High Performance Mechanochromic Luminescent Materials from AIEgens

  • Tianyu HanEmail author
  • Yong Qiang Dong


Mechanochromic luminescent (MCL) materials, capable of changing their photophysical properties in response to mechanical stimuli, have formed an integral part of functional materials over the last 20 years. Those with aggregation-induced emission (AIE) are more reliable and practical, as they are endowed with high-contrast ratio and thus offer the potential to enable various high-tech applications, including pressure sensor, optical storage, and deformation detection. In this chapter, we introduce the concept of MCL and focus on two types of AIE-active MCL systems, i.e., high color contrast and high efficiency contrast. The potential benefits and challenges of the presented examples were discussed. Based on limited numbers of examples that reported the crystallographic structure or quantum chemistry calculation, we highlighted how mechanistic knowledge has advanced the material design and performance optimization in both types.


Mechanochromic Aggregation-induced emission Donor–acceptor Intramolecular charge transfer High contrast Mechanical force 


  1. 1.
    Fares M et al (2018) A molecular rotor-based halo-tag ligand enables a fluorogenic proteome stress sensor to detect protein misfolding in mildly stressed proteome. Bioconjug Chem 29(1):215–224CrossRefGoogle Scholar
  2. 2.
    Lee T et al (2016) Transparent ITO mechanical crack-based pressure and strain sensor. J Mater Chem C 4(42):9947–9953CrossRefGoogle Scholar
  3. 3.
    Zeng S et al (2016) Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds. Nat Commun 7:11802CrossRefGoogle Scholar
  4. 4.
    Zhang Y et al (2016) Ratiometric pressure sensors based on cyano-substituted oligo(p-phenylene vinylene) derivatives in the hybridized local and charge-transfer excited state. J Mater Chem C 4(42):9954–9960CrossRefGoogle Scholar
  5. 5.
    Roberts DRT, Holder SJ (2011) Mechanochromic systems for the detection of stress, strain and deformation in polymeric materials. J Mater Chem 21(23):8256CrossRefGoogle Scholar
  6. 6.
    Butler T et al (2017) Camera method for monitoring a mechanochromic luminescent beta-diketone dye with rapid recovery. ACS Appl Mater Interfaces 9(20):17603–17612CrossRefGoogle Scholar
  7. 7.
    Zhang X et al (2017) Non-conjugated fluorescent molecular cages of salicylaldehyde-based tri-Schiff bases: AIE, enantiomers, mechanochromism, anion hosts/probes, and cell imaging properties. Mater Chem Front 1(6):1041–1050CrossRefGoogle Scholar
  8. 8.
    Hariharan PS et al (2016) Halochromic isoquinoline with mechanochromic triphenylamine: smart fluorescent material for rewritable and self-erasable fluorescent platform. ACS Appl Mater Interfaces 8(48):33034–33042CrossRefGoogle Scholar
  9. 9.
    Lavrenova A et al (2017) Mechano- and thermoresponsive photoluminescent supramolecular polymer. J Am Chem Soc 139(12):4302–4305CrossRefGoogle Scholar
  10. 10.
    Mo S et al (2017) Tunable mechanoresponsive self-assembly of an amide-linked dyad with dual sensitivity of photochromism and mechanochromism. Adv Funct Mater 27(28):1701210CrossRefGoogle Scholar
  11. 11.
    Ongungal RM et al (2016) Self-assembly and mechanochromic luminescence switching of trifluoromethyl substituted 1,3,4-oxadiazole derivatives. J Mater Chem C 4(40):9588–9597CrossRefGoogle Scholar
  12. 12.
    Zhao K-Y et al (2016) Tuning emission of AIE-active organometallic Ir(III) complexes by simple modulation of strength of donor/acceptor on ancillary ligands. Organometallics 35(23):3996–4001CrossRefGoogle Scholar
  13. 13.
    Zhao Z et al (2016) The construction of a multicolored mechanochromic luminogen with high contrast through the combination of a large conjugation core and peripheral phenyl rings. J Mater Chem C 4(21):4800–4804CrossRefGoogle Scholar
  14. 14.
    Luo X et al (2011) Reversible switching of the emission of diphenyldibenzofulvenes by thermal and mechanical stimuli. Adv Mater 23(29):3261–3265CrossRefGoogle Scholar
  15. 15.
    Dong Y et al (2012) Piezochromic luminescence based on the molecular aggregation of 9,10-bis((E)-2-(pyrid-2-yl)vinyl)anthracene. Angew Chem Int Ed Engl 51(43):10782–10785CrossRefGoogle Scholar
  16. 16.
    Zhao Z et al (2017) Furan is superior to thiophene: a furan-cored AIEgen with remarkable chromism and OLED performance. Adv Sci 4(8):1700005CrossRefGoogle Scholar
  17. 17.
    Davis DA et al (2009) Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459(7243):68–72CrossRefGoogle Scholar
  18. 18.
    Wang C, Li Z (2017) Molecular conformation and packing: their critical roles in the emission performance of mechanochromic fluorescence materials. Mater Chem Front 1:2174–2194CrossRefGoogle Scholar
  19. 19.
    Sagara Y, Kato T (2009) Mechanically induced luminescence changes in molecular assemblies. Nat Chem 1(8):605–610CrossRefGoogle Scholar
  20. 20.
    Hong Y, Lam JW, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun (Camb) 29:4332–4353CrossRefGoogle Scholar
  21. 21.
    Hong Y, Lam JW, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40(11):5361–5388CrossRefGoogle Scholar
  22. 22.
    Mei J et al (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115(21):11718–11940CrossRefGoogle Scholar
  23. 23.
    Zhao N et al (2012) Benzothiazolium-functionalized tetraphenylethene: an AIE luminogen with tunable solid-state emission. Chem Commun (Camb) 48(69):8637–8639CrossRefGoogle Scholar
  24. 24.
    Zhao N et al (2013) A tetraphenylethene-substituted pyridinium salt with multiple functionalities: synthesis, stimuli-responsive emission, optical waveguide and specific mitochondrion imaging. J Mater Chem C 1(31):4640–4646CrossRefGoogle Scholar
  25. 25.
    Chowdhury A, Howlader P, Mukherjee PS (2016) Mechano-fluorochromic Pt-II luminogen and its cysteine recognition. Chem Eur J 22(4):1424–1434CrossRefGoogle Scholar
  26. 26.
    Shen XY et al (2013) Effects of substitution with donor–acceptor groups on the properties of tetraphenylethene trimer: aggregation-induced emission, solvatochromism, and mechanochromism. J Phys Chem C 117(14):7334–7347CrossRefGoogle Scholar
  27. 27.
    Zhang J et al (2013) Oligo(phenothiazine)s: twisted intramolecular charge transfer and aggregation-induced emission. J Phys Chem C 117(44):23117–23125CrossRefGoogle Scholar
  28. 28.
    Han J et al (2018) To direct the self-assembly of AIEgens by three-gear switch: morphology study, amine sensing and assessment of meat spoilage. Sensors Actuators B Chem 258:373–380CrossRefGoogle Scholar
  29. 29.
    Sasaki S, Drummen GPC, Konishi G-i (2016) Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. J Mater Chem C 4:2731–2743CrossRefGoogle Scholar
  30. 30.
    Feng Q et al (2016) Multiple-color aggregation-induced emission (AIE) molecules as chemodosimeters for pH sensing. Chem Commun (Camb) 52(15):3123–3126CrossRefGoogle Scholar
  31. 31.
    Zhang JN et al (2017) Organic solid fluorophores regulated by subtle structure modification: color-tunable and aggregation-induced emission. Chem Sci 8(1):577–582CrossRefGoogle Scholar
  32. 32.
    Hu L et al (2017) An AIE luminogen as a multi-channel sensor for ethanol. Sensors Actuators B Chem 239:467–473CrossRefGoogle Scholar
  33. 33.
    Han T et al (2016) Solvent-assistant self-assembly of an AIE+TICT fluorescent Schiff base for the improved ammonia detection. Talanta 150:104–112CrossRefGoogle Scholar
  34. 34.
    Guido CA et al (2010) Planar vs. twisted intramolecular charge transfer mechanism in Nile Red: new hints from theory. Phys Chem Chem Phys 12(28):8016–8023CrossRefGoogle Scholar
  35. 35.
    Guo ZH et al (2014) A donor-acceptor-donor conjugated molecule: twist intramolecular charge transfer and piezochromic luminescent properties. Chem Commun (Camb) 50(46):6088–6090CrossRefGoogle Scholar
  36. 36.
    Gundu S et al (2017) AIE-active and reversible mechanochromic tetraphenylethene-tetradiphenylacrylonitrile hybrid luminogens with re-writable optical data storage application. Dyes Pigments 146:7–13CrossRefGoogle Scholar
  37. 37.
    Hu Y et al (2018) Novel scorpion-like carbazole derivatives: synthesis, characterization, mechanochromism and aggregation-induced emission. Dyes Pigments 151:165–172CrossRefGoogle Scholar
  38. 38.
    Kwon MS et al (2012) Unique piezochromic fluorescence behavior of dicyanodistyrylbenzene based donor-acceptor-donor triad: mechanically controlled photo-induced electron transfer (eT) in molecular assemblies. Adv Mater 24(40):5487–5492CrossRefGoogle Scholar
  39. 39.
    Qi Q et al (2015) Remarkable turn-on and color-tuned piezochromic luminescence: mechanically switching intramolecular charge transfer in molecular crystals. Adv Funct Mater 25(26):4005–4010CrossRefGoogle Scholar
  40. 40.
    Han T et al (2013) Defect-sensitive crystals based on diaminomaleonitrile-functionalized Schiff base with aggregation-enhanced emission. J Mater Chem C 1(44):7314CrossRefGoogle Scholar
  41. 41.
    Yuan WZ et al (2013) Synergy between twisted conformation and effective intermolecular interactions: strategy for efficient mechanochromic luminogens with high contrast. Adv Mater 25(20):2837–2843CrossRefGoogle Scholar
  42. 42.
    Wei J et al (2015) High-contrast and reversible mechanochromic luminescence of a D-pi-A compound with a twisted molecular conformation. RSC Adv 5(88):71903–71910CrossRefGoogle Scholar
  43. 43.
    Sun J et al (2016) Mechanochromic luminogen with aggregation-induced emission: implications for ink-free rewritable paper with high fatigue resistance and low toxicity. J Mater Chem C 4(35):8276–8283CrossRefGoogle Scholar
  44. 44.
    Sun J et al (2014) A donor-acceptor cruciform pi-system: high contrast mechanochromic properties and multicolour electrochromic behavior. J Mater Chem C 2(27):5365–5371CrossRefGoogle Scholar
  45. 45.
    Su X et al (2016) A high contrast tri-state fluorescent switch: properties and applications. Chem Asian J 11(22):3205–3212CrossRefGoogle Scholar
  46. 46.
    Chen W et al (2016) Dicyanomethylenated acridone based crystals: torsional vibration confinement induced emission with supramolecular structure dependent and stimuli responsive characteristics. J Phys Chem C 120(1):587–597CrossRefGoogle Scholar
  47. 47.
    Zhao H et al (2016) Remarkable substitution influence on the mechanochromism of cyanostilbene derivatives. RSC Adv 6(71):66477–66483CrossRefGoogle Scholar
  48. 48.
    Dong YQ et al (2007) Switching the light emission of (4-biphenylyl)phenyldibenzofulvene by morphological modulation: crystallization-induced emission enhancement. Chem Commun 1:40–42CrossRefGoogle Scholar
  49. 49.
    Gu X et al (2012) Polymorphism-dependent emission for di(p-methoxylphenyl)dibenzofulvene and analogues: optical waveguide/amplified spontaneous emission behaviors. Adv Funct Mater 22(23):4862–4872CrossRefGoogle Scholar
  50. 50.
    Li C et al (2013) Switching the emission of di(4-ethoxyphenyl)dibenzofulvene among multiple colors in the solid state. SCIENCE CHINA Chem 56(9):1173–1177CrossRefGoogle Scholar
  51. 51.
    Shi J et al (2013) Switching emissions of two tetraphenylethene derivatives with solvent vapor, mechanical, and thermal stimuli. Chin Sci Bull 58(22):2723–2727CrossRefGoogle Scholar
  52. 52.
    Davis JR et al (2015) Inter-cellular forces orchestrate contact inhibition of locomotion. Cell 161(2):361–373CrossRefGoogle Scholar
  53. 53.
    Liu Y et al (2015) Fluorescence turn-on folding sensor to monitor proteome stress in live cells. J Am Chem Soc 137(35):11303–11311CrossRefGoogle Scholar
  54. 54.
    Sun H et al (2014) Smart responsive phosphorescent materials for data recording and security protection. Nat Commun 5:3601CrossRefGoogle Scholar
  55. 55.
    Xue S et al (2016) Alkyl length effects on solid-state fluorescence and mechanochromic behavior of small organic luminophores. J Mater Chem C 4(8):1568–1578CrossRefGoogle Scholar
  56. 56.
    Zhu X et al (2014) An AIE-active boron-difluoride complex: multi-stimuli-responsive fluorescence and application in data security protection. Chem Commun (Camb) 50(85):12951–12954CrossRefGoogle Scholar
  57. 57.
    Chi Z et al (2012) Recent advances in organic mechanofluorochromic materials. Chem Soc Rev 41(10):3878–3896CrossRefGoogle Scholar
  58. 58.
    Dong YQ, Lam JW, Tang BZ (2015) Mechanochromic luminescence of aggregation-induced emission luminogens. J Phys Chem Lett 6(17):3429–3436CrossRefGoogle Scholar
  59. 59.
    Shi PJ et al (2018) A turn-on type mechanochromic fluorescent material based on defect-induced emission: implication for pressure sensing and mechanical printing. J Mater Chem C 6(10):2476–2482CrossRefGoogle Scholar
  60. 60.
    Chung JW et al (2009) Shear- and UV-induced fluorescence switching in stilbenic pi-dimer crystals powered by reversible [2+2] cycloaddition. J Am Chem Soc 131(23):8163–8172CrossRefGoogle Scholar
  61. 61.
    Li H et al (2011) Aggregation-induced emission enhancement compounds containing triphenylamine-anthrylenevinylene and tetraphenylethene moieties. J Mater Chem 21(11):3760CrossRefGoogle Scholar
  62. 62.
    Li HY et al (2011) New thermally stable piezofluorochromic aggregation-induced emission compounds. Org Lett 13(4):556–559CrossRefGoogle Scholar
  63. 63.
    Gu XG et al (2015) Mitochondrion-specific live-cell bioprobe operated in a fluorescence turn-on manner and a well-designed photoactivatable mechanism. Adv Mater 27(44):7093–7100CrossRefGoogle Scholar
  64. 64.
    Mei X et al (2016) Carbazole-based diphenyl maleimides: multi-functional smart fluorescent materials for data process and sensing for pressure, explosive and pH. Dyes Pigments 133:345–353CrossRefGoogle Scholar
  65. 65.
    Wu XX et al (2017) Tetraphenylethylene immobilized metal-organic frameworks: highly sensitive fluorescent sensor for the detection of Cr2O72- and nitroaromatic explosives. Cryst Growth Des 17(11):6041–6048CrossRefGoogle Scholar
  66. 66.
    Shustova NB, McCarthy BD, Dinca M (2011) Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks: an alternative to aggregation-induced emission. J Am Chem Soc 133(50):20126–20129CrossRefGoogle Scholar
  67. 67.
    Shustova NB et al (2012) Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework: implications for the mechanism of aggregation-induced emission. J Am Chem Soc 134(36):15061–15070CrossRefGoogle Scholar
  68. 68.
    Han B et al (2016) Constructing a nonfluorescent conformation of AIEgen: a tetraphenylethene embedded in the calix[4]arene’s skeleton. Chemistry 22(45):16037–16041CrossRefGoogle Scholar
  69. 69.
    Han TY et al (2015) A diethylaminophenol functionalized Schiff base: crystallization-induced emission-enhancement, switchable fluorescence and application for security printing and data storage. J Mater Chem C 3(28):7446–7454CrossRefGoogle Scholar
  70. 70.
    Galer P et al (2014) Crystal structures and emission properties of the BF2 complex 1-phenyl-3-(3,5-dimethoxyphenyl)-propane-1,3-dione: multiple chromisms, aggregation- or crystallization-induced emission, and the self-assembly effect. J Am Chem Soc 136(20):7383–7394CrossRefGoogle Scholar
  71. 71.
    Huang J et al (2012) Benzene-cored fluorophors with TPE peripheries: facile synthesis, crystallization-induced blue-shifted emission, and efficient blue luminogens for non-doped OLEDs. J Mater Chem 22(24):12001–12007CrossRefGoogle Scholar
  72. 72.
    Zhan Y et al (2016) Carbazole-based salicylaldimine difluoroboron complex with crystallization-induced emission enhancement and reversible piezofluorochromism characteristics. Tetrahedron Lett 57(48):5385–5389CrossRefGoogle Scholar
  73. 73.
    Zheng X et al (2017) Mechanoresponsive fluorescence of 2-aminobenzophenone derivatives based on amorphous phase to crystalline transformation with high “off–on” contrast ratio. J Phys Chem C 121(39):21610–21615CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryCapital Normal UniversityBeijingChina
  2. 2.Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijingChina

Personalised recommendations