGoogle Scholar
  22. 22.
    Yang J, Ren ZC, Xie ZL, Liu YJ, Wang C, Xie YJ, Peng Q, Xu B, Tian WJ, Zhang F, Chi ZG, Li QQ, Li Z (2017). Angew Chem Int Ed 56:880–884CrossRefGoogle Scholar
  23. 23.
    Menning S, Kr-mer M, Coombs BA, Rominger F, Beeby A, Dreuw A, Bunz UHF (2013). J Am Chem Soc 135:2160–2163CrossRefGoogle Scholar
  24. 24.
    Zhang G, Chen J, Payne SJ, Kooi SE, Demas JN, Fraser CL (2007). J Am Chem Soc 129:8942–8943CrossRefGoogle Scholar
  25. 25.
    Yang J, Gao XM, Xie ZL, Gong YB, Fang MM, Peng Q, Chi ZG, Li Z (2017). Angew Chem Int Ed 56:15299–15303CrossRefGoogle Scholar
  26. 26.
    Xu BJ, He JJ, Mu YX, Zhu QZ, Wu SK, Wang YF, Zhang Y, Jin CJ, Lo CC, Chi ZG, Lien A, Liu SW, Xu JR (2015). Chem Sci 6:3236–3241CrossRefGoogle Scholar
  27. 27.
    Xu B, Li W, He J, Wu S, Zhu Q, Yang Z, Wu Y, Zhang Y, Jin C, Lu P, Chi Z, Liu S, Xu J, Bryce M (2016). Chem Sci 7:5307–5312CrossRefGoogle Scholar
  28. 28.
    Valeur B (2005) Molecular fluorescence: principle and applications. Wiley, WeinheimGoogle Scholar
  29. 29.
    Xie Y, Ge Y, Peng Q, Li C, Li Q, Li Z (2017). Adv Mater 29:1606829CrossRefGoogle Scholar
  30. 30.
    An Z, Zheng C, Tao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W (2015). Nat Mater 14:685–690CrossRefGoogle Scholar
  31. 31.
    Kuno S, Kanamori T, Yijing Z, Ohtani H, Yuasa H (2017). ChemPhotoChem 1:102–106CrossRefGoogle Scholar
  32. 32.
    Chen X, Xu C, Wang T, Zhou C, Du J, Wang Z, Xu H, Xie T, Bi G, Jiang J, Zhang X, Demas JN, Trindle C, Luo Y, Zhang G (2016). Angew Chem Int Ed 55:9872–9876CrossRefGoogle Scholar
  33. 33.
    Wang C, Xu BJ, Li MS, Chi ZG, Xie YJ, Li QQ, Li Z (2016). Mater Horiz 3:220–225CrossRefGoogle Scholar
  34. 34.
    Hardy GE, Baldwin JC, Zink JI, Kaska WC, Liu P-H, Duboisi L (1977). J Am Chem Soc 99:3552–3558CrossRefGoogle Scholar
  35. 35.
    Xie YJ, Tu J, Zhang TQ, Wang JQ, Xie ZL, Chi ZG, Peng Q, Li Z (2017). Chem Commun 53:11330–11333CrossRefGoogle Scholar
  36. 36.
    Neena KK, Sudhakar P, Dipak K, Thilagar P (2016). Chem Commun 53:3641–3644CrossRefGoogle Scholar
  37. 37.
    Guo J, Li X, Nie H, Luo W, Gan S, Hu S, Hu R, Qin A, Zhao Z, Su S, Tang B (2017). Adv Funct Mater 27:1606458CrossRefGoogle Scholar
  38. 38.
    Wang C, Li L, Zhan X, Ruan Z, Xie Y, Hu Q, Ye S, Li Q, Li Z (2016). Sci Bull 61:1746–1755CrossRefGoogle Scholar
  39. 39.
    Li Z (2015). Sci China Chem 58:969CrossRefGoogle Scholar
  40. 40.
    Fang MM, Yang J, Liao QY, Gong YB, Xie ZL, Chi ZG, Peng Q, Li QQ, Li Z (2017). J Mater Chem C 5:9879–9885CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryWuhan UniversityWuhanChina

Personalised recommendations