Advertisement

Aggregation-Induced Emission: New Emerging Fluorophores for Environmental Sensing

  • Nicola Guidugli
  • Riccardo Mori
  • Fabio Bellina
  • Ben Zhong Tang
  • Andrea Pucci
Chapter

Abstract

PMMA films containing tetraphenylethylene (TPE) derivatives as red-emissive AIE fluorophores (AIEgen) were demonstrated to be sensitive to both volatile organic compounds (VOCs) and thermal stress. Notably, a novel AIE fluorophore (TPE_RED) was synthesized and used as the initiator to prepare red-emitting poly(methyl methacrylate) polymers (PMMA_TPE_RED1.5) via atom transfer radical polymerization (ATRP). The sensing performances of the spin-coated films (thickness of 2 μm) demonstrated significant vapochromism when exposed to VOCs characterized by high vapour pressure and favourable interaction with the polymer matrix. It was worth noting that PMMA_TPE_RED1.5 displayed substantial vapochromism already at concentration of CHCl3 vapours of 40 ppm, which is about four times smaller than those ever registered in our laboratory with the same apparatus. This threshold was even more decreased in the case of PMMA films containing the TPE_RED physically mixed or another TPE-based derivative already tested in literature, i.e., the barbituric acid-functionalized tetraphenylethene derivative (TPE-HPh-Bar). PMMA films containing TPE_RED AIEgen resulted also sensitive to temperature variations showing an evident thermochromic response close to the glass transition temperature of the polymer matrix.

Keywords

AIE fluorophores Atom transfer radical polymerization Poly(methyl methacrylate) Polymer films Vapochromic Thermochromism 

References

  1. 1.
    Seeboth A, Loetzsch D, Ruhmann R, Muehling O (2014). Chem Rev 114:3037–3068CrossRefGoogle Scholar
  2. 2.
    Prampolini G, Bellina F, Biczysko M, Cappelli C, Carta L, Lessi M, Pucci A, Ruggeri G, Barone V (2013). Chemistry 19:1996–2004CrossRefGoogle Scholar
  3. 3.
    Ciardelli F, Ruggeri G, Pucci A (2013). Chem Soc Rev 42:857–870CrossRefGoogle Scholar
  4. 4.
    Achelle S, Bodiou L, Charrier J, Guen FR-I (2016). C R Chim 19:279–285CrossRefGoogle Scholar
  5. 5.
    Korostynska O, Arshak K, Gill E, Arshak A (2007). Sensors 7:3027–3042CrossRefGoogle Scholar
  6. 6.
    McQuade DT, Pullen AE, Swager TM (2000). Chem Rev 100:2537–2574CrossRefGoogle Scholar
  7. 7.
    Adhikari B, Majumdar S (2004). Prog Polym Sci 29:699–766CrossRefGoogle Scholar
  8. 8.
    Pucci A, Biver T, Ruggeri G, Itzel Meza L, Pang Y (2005). Polymer 46:11198–11205CrossRefGoogle Scholar
  9. 9.
    Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ (2015). Chem Rev 115:11718–11940CrossRefGoogle Scholar
  10. 10.
    Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014). Adv Mater 26:5429–5479CrossRefGoogle Scholar
  11. 11.
    Hu R, Leung NLC, Tang BZ (2014). Chem Soc Rev 43:4494–4562CrossRefGoogle Scholar
  12. 12.
    Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001). Chem Commun: 1740–1741Google Scholar
  13. 13.
    Kwok RTK, Leung CWT, Lam JWY, Tang BZ (2015). Chem Soc Rev 44:4228–4238CrossRefGoogle Scholar
  14. 14.
    Chen S, Wang H, Hong Y, Tang BZ (2016). Mater Horiz 3:283–293CrossRefGoogle Scholar
  15. 15.
    Lim S, Tang BZ, Hong Y (2016). ACS Symp Ser 1227:199–216CrossRefGoogle Scholar
  16. 16.
    Nie H, Huang J, Zhao Z, Tang BZ (2016). ACS Symp Ser 1227:173–198CrossRefGoogle Scholar
  17. 17.
    Liang G, Ren F, Gao H, Zhu F, Wu Q, Tang BZ (2017). J Mater Chem A 5:2115–2122CrossRefGoogle Scholar
  18. 18.
    Liang G, Ren F, Gao H, Wu Q, Zhu F, Tang BZ (2016). ACS Sens 1:1272–1278CrossRefGoogle Scholar
  19. 19.
    Choi EY, Nam SY, Song CE, Kong K-J, Lee C, Jung IH, Yoon SC (2015). RSC Adv 5:107540–107546CrossRefGoogle Scholar
  20. 20.
    Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA (2005). Bioorg Chem 33:415–425CrossRefGoogle Scholar
  21. 21.
    Haidekker MA, Ling T, Anglo M, Stevens HY, Frangos JA, Theodorakis EA (2001). Chem Biol 8:123–131CrossRefGoogle Scholar
  22. 22.
    Minei P, Koenig M, Battisti A, Ahmad M, Barone V, Torres T, Guldi DM, Brancato G, Bottari G, Pucci A (2014). J Mater Chem C Mater Opt Electron Devices 2:9224–9232CrossRefGoogle Scholar
  23. 23.
    Zhou H, Liu F, Wang X, Yan H, Song J, Ye Q, Tang BZ, Xu J (2015). Journal of Materials Chemistry C 3:5490–5498CrossRefGoogle Scholar
  24. 24.
    Minei P, Pucci A (2016). Polym Int 65:609–620CrossRefGoogle Scholar
  25. 25.
    Minei P, Ahmad M, Barone V, Brancato G, Passaglia E, Bottari G, Pucci A (2016). Polym Adv Technol 27:429–435CrossRefGoogle Scholar
  26. 26.
    Iasilli G, Martini F, Minei P, Ruggeri G, Pucci A (2017). Faraday Discuss 196:113–129CrossRefGoogle Scholar
  27. 27.
    Jenkin ME, Saunders SM, Pilling MJ (1997). Atmos Environ 31:81–104CrossRefGoogle Scholar
  28. 28.
    Kim YM, Harrad S, Harrison RM (2001). Environ Sci Technol 35:997–1004CrossRefGoogle Scholar
  29. 29.
    Martini G, Martinelli E, Ruggeri G, Galli G, Pucci A (2015). Dyes Pigm 113:47–54CrossRefGoogle Scholar
  30. 30.
    Borelli M, Iasilli G, Minei P, Pucci A (2017). Molecules:22:1306–1320CrossRefGoogle Scholar
  31. 31.
    Gao M, Tang BZ (2017). ACS Sens 2:1382–1399CrossRefGoogle Scholar
  32. 32.
    Zhu Q, Yang W, Zheng S, Sung HHY, Williams ID, Liu S, Tang BZ (2016). J Mater Chem C 4:7383–7386CrossRefGoogle Scholar
  33. 33.
    Ciardelli F, Bertoldo M, Bronco S, Pucci A, Ruggeri G, Signori F (2013). Polym Int 62:22–32CrossRefGoogle Scholar
  34. 34.
    Ciardelli F, Bronco S, Pieroni O, Pucci A (2011) Molecular switches (2nd, Completely Revis. Enlarged Ed.), vol 1, pp 321–360. In Feringa BL, Browne WR (eds). Wiley-VCH, WeinheimGoogle Scholar
  35. 35.
    Pucci A, Ruggeri G, Bronco S, Bertoldo M, Cappelli C, Ciardelli F (2007). Prog Org Coat 58:105–116CrossRefGoogle Scholar
  36. 36.
    Matyjaszewski K, Xia J (2001). Chem Rev 101:2921–2990CrossRefGoogle Scholar
  37. 37.
    Wang E, Lam JWY, Hu R, Zhang C, Zhao YS, Tang BZ (2014). Journal of Materials Chemistry C 2:1801–1807CrossRefGoogle Scholar
  38. 38.
    Mori R, Iasilli G, Lessi M, Munoz-Garcia AB, Pavone M, Bellina F, Pucci A (2018). Polym Chem 9:1168–1177Google Scholar
  39. 39.
    Carlotti M, Gullo G, Battisti A, Martini F, Borsacchi S, Geppi M, Ruggeri G, Pucci A (2015). Polym Chem 6:4003–4012CrossRefGoogle Scholar
  40. 40.
    Grimaud T, Matyjaszewski K (1997). Macromolecules 30:2216–2218CrossRefGoogle Scholar
  41. 41.
    Tadros T (2013) In: Tadros T (ed) Encyclopedia of colloid and interface science. Springer, Berlin, pp 523–524CrossRefGoogle Scholar
  42. 42.
    Shekar B, Na M, Lee J, Rhee S-W (2004). Mol Cryst Liquid Cryst 424:43–53CrossRefGoogle Scholar
  43. 43.
    Lide DR (2004) CRC handbook of chemistry and physics86th edn. CRC Press LLC, Boca RatonGoogle Scholar
  44. 44.
    Mark JE (2007) Physical properties of polymers handbook2nd edn. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicola Guidugli
    • 1
  • Riccardo Mori
    • 1
  • Fabio Bellina
    • 1
  • Ben Zhong Tang
    • 2
    • 3
  • Andrea Pucci
    • 1
  1. 1.Dipartimento di Chimica e Chimica IndustrialeUniversità di PisaPisaItaly
  2. 2.State Key Laboratory of Luminescent Materials and DevicesCenter for Aggregation-Induced Emission, South China University of TechnologyGuangzhouChina
  3. 3.Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations