Advertisement

Aggregation-Induced Emission (AIE): A Versatile Tool for Chemo/Biosensing

  • Ruchi Tejpal
  • Vandana Bhalla
  • Manoj Kumar
Chapter

Abstract

AIE as a photo-physical phenomenon is growing at an exponential rate which provides unique opportunities in different scientific domains. Inspired from fascinating properties of AIE-based conventional frameworks like tetraphenylethylene (TPE), hexaphenylsilole (HPS), new motifs, and their aggregation properties have been rationalized rapidly. In this chapter, the current aspects of AIE-based self-assembled probes using novel frameworks like hexaphenylbenzene (HPB), hexaarylbenzene (HAB), pentacenequinone, pyrazine, and terphenyl are documented. Further, the applications of these probes in chemo/biosensing are presented with emphasis on our current reports.

Keywords

Aggregation AIE AEE Biosensors Chemosensors Nitroaromatics 

References

  1. 1.
    Epple R, Forster TZ (1954). Electrochem Angew Phys Chem 58:783–787Google Scholar
  2. 2.
    Birks JB (1970) Photophysics of aromatic molecules. Wiley-Interscience, LondonGoogle Scholar
  3. 3.
    Luo J, Xie Z, Lam JW, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001). Chem Commun (Camb) 0:1740–1741Google Scholar
  4. 4.
    An BK, Kwon SK, Jung SD, Park SY (2002). J Am Chem Soc 124(48):14410–14415CrossRefGoogle Scholar
  5. 5.
    de Silva AP, Gunaratne HQ, Gunnlaugsson T, Huxley AJ, McCoy CP, Rademacher JT, Rice TE (1997). Chem Rev 97:1515–1566CrossRefGoogle Scholar
  6. 6.
    Callan JF, de Silva AP, Magri DC (2005). Tetrahedron 61(36):8551–8588CrossRefGoogle Scholar
  7. 7.
    Xu ZC, Yoon J, Spring DR (2010). Chem Soc Rev 39:1996CrossRefGoogle Scholar
  8. 8.
    Zhao Q, Li F, Huang C (2010). Chem Soc Rev 39:3007–3030CrossRefGoogle Scholar
  9. 9.
    Rettig W, Lapouyade R (1994) Topics in fluorescence spectroscopy. In: Lakowicz JR (ed) Probe design and chemical sensing, vol 4. Plenum Press, New York, p 109Google Scholar
  10. 10.
    Sapsford KE, Berti L, Medintz IL (2006). Angew Chem Int Ed Engl 45(28):4562–4589CrossRefGoogle Scholar
  11. 11.
    Lodeiro C, Pina F (2009). Coord Chem Rev 253:1353–1383CrossRefGoogle Scholar
  12. 12.
    Bolton O, Lee K, Kim HJ, Lin KY, Kim J (2011). Nat Chem 3(5):205–210CrossRefGoogle Scholar
  13. 13.
    Qian Y, Li S, Zhang G, Wang Q, Wang S, Xu H, Li C, Li Y, Yang G (2007). J Phys Chem B 111:5861–5868CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Wang JH, Zheng WJ, Chen TF, Tong QX, Li D (2014). J Mater Chem B 2:4159–4166CrossRefGoogle Scholar
  15. 15.
    Chen J, Law CCW, Lam JWY, Dong Y, Lo SMF, Williams ID, Zhu D, Tang BZ (2003). Chem Mater 15(7):1535–1546CrossRefGoogle Scholar
  16. 16.
    Hong Y, Lama JWY, Tang BZ (2009). Chem Commun 0:4332–4353Google Scholar
  17. 17.
    Hong Y, Lam JWY, Tang BZ (2011). Chem Soc Rev 40:5361–5388CrossRefGoogle Scholar
  18. 18.
    Kwok RTK, Leung CWT, Lam JWY, Tang BZ (2015). Chem Soc Rev 44:4228–4238CrossRefGoogle Scholar
  19. 19.
    Mei J, NLC L, RTK K, JWY L, Tang BZ (2015). Chem Rev 115:11718–11940CrossRefGoogle Scholar
  20. 20.
    Naddo T, Che Y, Zhang W, Balakrishnan K, Yang X, Yen M, Zhao J, Moore JS, Zhang L (2007). J Am Chem Soc 129:6978–6979CrossRefGoogle Scholar
  21. 21.
    Zang L, Che Y, Moore JS (2008). Acc Chem Res 41:1596–1608CrossRefGoogle Scholar
  22. 22.
    Zyryanov GV, Palacios MA, Anzenbacher P (2008). Org Lett 10:3681–3684CrossRefGoogle Scholar
  23. 23.
    Whitney EN, Rolfes SR (2015) Understanding nutrition14th edn. Wadsworth, Cengage Learning, BelmontGoogle Scholar
  24. 24.
    Griffiths AJF, Gelbart WM, Miller JH, Lewontin RC (1999) Modern genetic analysis. W. H. Freeman, New York.Google Scholar
  25. 25.
    Yao J, Yang M, Duan Y (2014). Chem Rev 114:6130–6178CrossRefGoogle Scholar
  26. 26.
    Demchenko AP (2009) Introduction to fluorescence sensing. Springer, New YorkCrossRefGoogle Scholar
  27. 27.
    Tu D, Liu L, Ju Q, Liu Y, Zhu H, Li R, Chen X (2011). Angew Chem Int Ed 50(28):6306–6310CrossRefGoogle Scholar
  28. 28.
    Wu J, Liu W, Ge J, Zhang H, Wang P (2011). Chem Soc Rev 40:3483–3495CrossRefGoogle Scholar
  29. 29.
    Jung JH, Cheon DS, Liu F, Lee KB, Seo TS (2010). Angew Chem Int Ed 49:5708–5711CrossRefGoogle Scholar
  30. 30.
    Huang J, Wu Y, Chen Y, Zhu Z, Yang X, Yang CJ, Wang K, Tan W (2011). Angew Chem Int Ed 50:401–404CrossRefGoogle Scholar
  31. 31.
    Domaille DW, Que EL, Chang CJ (2008). Nat Chem Biol 4:168–175CrossRefGoogle Scholar
  32. 32.
    Lim MH, Lippard SJ (2007). Acc Chem Res 40:41–51CrossRefGoogle Scholar
  33. 33.
    Jares-Erijman EA, Jovin TM (2003). Nat Biotechnol 21:1387–1395CrossRefGoogle Scholar
  34. 34.
    Hang Y, Yang L, Qu Y, Hua J (2014). Tetrahedron Lett 55(51):6998–7001CrossRefGoogle Scholar
  35. 35.
    Li W, Chen D, Wang H, Luo S, Dong L, Zhang Y, Shi J, Tong B, Dong Y (2015). ACS Appl Mater Interfaces 7:26094–26100CrossRefGoogle Scholar
  36. 36.
    Sun J, Lu Y, Wang L, Cheng D, Sun Y, Zeng X (2013). Polym Chem 4:4045–4051CrossRefGoogle Scholar
  37. 37.
    Chang Y, Jin L, Duan J, Zhang Q, Wang J, Lu Y (2015). RSC Adv 5:103358–103364CrossRefGoogle Scholar
  38. 38.
    Zhu Z, Xu L, Li H, Zhou X, Qin J, Yang C (2014). Chem Commun 50:7060–7062CrossRefGoogle Scholar
  39. 39.
    Samanta S, Goswami S, Hoque MN, Ramesh A, Das G (2014). Chem Commun 50:11833–11836CrossRefGoogle Scholar
  40. 40.
    Mei J, Wang Y, Tong J, Wang J, Qin A, Sun JZ, Tang BZ (2013). Chem A Eur J 19:613CrossRefGoogle Scholar
  41. 41.
    Nakamura M, Sanji T, Tanaka M (2011). Chem A Eur J 17:5344–5349CrossRefGoogle Scholar
  42. 42.
    Chopra S, Singh A, Venugopalan P, Singh N, Kaur N (2017). ACS Sustain Chem Eng 5:1287–1296CrossRefGoogle Scholar
  43. 43.
    Huang YJ, Ouyang W-J, Wu X, Li Z, Fossey JS, James TD, Jiang Y-B (2013). J Am Chem Soc 135:1700–1703CrossRefGoogle Scholar
  44. 44.
    Wang X, Huang Y, Lv W, Li C, Zeng W, Zhang Y, Feng X (2017). Anal Methods 9:1872–1875CrossRefGoogle Scholar
  45. 45.
    Kwok RTK, Geng J, Lam JWY, Zhao E, Wang G, Zhan R, Liu B, Tang BZ (2014). J Mater Chem B 2:4134–4141CrossRefGoogle Scholar
  46. 46.
    Gu X, Zhang G, Zhang D (2012). Analyst 137:365–369CrossRefGoogle Scholar
  47. 47.
    Tong H, Hong Y, Dong Y, Haeussler M, Li Z, Lam JWY, Dong Y, Sung HHY, Williams ID, Tang BZ (2007). J Phys Chem B 111:11817–11823CrossRefGoogle Scholar
  48. 48.
    Bhalla V, Vij V, Dhir A, Kumar M (2012). Chem A Eur J 18:3765–3772CrossRefGoogle Scholar
  49. 49.
    Davis JJ, Morgan DA, Wrathmell CL, Axford DN, Zhao J, Wang N (2005). J Mater Chem 15:2160–2174CrossRefGoogle Scholar
  50. 50.
    Stegink LD (1987). Am J Clin Nutr 46:204–215CrossRefGoogle Scholar
  51. 51.
    Leuchtenberger W, Huthmacher K, Drauz K (2005). Appl Microbiol Biotechnol 69(1):1–8CrossRefGoogle Scholar
  52. 52.
    Peng H, Chen W, Cheng Y, Hakuna L, Strongin R, Wang B (2012). Sensors 12(11):15907–15946CrossRefGoogle Scholar
  53. 53.
    Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Priyadarsinic IK, Aggarwal BB (2011). Nat Prod Rep 28:1937–1955CrossRefGoogle Scholar
  54. 54.
    Nigam V, Acharya A, Paarekh PM, Garg G (2012). Int J Pharmacol Ther 2:2249Google Scholar
  55. 55.
    Lee A, Patterson V (1993). Acta Neurol Scand 88(5):334–338CrossRefGoogle Scholar
  56. 56.
    Kaur S, Bhalla V, Kumar M (2014). Chem Commun 50:9725–9728CrossRefGoogle Scholar
  57. 57.
    Cohen SS (1998) A guide to polyamines. Oxford University Press, OxfordGoogle Scholar
  58. 58.
    Tabor CW, Tabor H (1984). Annu Rev Biochem 53:749–790CrossRefGoogle Scholar
  59. 59.
    Cipolla BG, Ziade J, Bansard JY, Moulinoux JP, Staerman F, Quemener V, Lobel B, Guille F (1996). Cancer 78:1055–1065CrossRefGoogle Scholar
  60. 60.
    Tejpal R, Kumar M, Bhalla V (2018). Sens Actuators B 258:841–849CrossRefGoogle Scholar
  61. 61.
    Lawrence SA (2004) Amines: synthesis, properties and applications. Cambridge University Press, CambridgeGoogle Scholar
  62. 62.
    Vineis P, Pirastu R (1997) Cancer Causes Control 8:346–355Google Scholar
  63. 63.
    Gao M, Li S, Lin Y, Geng Y, Ling X, Wang L, Qin A, Tang BZ (2016) ACS Sens 1(2):179–184Google Scholar
  64. 64.
    Pramanik S, Deol H, Bhalla V, Kumar M (2018). ACS Appl Mater Interfaces 10(15):12112–12123CrossRefGoogle Scholar
  65. 65.
    Baskar R, Bian J (2011). Eur J Pharmacol 656:5–9CrossRefGoogle Scholar
  66. 66.
    Yang C, Yang Z, Zhang M, Dong Q, Wang X, Lan A, Zeng F, Chen P, Wang C (2011). PLoS One 6:21971CrossRefGoogle Scholar
  67. 67.
    Pramanik S, Bhalla V, Kim HM, Singh H, Leeb HW, Kumar M (2015). Chem Commun 51:15570–15573CrossRefGoogle Scholar
  68. 68.
    Thomas SW, Joly GD, Swager TM (2007). Chem Rev 107:1339–1386CrossRefGoogle Scholar
  69. 69.
    Yang J-S, Swager TM (1998). J Am Chem Soc 120:11864–11873CrossRefGoogle Scholar
  70. 70.
    Engel Y, Elnathan R, Pevzner A, Davidi G, Flaxer E, Patolsky F (2010). Angew Chem Int Ed 49:6830–6835CrossRefGoogle Scholar
  71. 71.
    Germain ME, Knapp MJ (2009). Chem Soc Rev 38:2543–2555CrossRefGoogle Scholar
  72. 72.
    Spain JC, Hughes JB, Knackmuss HJ (2000) Biodegradation of nitroaromatic compounds and explosives. CRS press, Boca RatonGoogle Scholar
  73. 73.
    Fainberg A (1992). Science 255:1531–1537CrossRefGoogle Scholar
  74. 74.
    Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR (2000). Chem Rev 100:2595–2626CrossRefGoogle Scholar
  75. 75.
    Kim TH, Lee BY, Jaworski J, Yokoyama K, Chung W-J, Wang E, Hong S, Majumdar A, Lee S-W (2011). ACS Nano 5:2824–2830CrossRefGoogle Scholar
  76. 76.
    Holdsworth G, Johnson MS (2005) USACHPPM, 37-EJ1138-01J: 1–14Google Scholar
  77. 77.
    Woodfin RL (2007) Trace chemical sensing of explosives. Wiley, ChichesterGoogle Scholar
  78. 78.
    Narayanan A, Varnavski OP, Swager TM, Goodson T (2008). J Phys Chem C 112(4):881–884CrossRefGoogle Scholar
  79. 79.
    Kartha KK, Babu SS, Srinivasan S, Ajayaghosh A (2012). J Am Chem Soc 134(10):4834–4841CrossRefGoogle Scholar
  80. 80.
    Ding D, Li K, Liu B, Tang BZ (2013). Acc Chem Res 46(11):2441–2453CrossRefGoogle Scholar
  81. 81.
    Toal SJ, Magde D, Trogler WC (2005). Chem Commun 0:5465–5467Google Scholar
  82. 82.
    Bhalla V, Gupta A, Kumar M (2012). Org Lett 14:3112–3115CrossRefGoogle Scholar
  83. 83.
    Kumar M, Vij V, Bhalla V (2012). Langmuir 28:12417–12421CrossRefGoogle Scholar
  84. 84.
    Xu Y, Li B, Li W, Zhao J, Sun S, Pang Y (2013). Chem Commun 49:4764–4766CrossRefGoogle Scholar
  85. 85.
    Sanchez JC, Trogler WC (2008). J Mater Chem 18:3143CrossRefGoogle Scholar
  86. 86.
    Kaur S, Bhalla V, Vij V, Kumar M (2014). J Mater Chem C 2:3936–3941CrossRefGoogle Scholar
  87. 87.
    Wu J, Baumgarten M, Debije MG, Warman JM, Mullen K (2004). Angew Chem Int Ed 43:5331–5335CrossRefGoogle Scholar
  88. 88.
    Zhi L, Mullen K (2008). J Mater Chem 18:1472–1484CrossRefGoogle Scholar
  89. 89.
    Feng X, Pisula W, Takase M, Dou X, Enkelmann V, Wagner M, Ding N, Mullen K (2008). Chem Mater 20:2872–2874CrossRefGoogle Scholar
  90. 90.
    Vij V, Bhalla V, Kumar M (2013). ACS Appl Mater Interfaces 5:5373–5380CrossRefGoogle Scholar
  91. 91.
    Bhalla V, Arora H, Singh H, Kumar M (2013). Dalton Trans 42:969–974CrossRefGoogle Scholar
  92. 92.
    Bhalla V, Singh H, Kumar M, Prasad SK (2011). Langmuir 27:15275–15281CrossRefGoogle Scholar
  93. 93.
    Germain ME, Knapp MJ (2008). J Am Chem Soc 130(16):5422–5423CrossRefGoogle Scholar
  94. 94.
    Germain ME, Khalifah PG, Vargo TR, Knapp MJ (2007). Inorg Chem 46(11):4422–4429CrossRefGoogle Scholar
  95. 95.
    Bhalla V, Kaur S, Vij V, Kumar M (2013). Inorg Chem 52:4860–4865CrossRefGoogle Scholar
  96. 96.
    Philip AG (2010). Chem Soc Rev 39:3746–3771CrossRefGoogle Scholar
  97. 97.
    Gale PA (2001). Coord Chem Rev 213:79CrossRefGoogle Scholar
  98. 98.
    Anseeuw K, Delvau N, Burillo-Putze G, De Iaco F, Geldner G, Holmström P, Lambert Y, Sabbe M (2013). Eur J Emerg Med 20(1):2–9CrossRefGoogle Scholar
  99. 99.
    (1996) Guidelines for drinking-water quality. World Health Organization, GenevaGoogle Scholar
  100. 100.
    Bhalla V, Pramanik S, Kumar M (2013). Chem Commun 49:895–888CrossRefGoogle Scholar
  101. 101.
    Pramanik S, Bhalla V, Kumar M (2014). ACS Appl Mater Interfaces 6:5930–5939CrossRefGoogle Scholar
  102. 102.
    Terkeltaub RA (2001). Am J Physiol Cell Physiol 281:1–11CrossRefGoogle Scholar
  103. 103.
    Kim IB, Han MH, Phillips RL, Samanta B, Rotello VM, Zhang J, Bunz UHF (2009). Chem A Eur J 15:449–456CrossRefGoogle Scholar
  104. 104.
    Park C, Hong JI (2010). Tetrahedron Lett 51:1960–1962CrossRefGoogle Scholar
  105. 105.
    Pramanik S, Bhalla V, Kumar M (2017). New J Chem 41:4806–4813CrossRefGoogle Scholar
  106. 106.
    Fawell J (2016) Fluoride in drinking-water. World Health Organisation, GenevaGoogle Scholar
  107. 107.
    Aoba T, Fejerskov O (2002). Crit Rev Oral Biol Med 13(2):155–170CrossRefGoogle Scholar
  108. 108.
    Everett ET (2011). J Dent Res 90:552–560CrossRefGoogle Scholar
  109. 109.
    Horowitz HS (2003). J Public Health Dent 63:3–8CrossRefGoogle Scholar
  110. 110.
    Xu Z, Kim SK, Yoon J (2010). Chem Soc Rev 39:1457CrossRefGoogle Scholar
  111. 111.
    Li AF, Wang JH, Wang F, Jiang YB (2010). Chem Soc Rev 39:3729CrossRefGoogle Scholar
  112. 112.
    Duke RM, Veale EB, Pfeffer FM, Krugerc PE, Gunnlaugsson T (2010). Chem Soc Rev 39:3936CrossRefGoogle Scholar
  113. 113.
    Skotheim TA, Elsenbaumer RL, Reynolds J (eds) (1997) Handbook of conducting polymers2nd edn. Marcel Dekker, New YorkGoogle Scholar
  114. 114.
    McQuade DT, Pullen AE, Swager TM (2000). Chem Rev 100:2537CrossRefGoogle Scholar
  115. 115.
    Deol H, Bhalla V, Kumar M (2018). Sens Actuators B 258:682–693CrossRefGoogle Scholar
  116. 116.
    Kaim W, Schwederski B (1991) Bioinorganic chemistry: inorganic elements in chemistry of life, an introduction and guide. Wiley Interscience, New YorkGoogle Scholar
  117. 117.
    Barcelo J, Poschenrieder C (2002). Environ Exp Bot 48:75–92CrossRefGoogle Scholar
  118. 118.
    Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V (2007). J Toxicol Environ Health B 10:1–269CrossRefGoogle Scholar
  119. 119.
    Gupta N, Kaur N, Bhalla V, Parihar RD, Ohri P, Kaur G, Kumar M (2017). Chem Commun 53:12646–12649CrossRefGoogle Scholar
  120. 120.
    Steinwall O, Olsson Y (1969). Acta Neurol Scand 45:351–361CrossRefGoogle Scholar
  121. 121.
    Nolan EM, Lippard SJ (2003). J Am Chem Soc 125:14270–14271CrossRefGoogle Scholar
  122. 122.
    Kumar M, Dhir A, Bhalla V, Sharma R, Puri RK, Mahajan RK (2010). Analyst 135:1600–1605CrossRefGoogle Scholar
  123. 123.
    Bhalla V, Tejpal R, Kumar M (2010). Sens Actuators B 151:180–185CrossRefGoogle Scholar
  124. 124.
    Bhalla V, Vij V, Tejpal R, Singh G, Kumar M (2013). Dalton Trans 42:4456–4463CrossRefGoogle Scholar
  125. 125.
    Singh G, Reja SI, Bhalla V, Kaur D, Kaur P, Arora S, Kumar M (2017). Sens Actuators B 249:311–320CrossRefGoogle Scholar
  126. 126.
    Kaur S, Kumar M, Bhalla V (2015). Chem Commun 51:4085–4088CrossRefGoogle Scholar
  127. 127.
    Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H (2009). Toxicol Lett 190(2):156–162CrossRefGoogle Scholar
  128. 128.
    Lin L, Cui H, Zeng G, Chen M, Zhang H, Xu M, Shen X, Bortolini C, Dong MJ (2013). Mater Chem B 1:2719–2723CrossRefGoogle Scholar
  129. 129.
    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000). J Biomed Mater Res 52:662–668CrossRefGoogle Scholar
  130. 130.
    Pramanik S, Bhalla V, Kumar M (2015). ACS Appl Mater Interfaces 7(41):22786–22795CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ruchi Tejpal
    • 1
  • Vandana Bhalla
    • 1
  • Manoj Kumar
    • 1
  1. 1.Department of ChemistryUGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev UniversityAmritsarIndia

Personalised recommendations