Advertisement

Precious Metal-Free Organic Small Molecule Luminophores That Exhibit Room Temperature Phosphorescence

  • Masaki Shimizu
Chapter

Abstract

Phosphorescent compounds have attracted many scientists as versatile materials in the fields of analytical sciences, bio-imaging, chemical sensing, data encryption/protection technology, and organic light-emitting diodes. However, it is generally difficult to attain phosphorescence at room temperature from organic luminophores that do not contain precious metals such as iridium and platinum. In view of scarcity and expensiveness of precious metals, creation of precious metal-free organic phosphors is highly desired. This chapter reviews the recent researches on the design, characterization, and applications of precious metal-free luminophores showing efficient aggregation/crystallization-induced phosphorescence at room temperature.

Keywords

Co-crystal Crystal-induced emission Delayed luminescence H aggregation Halogen bonding Intersystem crossing Intramolecular charge-transfer n-π* transition Persistent lifetime Triplet excited state 

References

  1. 1.
    Marriott G, Clegg RM, Arndt-Jovin DJ, Jovin TM (1991) Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging. Biophys J 60(6):1374–1387. https://doi.org/10.1016/S0006-3495(91)82175-0CrossRefGoogle Scholar
  2. 2.
    Zhao Q, Huang C, Li F (2011) Phosphorescent heavy-metal complexes for bioimaging. Chem Soc Rev 40(5):2508–2524.  https://doi.org/10.1039/c0cs00114gCrossRefGoogle Scholar
  3. 3.
    Kumar P, Singh S, Gupta BK (2016) Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications. Nanoscale 8(30):14297–14340.  https://doi.org/10.1039/C5NR06965CCrossRefGoogle Scholar
  4. 4.
    Gewehr PM, Delpy DT (1993) Optical oxygen sensor based on phosphorescence lifetime quenching and employing a polymer immobilised metalloporphyrin probe. Med Biol Eng Comput 31(1):2–10.  https://doi.org/10.1007/bf02446879CrossRefGoogle Scholar
  5. 5.
    Wang X-d, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43(10):3666–3761.  https://doi.org/10.1039/C4CS00039KCrossRefGoogle Scholar
  6. 6.
    Gouterman M (1997) Oxygen quenching of luminescence of pressure sensitive paint for wind tunnel research. J Chem Educ 74(6):697.  https://doi.org/10.1021/ed074p697CrossRefGoogle Scholar
  7. 7.
    Liu T, Campbell BT, Burns SP, Sullivan JP (1997) Temperature- and pressure-sensitive luminescent paints in aerodynamics. Appl Mech Rev 50(4):227–246.  https://doi.org/10.1115/1.3101703CrossRefGoogle Scholar
  8. 8.
    Takeuchi Y, Amao Y (2005) Materials for luminescent pressure-sensitive paint. In: Orellana G, Moreno-Bondi MC (eds) Frontiers in chemical sensors: novel principles and techniques. Springer, Berlin, pp 303–322.  https://doi.org/10.1007/3-540-27757-9_10CrossRefGoogle Scholar
  9. 9.
    Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110(5):2795–2838.  https://doi.org/10.1021/cr900300pCrossRefGoogle Scholar
  10. 10.
    Liu J-N, Bu W, Shi J (2017) Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem Rev 117(9):6160–6224.  https://doi.org/10.1021/acs.chemrev.6b00525CrossRefGoogle Scholar
  11. 11.
    Hurtubise RJ, Thompson AL, Hubbard SE (2005) Solid-phase room-temperature phosphorescence. Anal Lett 38(12):1823–1845.  https://doi.org/10.1080/00032710500230822CrossRefGoogle Scholar
  12. 12.
    Díaz-García ME, Fernández-González A, Badía-Laíño R (2007) The triplet state: emerging applications of room temperature phosphorescence spectroscopy. Appl Spectrosc Rev 42(6):605–624.  https://doi.org/10.1080/00102200701421771CrossRefGoogle Scholar
  13. 13.
    Yersin H (ed) (2008) Highly efficient OLEDs with phosphorescent materials. Wiley-VCH, Weinheim.  https://doi.org/10.1002/9783527621309.ch1CrossRefGoogle Scholar
  14. 14.
    Xu J, Takai A, Kobayashi Y, Takeuchi M (2013) Phosphorescence from a pure organic fluorene derivative in solution at room temperature. Chem Commun 49(76):8447–8449.  https://doi.org/10.1039/c3cc44809fCrossRefGoogle Scholar
  15. 15.
    Gutierrez GD, Sazama GT, Wu T, Baldo MA, Swager TM (2016) Red phosphorescence from benzo[2,1,3]thiadiazoles at room temperature. J Org Chem 81(11):4789–4796.  https://doi.org/10.1021/acs.joc.6b00789CrossRefGoogle Scholar
  16. 16.
    Evans RC, Douglas P, Winscom CJ (2006) Coordination complexes exhibiting room-temperature phosphorescence: evaluation of their suitability as triplet emitters in organic light emitting diodes. Coord Chem Rev 250(15–16):2093–2126CrossRefGoogle Scholar
  17. 17.
    Wong WY, Ho CL (2009) Heavy metal organometallic electrophosphors derived from multi-component chromophores. Coord Chem Rev 253(13–14):1709–1758CrossRefGoogle Scholar
  18. 18.
    Chi Y, Chou P-T (2010) Transition-metal phosphors with cyclometalating ligands: fundamentals and applications. Chem Soc Rev 39(2):638–655.  https://doi.org/10.1039/B916237BCrossRefGoogle Scholar
  19. 19.
    Sathish V, Ramdass A, Thanasekaran P, Lu K-L, Rajagopal S (2015) Aggregation-induced phosphorescence enhancement (AIPE) based on transition metal complexes—An overview. J Photochem Photobiol C: Photochem Rev 23:25–44.  https://doi.org/10.1016/j.jphotochemrev.2015.04.001CrossRefGoogle Scholar
  20. 20.
    Mukherjee S, Thilagar P (2015) Recent advances in purely organic phosphorescent materials. Chem Commun 51(55):10988–11003.  https://doi.org/10.1039/c5cc03114aCrossRefGoogle Scholar
  21. 21.
    Wang S, Yuan WZ, Zhang Y (2016) Pure organic luminogens with room temperature phosphorescence. In: Aggregation-induced emission: materials and applications, vol. 2, 1227. ACS Symposium Series, American Chemical Society, pp. 1–26. 10.1021/bk-2016-1227.ch001Google Scholar
  22. 22.
    Wang C-R, Gong Y-Y, Yuan W-Z, Zhang Y-M (2016) Crystallization-induced phosphorescence of pure organic luminogens. Chin Chem Lett 27(8):1184–1192.  https://doi.org/10.1016/j.cclet.2016.05.026CrossRefGoogle Scholar
  23. 23.
    Liu Y, Zhan G, Liu Z-W, Bian Z-Q, Huang C-H (2016) Room-temperature phosphorescence from purely organic materials. Chin Chem Lett 27(8):1231–1240.  https://doi.org/10.1016/j.cclet.2016.06.029CrossRefGoogle Scholar
  24. 24.
    Baroncini M, Bergamini G, Ceroni P (2017) Rigidification or interaction-induced phosphorescence of organic molecules. Chem Commun 53(13):2081–2093.  https://doi.org/10.1039/C6CC09288HCrossRefGoogle Scholar
  25. 25.
    Li Q, Li Z (2017) The strong light-emission materials in the aggregated state: what happens from a single molecule to the collective group. Adv Sci 4(7):1600484.  https://doi.org/10.1002/advs.201600484CrossRefGoogle Scholar
  26. 26.
    Hirata S (2017) Recent advances in materials with room-temperature phosphorescence: photophysics for triplet exciton stabilization. Adv Opt Mater 5(17):1700116.  https://doi.org/10.1002/adom.201700116CrossRefGoogle Scholar
  27. 27.
    Schulman EM, Walling C (1972) Phosphorescence of adsorbed ionic organic molecules at room temperature. Science 178(4056):53–54.  https://doi.org/10.1126/science.178.4056.53CrossRefGoogle Scholar
  28. 28.
    Schulman EM, Walling C (1973) Triplet-state phosphorescence of adsorbed ionic organic molecules at room temperature. J Phys Chem 77(7):902–905.  https://doi.org/10.1021/j100626a009CrossRefGoogle Scholar
  29. 29.
    Paynter RA, Wellons SL, Winefordner JD (1974) New method of analysis based on room-temperature phosphorescence. Anal Chem 46(6):736–738.  https://doi.org/10.1021/ac60342a044CrossRefGoogle Scholar
  30. 30.
    Wellons SL, Paynter RA, Winefordner JD (1974) Room temperature phosphorimetry of biologically-important compounds adsorbed on filter paper. Spectrochim Acta Part A Mol Spectrosc 30(12):2133–2140.  https://doi.org/10.1016/0584-8539(74)80063-2CrossRefGoogle Scholar
  31. 31.
    Ford CD, Hurtubise RJ (1980) Room temperature phosphorescene of nitrogen heterocycles adsorbed on silica gel. Anal Chem 52(4):656–662.  https://doi.org/10.1021/ac50054a015CrossRefGoogle Scholar
  32. 32.
    Ramasamy SM, Hurtubise RJ (1982) Matrix and solvent effects on the room-temperature phosphorescence of nitrogen heterocycles. Anal Chem 54(14):2477–2481.  https://doi.org/10.1021/ac00251a017CrossRefGoogle Scholar
  33. 33.
    Love LJC, Skrilec M, Habarta JG (1980) Analysis by micelle-stabilized room temperature phosphorescence in solution. Anal Chem 52(4):754–759CrossRefGoogle Scholar
  34. 34.
    Scypinski S, Cline Love LJ (1984) Room-temperature phosphorescence of polynuclear aromatic hydrocarbons in cyclodextrins. Anal Chem 56(3):322–327CrossRefGoogle Scholar
  35. 35.
    Scypinski S, Cline Love LJ (1984) Cyclodextrin-induced room-temperature phosphorescence of nitrogen heterocycles and bridged biphenyls. Anal Chem 56(3):331–336CrossRefGoogle Scholar
  36. 36.
    Muñoz de la Peña A, Mahedero MC, Bautista Sánchez A (2000) Room temperature phosphorescence in cyclodextrins. Analytical applications. Analusis 28(8):670–678CrossRefGoogle Scholar
  37. 37.
    Li D, Lu F, Wang J, Hu W, Cao X-M, Ma X, Tian H (2018) Amorphous metal-free room-temperature phosphorescent small molecules with multicolor photoluminescence via a host–guest and dual-emission strategy. J Am Chem Soc 140(5):1916–1923.  https://doi.org/10.1021/jacs.7b12800CrossRefGoogle Scholar
  38. 38.
    Reineke S, Seidler N, Yost SR, Prins F, Tisdale WA, Baldo MA (2013) Highly efficient, dual state emission from an organic semiconductor. Appl Phys Lett 103(9):093302.  https://doi.org/10.1063/1.4819444CrossRefGoogle Scholar
  39. 39.
    Hirata S, Totani K, Zhang J, Yamashita T, Kaji H, Marder SR, Watanabe T, Adachi C (2013) Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions. Adv Funct Mater 23(27):3386–3397.  https://doi.org/10.1002/adfm.201203706CrossRefGoogle Scholar
  40. 40.
    Lehner P, Staudinger C, Borisov SM, Klimant I (2014) Ultra-sensitive optical oxygen sensors for characterisation of nearly anoxic systems. Nat Commun 5:4460.  https://doi.org/10.1038/ncomms5460CrossRefGoogle Scholar
  41. 41.
    Zhang X, Xie T, Cui M, Yang L, Sun X, Jiang J, Zhang G (2014) General design strategy for aromatic ketone-based single-component dual-emissive materials. ACS Appl Mater Interfaces 6(4):2279–2284.  https://doi.org/10.1021/am405209wCrossRefGoogle Scholar
  42. 42.
    Chen X, Xu C, Wang T, Zhou C, Du J, Wang Z, Xu H, Xie T, Bi G, Jiang J, Zhang X, Demas JN, Trindle CO, Luo Y, Zhang G (2016) Versatile room-temperature-phosphorescent materials prepared from N-substituted naphthalimides: emission enhancement and chemical conjugation. Angew Chem Int Ed 55(34):9872–9876.  https://doi.org/10.1002/anie.201601252CrossRefGoogle Scholar
  43. 43.
    Chen H, Yao X, Ma X, Tian H (2016) Amorphous, efficient, room-temperature phosphorescent metal-free polymers and their applications as encryption ink. Adv Opt Mater 4(9):1397–1401.  https://doi.org/10.1002/adom.201600427CrossRefGoogle Scholar
  44. 44.
    Ward JS, Nobuyasu RS, Batsanov AS, Data P, Monkman AP, Dias FB, Bryce MR (2016) The interplay of thermally activated delayed fluorescence (TADF) and room temperature organic phosphorescence in sterically-constrained donor-acceptor charge-transfer molecules. Chem Commun 52(12):2612–2615.  https://doi.org/10.1039/c5cc09645fCrossRefGoogle Scholar
  45. 45.
    Hirata S, Vacha M (2016) Circularly polarized persistent room-temperature phosphorescence from metal-free chiral aromatics in air. J Phys Chem Lett 7(8):1539–1545.  https://doi.org/10.1021/acs.jpclett.6b00554CrossRefGoogle Scholar
  46. 46.
    Kabe R, Notsuka N, Yoshida K, Adachi C (2016) Afterglow organic light-emitting diode. Adv Mater 28(4):655–660.  https://doi.org/10.1002/adma.201504321CrossRefGoogle Scholar
  47. 47.
    Yu Y, Kwon MS, Jung J, Zeng Y, Kim M, Chung K, Gierschner J, Youk JH, Borisov SM, Kim J (2017) Room-temperature-phosphorescence-based dissolved oxygen detection by core-shell polymer nanoparticles containing metal-free organic phosphors. Angew Chem Int Ed 56(51):16207–16211.  https://doi.org/10.1002/anie.201708606CrossRefGoogle Scholar
  48. 48.
    Zhang T, Chen H, Ma X, Tian H (2017) Amorphous 2-bromocarbazole copolymers with efficient room-temperature phosphorescent emission and applications as encryption ink. Ind Eng Chem Res 56(11):3123–3128.  https://doi.org/10.1021/acs.iecr.7b00149CrossRefGoogle Scholar
  49. 49.
    Liu T, Zhang G, Evans RE, Trindle CO, Altun Z, DeRosa CA, Wang F, Zhuang M, Fraser CL (2018) Phosphorescence tuning through heavy atom placement in unsymmetrical difluoroboron β-diketonate materials. Chem Eur J 24(8):1859–1869.  https://doi.org/10.1002/chem.201703513CrossRefGoogle Scholar
  50. 50.
    Ogoshi T, Tsuchida H, Kakuta T, Yamagishi T-A, Taema A, Ono T, Sugimoto M, Mizuno M (2018) Ultralong room-temperature phosphorescence from amorphous polymer poly(styrene sulfonic acid) in air in the dry solid state. Adv Funct Mater 28(16):1707369.  https://doi.org/10.1002/adfm.201707369 201707369CrossRefGoogle Scholar
  51. 51.
    Yuan WZ, Shen XY, Zhao H, Lam JWY, Tang L, Lu P, Wang C, Liu Y, Wang Z, Zheng Q, Sun JZ, Ma Y, Tang BZ (2010) Crystallization-induced phosphorescence of pure organic luminogens at room temperature. J Phys Chem C 114(13):6090–6099.  https://doi.org/10.1021/jp909388yCrossRefGoogle Scholar
  52. 52.
    Gong Y, Chen G, Peng Q, Yuan WZ, Xie Y, Li S, Zhang Y, Tang BZ (2015) Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens. Adv Mater 27(40):6195–6201.  https://doi.org/10.1002/adma.201502442CrossRefGoogle Scholar
  53. 53.
    Yang Z, Mao Z, Zhang X, Ou D, Mu Y, Zhang Y, Zhao C, Liu S, Chi Z, Xu J, Wu Y-C, Lu P-Y, Lien A, Bryce MR (2016) Intermolecular electronic coupling of organic units for efficient persistent room-temperature phosphorescence. Angew Chem Int Ed 55(6):2181–2185.  https://doi.org/10.1002/anie.201509224CrossRefGoogle Scholar
  54. 54.
    Fateminia SMA, Mao Z, Xu S, Yang Z, Chi Z, Liu B (2017) Organic nanocrystals with bright red persistent room-temperature phosphorescence for biological applications. Angew Chem Int Ed 56(40):12160–12164.  https://doi.org/10.1002/anie.201705945CrossRefGoogle Scholar
  55. 55.
    Fateminia SMA, Wang Z, Goh CC, Manghnani PN, Wu W, Mao D, Ng LG, Zhao Z, Tang BZ, Liu B (2017) Nanocrystallization: a unique approach to yield bright organic nanocrystals for biological applications. Adv Mater 29(1):1604100.  https://doi.org/10.1002/adma.201604100CrossRefGoogle Scholar
  56. 56.
    Zhao W, He Z, Lam Jacky WY, Peng Q, Ma H, Shuai Z, Bai G, Hao J, Tang Ben Z (2016) Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence. Chem 1(4):592–602.  https://doi.org/10.1016/j.chempr.2016.08.010CrossRefGoogle Scholar
  57. 57.
    Ceroni P (2016) Design of phosphorescent organic molecules: old concepts under a new light. Chem 1(4):524–526.  https://doi.org/10.1016/j.chempr.2016.09.011CrossRefGoogle Scholar
  58. 58.
    He Z, Zhao W, Lam JWY, Peng Q, Ma H, Liang G, Shuai Z, Tang BZ (2017) White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat Commun 8(1):416.  https://doi.org/10.1038/s41467-017-00362-5CrossRefGoogle Scholar
  59. 59.
    Shimizu M, Kimura A, Sakaguchi H (2016) Room-temperature phosphorescence of crystalline 1,4-bis(aroyl)-2,5-dibromobenzenes. Eur J Org Chem 2016(3):467–473.  https://doi.org/10.1002/ejoc.201501382CrossRefGoogle Scholar
  60. 60.
    Shimizu M, Shigitani R, Nakatani M, Kuwabara K, Miyake Y, Tajima K, Sakai H, Hasobe T (2016) Siloxy group-induced highly efficient room temperature phosphorescence with long lifetime. J Phys Chem C 120(21):11631–11639.  https://doi.org/10.1021/acs.jpcc.6b03276CrossRefGoogle Scholar
  61. 61.
    Shimizu M, Kinoshita T, Shigitani R, Miyake Y, Tajima K (2018) Use of silylmethoxy groups as inducers of efficient room temperature phosphorescence from precious-metal-free organic luminophores. Mater Chem Front 2(2):347–354.  https://doi.org/10.1039/C7QM00524ECrossRefGoogle Scholar
  62. 62.
    Xue P, Sun J, Chen P, Wang P, Yao B, Gong P, Zhang Z, Lu R (2015) Luminescence switching of a persistent room-temperature phosphorescent pure organic molecule in response to external stimuli. Chem Commun 51(52):10381–10384.  https://doi.org/10.1039/c5cc03403eCrossRefGoogle Scholar
  63. 63.
    Xue P, Wang P, Chen P, Ding J, Lu R (2016) Enhanced room-temperature phosphorescence of triphenylphosphine derivatives without metal and heavy atoms in their crystal phase. RSC Adv 6(57):51683–51686.  https://doi.org/10.1039/C6RA07477DCrossRefGoogle Scholar
  64. 64.
    Gong Y, Tan Y, Li H, Zhang Y, Yuan W, Zhang Y, Sun J, Tang BZ (2013) Crystallization-induced phosphorescence of benzils at room temperature. Sci China Chem 56(9):1183–1186.  https://doi.org/10.1007/s11426-013-4930-9CrossRefGoogle Scholar
  65. 65.
    Kajjam AB, Giri S, Sivakumar V (2017) Triphenylamine-based donor-π-acceptor organic phosphors: synthesis, characterization and theoretical study. Mater Chem Front 1(3):512–520.  https://doi.org/10.1039/C6QM00031BCrossRefGoogle Scholar
  66. 66.
    Gong Y, Zhao L, Peng Q, Fan D, Yuan WZ, Zhang Y, Tang BZ (2015) Crystallization-induced dual emission from metal- and heavy atom-free aromatic acids and esters. Chem Sci 6(8):4438–4444.  https://doi.org/10.1039/c5sc00253bCrossRefGoogle Scholar
  67. 67.
    Ma H, Shi W, Ren J, Li W, Peng Q, Shuai Z (2016) Electrostatic interaction-induced room-temperature phosphorescence in pure organic molecules from QM/MM calculations. J Phys Chem Lett 7(15):2893–2898.  https://doi.org/10.1021/acs.jpclett.6b01156CrossRefGoogle Scholar
  68. 68.
    Kuno S, Akeno H, Ohtani H, Yuasa H (2015) Visible room-temperature phosphorescence of pure organic crystals via a radical-ion-pair mechanism. Phys Chem Chem Phys 17(24):15989–15995.  https://doi.org/10.1039/c5cp01203aCrossRefGoogle Scholar
  69. 69.
    Cheng Z, Shi H, Ma H, Bian L, Wu Q, Gu L, Cai S, Wang X, Xiong W-W, An Z, Huang W (2018) Ultralong phosphorescence from organic ionic crystals under ambient conditions. Angew Chem Int Ed 57(3):678–682.  https://doi.org/10.1002/anie.201710017CrossRefGoogle Scholar
  70. 70.
    Xie Y, Ge Y, Peng Q, Li C, Li Q, Li Z (2017) How the molecular packing affects the room temperature phosphorescence in pure organic compounds: ingenious molecular design, detailed crystal analysis, and rational theoretical calculations. Adv Mater 29(17):1606829.  https://doi.org/10.1002/adma.201606829CrossRefGoogle Scholar
  71. 71.
    Cai S, Shi H, Li J, Gu L, Ni Y, Cheng Z, Wang S, Xiong W-W, Li L, An Z, Huang W (2017) Visible-light-excited ultralong organic phosphorescence by manipulating intermolecular interactions. Adv Mater 29(35):201701244.  https://doi.org/10.1002/adma.201701244CrossRefGoogle Scholar
  72. 72.
    Cai S, Shi H, Zhang Z, Wang X, Ma H, Gan N, Wu Q, Cheng Z, Ling K, Gu M, Ma C, Gu L, An Z, Huang W (2018) Hydrogen-bonded organic aromatic frameworks for ultralong phosphorescence by intralayer ππ interactions. Angew Chem Int Ed 57(15):4005–4009.  https://doi.org/10.1002/anie.201800697CrossRefGoogle Scholar
  73. 73.
    An Z, Zheng C, Tao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W (2015) Stabilizing triplet excited states for ultralong organic phosphorescence. Nat Mater 14(7):685–690.  https://doi.org/10.1038/nmat4259CrossRefGoogle Scholar
  74. 74.
    Cai S, Shi H, Tian D, Ma H, Cheng Z, Wu Q, Gu M, Huang L, An Z, Peng Q, Huang W (2018) Enhancing ultralong organic phosphorescence by effective π-type halogen bonding. Adv Funct Mater 28(9):201705045.  https://doi.org/10.1002/adfm.201705045CrossRefGoogle Scholar
  75. 75.
    Yang L, Hubbard TA, Cockroft SL (2014) Can non-polar hydrogen atoms accept hydrogen bonds? Chem Commun 50(40):5212–5214.  https://doi.org/10.1039/C3CC46048GCrossRefGoogle Scholar
  76. 76.
    Gu L, Shi H, Miao C, Wu Q, Cheng Z, Cai S, Gu M, Ma C, Yao W, Gao Y, An Z, Huang W (2018) Prolonging the lifetime of ultralong organic phosphorescence through dihydrogen bonding. J Mater Chem C 6(2):226–233.  https://doi.org/10.1039/C7TC04452FCrossRefGoogle Scholar
  77. 77.
    Lucenti E, Forni A, Botta C, Carlucci L, Giannini C, Marinotto D, Pavanello A, Previtali A, Righetto S, Cariati E (2017) Cyclic triimidazole derivatives: intriguing examples of multiple emissions and ultralong phosphorescence at room temperature. Angew Chem Int Ed 56(51):16302–16307.  https://doi.org/10.1002/anie.201710279CrossRefGoogle Scholar
  78. 78.
    Lucenti E, Forni A, Botta C, Carlucci L, Giannini C, Marinotto D, Previtali A, Righetto S, Cariati E (2017) H-Aggregates granting crystallization-induced emissive behavior and ultralong phosphorescence from a pure organic molecule. J Phys Chem Lett 8(8):1894–1898.  https://doi.org/10.1021/acs.jpclett.7b00503CrossRefGoogle Scholar
  79. 79.
    Sun X, Zhang B, Li X, Trindle CO, Zhang G (2016) External heavy-atom effect via orbital interactions revealed by single-crystal X-ray diffraction. J Phys Chem A 120(29):5791–5797.  https://doi.org/10.1021/acs.jpca.6b03867CrossRefGoogle Scholar
  80. 80.
    Yang J, Gao X, Xie Z, Gong Y, Fang M, Peng Q, Chi Z, Li Z (2017) Elucidating the excited state of mechanoluminescence in organic luminogens with room-temperature phosphorescence. Angew Chem Int Ed 56(48):15299–15303.  https://doi.org/10.1002/anie.201708119CrossRefGoogle Scholar
  81. 81.
    Jha P, Chandra BP (2014) Survey of the literature on mechanoluminescence from 1605 to 2013. Luminescence 29(8):977–993.  https://doi.org/10.1002/bio.2647CrossRefGoogle Scholar
  82. 82.
    Yamaguchi S, Wakamiya A (2006) Boron as a key component for new π-electron materials. Pure Appl Chem 78(7):1413–1424.  https://doi.org/10.1351/pac200678071413CrossRefGoogle Scholar
  83. 83.
    Jäkle F (2006) Lewis acidic organoboron polymers. Coord Chem Rev 250(9):1107–1121.  https://doi.org/10.1016/j.ccr.2006.01.007CrossRefGoogle Scholar
  84. 84.
    Tanaka K, Chujo Y (2012) Advanced luminescent materials based on organoboron polymers. Macromol Rapid Commun 33(15):1235–1255.  https://doi.org/10.1002/marc.201200239CrossRefGoogle Scholar
  85. 85.
    Mukherjee S, Thilagar P (2016) Stimuli and shape responsive ‘boron-containing’ luminescent organic materials. J Mater Chem C 4(14):2647–2662.  https://doi.org/10.1039/C5TC02406CrossRefGoogle Scholar
  86. 86.
    Ren Y, Jakle F (2016) Merging thiophene with boron: new building blocks for conjugated materials. Dalton Trans 45(36):13996–14007.  https://doi.org/10.1039/C6DT02756CCrossRefGoogle Scholar
  87. 87.
    Ji L, Griesbeck S, Marder TB (2017) Recent developments in and perspectives on three-coordinate boron materials: a bright future. Chem Sci 8(2):846–863.  https://doi.org/10.1039/C6SC04245GCrossRefGoogle Scholar
  88. 88.
    Cherumukkil S, Vedhanarayanan B, Das G, Praveen VK, Ajayaghosh A (2018) Self-assembly of bodipy-derived extended π-systems. Bull Chem Soc Jpn 91(1):100–120.  https://doi.org/10.1246/bcsj.20170334CrossRefGoogle Scholar
  89. 89.
    Kuno S, Kanamori T, Yijing Z, Ohtani H, Yuasa H (2017) Long persistent phosphorescence of crystalline phenylboronic acid derivatives: photophysics and a mechanistic study. ChemPhotoChem 1(3):102–106.  https://doi.org/10.1002/cptc.201600031CrossRefGoogle Scholar
  90. 90.
    Chai Z, Wang C, Wang J, Liu F, Xie Y, Zhang Y-Z, Li J-R, Li Q, Li Z (2017) Abnormal room temperature phosphorescence of purely organic boron-containing compounds: the relationship between the emissive behavior and the molecular packing, and the potential related applications. Chem Sci 8(12):8336–8344.  https://doi.org/10.1039/C7SC04098ACrossRefGoogle Scholar
  91. 91.
    Shoji Y, Ikabata Y, Wang Q, Nemoto D, Sakamoto A, Tanaka N, Seino J, Nakai H, Fukushima T (2017) Unveiling a new aspect of simple arylboronic esters: long-lived room-temperature phosphorescence from heavy-atom-free molecules. J Am Chem Soc 139(7):2728–2733.  https://doi.org/10.1021/jacs.6b11984CrossRefGoogle Scholar
  92. 92.
    Yang J, Ren Z, Xie Z, Liu Y, Wang C, Xie Y, Peng Q, Xu B, Tian W, Zhang F, Chi Z, Li Q, Li Z (2017) AIEgen with fluorescence–phosphorescence dual mechanoluminescence at room temperature. Angew Chem Int Ed 56(3):880–884.  https://doi.org/10.1002/anie.201610453CrossRefGoogle Scholar
  93. 93.
    Zhang G, Chen J, Payne SJ, Kooi SE, Demas JN, Fraser CL (2007) Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. J Am Chem Soc 129(29):8942–8943.  https://doi.org/10.1021/ja0720255CrossRefGoogle Scholar
  94. 94.
    Tanaka K, Chujo Y (2015) Recent progress of optical functional nanomaterials based on organoboron complexes with β-diketonate, ketoiminate and diiminate. NPG Asia Mater 7(11):e223.  https://doi.org/10.1038/am.2015.118CrossRefGoogle Scholar
  95. 95.
    Zhang G, Kooi SE, Demas JN, Fraser CL (2008) Emission color tuning with polymer molecular weight for difluoroboron dibenzoylmethane-polylactide. Adv Mater 20(11):2099–2104.  https://doi.org/10.1002/adma.200702681CrossRefGoogle Scholar
  96. 96.
    Pfister A, Zhang G, Zareno J, Horwitz AF, Fraser CL (2008) Boron polylactide nanoparticles exhibiting fluorescence and phosphorescence in aqueous medium. ACS Nano 2(6):1252–1258.  https://doi.org/10.1021/nn7003525CrossRefGoogle Scholar
  97. 97.
    Zhang G, Palmer GM, Dewhirst MW, Fraser CL (2009) A dual-emissive-materials design concept enables tumour hypoxia imaging. Nat Mater 8(9):747–751.  https://doi.org/10.1038/nmat2509CrossRefGoogle Scholar
  98. 98.
    Zhang G, Lu J, Fraser CL (2010) Mechanochromic luminescence quenching: force-enhanced singlet-to-triplet intersystem crossing for iodide-substituted difluoroboron−dibenzoylmethane−dodecane in the solid state. Inorg Chem 49(23):10747–10749.  https://doi.org/10.1021/ic902591sCrossRefGoogle Scholar
  99. 99.
    Samonina-Kosicka J, Derosa CA, Morris WA, Fan Z, Fraser CL (2014) Dual-emissive difluoroboron naphthyl-phenyl β-diketonate polylactide materials: effects of heavy atom placement and polymer molecular weight. Macromolecules 47(11):3736–3746.  https://doi.org/10.1021/ma5006606CrossRefGoogle Scholar
  100. 100.
    DeRosa CA, Kerr C, Fan Z, Kolpaczynska M, Mathew AS, Evans RE, Zhang G, Fraser CL (2015) Tailoring oxygen sensitivity with halide substitution in difluoroboron dibenzoylmethane polylactide materials. ACS Appl Mater Interfaces 7(42):23633–23643.  https://doi.org/10.1021/acsami.5b07126CrossRefGoogle Scholar
  101. 101.
    DeRosa CA, Samonina-Kosicka J, Fan Z, Hendargo HC, Weitzel DH, Palmer GM, Fraser CL (2015) Oxygen sensing difluoroboron dinaphthoylmethane polylactide. Macromolecules 48(9):2967–2977.  https://doi.org/10.1021/acs.macromol.5b00394CrossRefGoogle Scholar
  102. 102.
    Butler T, Morris WA, Samonina-Kosicka J, Fraser CL (2016) Mechanochromic luminescence and aggregation induced emission of dinaphthoylmethane β-diketones and their boronated counterparts. ACS Appl Mater Interfaces 8(2):1242–1251.  https://doi.org/10.1021/acsami.5b09688CrossRefGoogle Scholar
  103. 103.
    DeRosa CA, Seaman SA, Mathew AS, Gorick CM, Fan Z, Demas JN, Peirce SM, Fraser CL (2016) Oxygen sensing difluoroboron β-diketonate polylactide materials with tunable dynamic ranges for wound imaging. ACS Sens 1(11):1366–1373.  https://doi.org/10.1021/acssensors.6b00533CrossRefGoogle Scholar
  104. 104.
    Mathew AS, DeRosa CA, Demas JN, Fraser CL (2016) Difluoroboron β-diketonate materials with long-lived phosphorescence enable lifetime based oxygen imaging with a portable cost effective camera. Anal Methods 8(15):3109–3114.  https://doi.org/10.1039/C5AY02959GCrossRefGoogle Scholar
  105. 105.
    Daly ML, Kerr C, DeRosa CA, Fraser CL (2017) Meta-alkoxy-substituted difluoroboron dibenzoylmethane complexes as environment-sensitive materials. ACS Appl Mater Interfaces 9(37):32008–32017.  https://doi.org/10.1021/acsami.7b06910CrossRefGoogle Scholar
  106. 106.
    Sakai A, Ohta E, Matsui Y, Tsuzuki S, Ikeda H (2016) Room-temperature phosphorescence of crystalline metal-free organoboron complex. ChemPhysChem 17(24):4033–4036.  https://doi.org/10.1002/cphc.201600779CrossRefGoogle Scholar
  107. 107.
    Bergamini G, Fermi A, Botta C, Giovanella U, Di Motta S, Negri F, Peresutti R, Gingras M, Ceroni P (2013) A persulfurated benzene molecule exhibits outstanding phosphorescence in rigid environments: from computational study to organic nanocrystals and OLED applications. J Mater Chem C 1(15):2717–2724.  https://doi.org/10.1039/c3tc00878aCrossRefGoogle Scholar
  108. 108.
    Fermi A, Bergamini G, Roy M, Gingras M, Ceroni P (2014) Turn-on phosphorescence by metal coordination to a multivalent terpyridine ligand: a new paradigm for luminescent sensors. J Am Chem Soc 136(17):6395–6400.  https://doi.org/10.1021/ja501458sCrossRefGoogle Scholar
  109. 109.
    Wu H, Hang C, Li X, Yin L, Zhu M, Zhang J, Zhou Y, Agren H, Zhang Q, Zhu L (2017) Molecular stacking dependent phosphorescence-fluorescence dual emission in a single luminophore for self-recoverable mechanoconversion of multicolor luminescence. Chem Commun 53(18):2661–2664.  https://doi.org/10.1039/C6CC04901JCrossRefGoogle Scholar
  110. 110.
    Wu H, Hang C, Li X, Yin L, Zhu M, Zhang J, Zhou Y, Agren H, Zhang Q, Zhu L (2016) Correction: molecular stacking dependent phosphorescence-fluorescence dual emission in a single luminophore for self-recoverable mechanoconversion of multicolor luminescence. Chem Commun 52(100):14500–14501.  https://doi.org/10.1039/C6CC90540DCrossRefGoogle Scholar
  111. 111.
    Riebe S, Vallet C, van der Vight F, Gonzalez-Abradelo D, Wölper C, Strassert CA, Jansen G, Knauer S, Voskuhl J (2017) Aromatic thioethers as novel luminophores with aggregation-induced fluorescence and phosphorescence. Chem Eur J 23(55):13660–13668.  https://doi.org/10.1002/chem.201701867CrossRefGoogle Scholar
  112. 112.
    Wu H, Zhao P, Li X, Chen W, Ågren H, Zhang Q, Zhu L (2017) Tuning for visible fluorescence and near-infrared phosphorescence on a unimolecular mechanically sensitive platform via adjustable CH–π interaction. ACS Appl Mater Interfaces 9(4):3865–3872.  https://doi.org/10.1021/acsami.6b15939CrossRefGoogle Scholar
  113. 113.
    Fang X, Yan D (2018) White-light emission and tunable room temperature phosphorescence of dibenzothiophene. Sci China Chem 61(4):397–401.  https://doi.org/10.1007/s11426-017-9183-9CrossRefGoogle Scholar
  114. 114.
    Mao ZD, Yang ZD, Mu Y, Zhang Y, Wang YFD, Chi Z, Lo CCD, Liu SP, Lien AD, Xu J (2015) Linearly tunable emission colors obtained from a fluorescent-phosphorescent dual-emission compound by mechanical stimuli. Angew Chem Int Ed 54(21):6270–6273.  https://doi.org/10.1002/anie.201500426CrossRefGoogle Scholar
  115. 115.
    Xu B, Wu H, Chen J, Yang Z, Yang Z, Wu Y-C, Zhang Y, Jin C, Lu P-Y, Chi Z, Liu S, Xu J, Aldred M (2017) White-light emission from a single heavy atom-free molecule with room temperature phosphorescence, mechanochromism and thermochromism. Chem Sci 8(3):1909–1914.  https://doi.org/10.1039/C6SC03038FCrossRefGoogle Scholar
  116. 116.
    Yang J, Zhen X, Wang B, Gao X, Ren Z, Wang J, Xie Y, Li J, Peng Q, Pu K, Li Z (2018) The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat Commun 9(1):840.  https://doi.org/10.1038/s41467-018-03236-6CrossRefGoogle Scholar
  117. 117.
    He G, Delgado WT, Schatz DJ, Merten C, Mohammadpour A, Mayr L, Ferguson MJ, McDonald R, Brown A, Shankar K, Rivard E (2014) Coaxing solid-state phosphorescence from tellurophenes. Angew Chem Int Ed 53(18):4587–4591.  https://doi.org/10.1002/anie.201307373CrossRefGoogle Scholar
  118. 118.
    He G, Wiltshire BD, Choi P, Savin A, Sun S, Mohammadpour A, Ferguson MJ, McDonald R, Farsinezhad S, Brown A, Shankar K, Rivard E (2015) Phosphorescence within benzotellurophenes and color tunable tellurophenes under ambient conditions. Chem Commun 51(25):5444–5447.  https://doi.org/10.1039/C4CC06529HCrossRefGoogle Scholar
  119. 119.
    Torres Delgado W, Braun CA, Boone MP, Shynkaruk O, Qi Y, McDonald R, Ferguson MJ, Data P, Almeida SKC, Aguiar ID, de Souza GLC, Brown A, He G, Rivard E (2018) Moving beyond boron-based substituents to achieve phosphorescence in tellurophenes. ACS Appl Mater Interfaces 10(15):12124–12134.  https://doi.org/10.1021/acsami.7b11628CrossRefGoogle Scholar
  120. 120.
    Bolton O, Lee K, Kim HJ, Lin KY, Kim J (2011) Activating efficient phosphorescence from purely organic materials by crystal design. Nat Chem 3(3):205–210.  https://doi.org/10.1038/nchem.984CrossRefGoogle Scholar
  121. 121.
    Bolton O, Lee D, Jung J, Kim J (2014) Tuning the photophysical properties of metal-free room temperature organic phosphors via compositional variations in bromobenzaldehyde/dibromobenzene mixed crystals. Chem Mater 26(22):6644–6649.  https://doi.org/10.1021/cm503678rCrossRefGoogle Scholar
  122. 122.
    Lee D, Jung J, Bilby D, Kwon MS, Yun J, Kim J (2015) A novel optical ozone sensor based on purely organic phosphor. ACS Appl Mater Interfaces 7(5):2993–2997.  https://doi.org/10.1021/am5087165CrossRefGoogle Scholar
  123. 123.
    Wei J, Liang B, Duan R, Cheng Z, Li C, Zhou T, Yi Y, Wang Y (2016) Induction of strong long-lived room-temperature phosphorescence of N-phenyl-2-naphthylamine molecules by confinement in a crystalline dibromobiphenyl matrix. Angew Chem Int Ed 55(50):15589–15593.  https://doi.org/10.1002/anie.201607653CrossRefGoogle Scholar
  124. 124.
    Xiao L, Wu Y, Chen J, Yu Z, Liu Y, Yao J, Fu H (2017) Highly efficient room-temperature phosphorescence from halogen-bonding-assisted doped organic crystals. J Phys Chem A 121(45):8652–8658.  https://doi.org/10.1021/acs.jpca.7b10160CrossRefGoogle Scholar
  125. 125.
    Xiao L, Wu Y, Yu Z, Xu Z, Li J, Liu Y, Yao J, Fu H (2018) Room-temperature phosphorescence in pure organic materials: halogen bonding switching effects. Chem Eur J 24(8):1801–1805.  https://doi.org/10.1002/chem.201705391CrossRefGoogle Scholar
  126. 126.
    Wang H, Hu RX, Pang X, Gao HY, Jin WJ (2014) The phosphorescent co-crystals of 1,4-diiodotetrafluorobenzene and bent 3-ring-N-heterocyclic hydrocarbons by C–I⋯N and C–I⋯π halogen bonds. CrystEngComm 16(34):7942–7948.  https://doi.org/10.1039/C4CE00813HCrossRefGoogle Scholar
  127. 127.
    Gao HY, Zhao XR, Wang H, Pang X, Jin WJ (2012) Phosphorescent cocrystals assembled by 1,4-diiodotetrafluorobenzene and fluorene and its heterocyclic analogues based on C–I⋯π halogen bonding. Cryst Growth Des 12(9):4377–4387.  https://doi.org/10.1021/cg300515aCrossRefGoogle Scholar
  128. 128.
    Pang X, Wang H, Zhao XR, Jin WJ (2013) Co-crystallization turned on the phosphorescence of phenanthrene by C–Br⋯π halogen bonding, π-hole⋯π bonding and other assisting interactions. CrystEngComm 15(14):2722–2730.  https://doi.org/10.1039/c3ce26661cCrossRefGoogle Scholar
  129. 129.
    Ventura B, Bertocco A, Braga D, Catalano L, D’Agostino S, Grepioni F, Taddei P (2014) Luminescence properties of 1,8-naphthalimide derivatives in solution, in their crystals, and in co-crystals: toward room-temperature phosphorescence from organic materials. J Phys Chem C 118(32):18646–18658.  https://doi.org/10.1021/jp5049309CrossRefGoogle Scholar
  130. 130.
    d’Agostino S, Grepioni F, Braga D, Ventura B (2015) Tipping the balance with the aid of stoichiometry: room temperature phosphorescence versus fluorescence in organic cocrystals. Cryst Growth Des 15(4):2039–2045.  https://doi.org/10.1021/acs.cgd.5b00226CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Molecular Chemistry and EngineeringKyoto Institute of TechnologyKyotoJapan

Personalised recommendations