Advertisement

Nanocrystals with Crystallization-Induced or Enhanced Emission

  • Wenbo Wu
  • Udayagiri Vishnu Saran
  • Bin Liu
Chapter

Abstract

In recent years, nanocrystals have attracted great research interest in a wide range of applications, such as electronics, bioimaging, and pharmaceuticals, thanks to the superior optical properties as compared to their amorphous counterparts. In this chapter, the principles of nanocrystallization methods, including top-down and bottom-up approaches, are elaborated for the synthesis of organic crystals. We specifically discuss how to use nanocrystals to improve the properties of organic fluorophores with aggregation-induced emission and crystallization-induced room temperature phosphorescence for bioimaging.

Keywords

Nanocrystals Aggregation-induced emission Crystallization-enhanced emission Crystallization-induced phosphorescence Bioimaging 

References

  1. 1.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775CrossRefGoogle Scholar
  2. 2.
    Feng G, Kwok RTK, Tang BZ, Liu B (2017) Functionality and versatility of aggregation-induced emission luminogens. Appl Phys Rev 4:021307CrossRefGoogle Scholar
  3. 3.
    Mei J, Leung NLC, Kowk RTK, Lam JWY, Tang BZ (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115:11718–11940CrossRefGoogle Scholar
  4. 4.
    Forster T, Kasper K (1954) Ein Konzentrationsumschlag der Fluoreszenz. Z Phys Chem 1:275–277 (In German).CrossRefGoogle Scholar
  5. 5.
    Zhelev Z, Ohba H, Bakalova R (2006) Single quantum dot-micelles coated with silica shell as potentially non-cytotoxic fluorescent cell tracers. J Am Chem Soc 128:6324–6325CrossRefGoogle Scholar
  6. 6.
    Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395CrossRefGoogle Scholar
  7. 7.
    Saigusa H, Lim EC (1995) Excited-state dynamics of aromatic clusters: correlation between exciton interactions and excimer formation dynamics. J Phys Chem 99:15738–15747CrossRefGoogle Scholar
  8. 8.
    Wu W, Tang R, Li Q, Li Z (2015) Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem Soc Rev 44:3997–4022CrossRefGoogle Scholar
  9. 9.
    Wu W, Ye S, Tang R, Huang L, Li Q, Yu G, Liu Y, Qin J, Li Z (2012) New tetraphenylethylene-containing conjugated polymers: facile synthesis, aggregation-induced emission enhanced characteristics and application as explosive chemsensors and PLEDs. Polymer 53:3163–3171CrossRefGoogle Scholar
  10. 10.
    Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun (18):1740–1741Google Scholar
  11. 11.
    Tang BZ, Zhan X, Yu G, Sze Lee PP, Liu Y, Zhu D (2001) Efficient blue emission from siloles. J Mater Chem 11:2974–2978CrossRefGoogle Scholar
  12. 12.
    Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014) Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 26:5429–5479CrossRefGoogle Scholar
  13. 13.
    Im SH, Lim YT, Suh DJ, Park OO (2002) Three-dimensional self-assembly of colloids at a water-air interface: a novel technique for the fabrication of photonic band gap crystals. Adv Mater 14:1367–1369CrossRefGoogle Scholar
  14. 14.
    Yao Z-F, Wang J-Y, Pei J (2018) Control of π-π stacking via crystal engineering in organic conjugated small molecule crystals. Cryst Growth Des 18(1):7–15.  https://doi.org/10.1021/acs.cgd.7b01385CrossRefGoogle Scholar
  15. 15.
    Müller RH, Gohla S, Keck CM (2011) State of the art of nanocrystals-special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm 78:1–9CrossRefGoogle Scholar
  16. 16.
    Zhao Z, Chen T, Jiang S, Liu Z, Fang D, Dong Y (2016) The construction of a multicolored mechanochromic luminogen with high contrast through the combination of a large conjugation core and peripheral phenyl rings. J Mater Chem C 4:4800–4804CrossRefGoogle Scholar
  17. 17.
    Fateminia SMA, Wang Z, Liu B (2017) Nanocrystallization: an effective approach to enhance the performance of organic molecules. Small Methods 1:160002CrossRefGoogle Scholar
  18. 18.
    Norris DJ, Efros AL, Rosen M, Bawendi MG (1996) Size dependence of exciton fine structure in CdSe quantum dots. Phys Rev B 53:16347–16354CrossRefGoogle Scholar
  19. 19.
    He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657–3666CrossRefGoogle Scholar
  20. 20.
    Wang GD, Mallet FP, Ricard F, Heng JY (2012) Pharmaceutical nanocrystals. Curr Opin Chem Eng 1:102–107CrossRefGoogle Scholar
  21. 21.
    Messing GL, Zhang SC, Jayanthi GV (1993) Ceramic powder synthesis by spray pyrolysis. J Am Ceram Soc 76:2707–2726CrossRefGoogle Scholar
  22. 22.
    Yu T, Joo J, Park YI, Hyeon T (2005) Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes. Angew Chem 117:7577–7580CrossRefGoogle Scholar
  23. 23.
    Fery-Forgues S (2013) Fluorescent organic nanocrystals and non-doped nanoparticles for biological applications. Nanoscale 5:8428–8442CrossRefGoogle Scholar
  24. 24.
    Rasenack N, Müller BW (2004) Micron-size drug particles: common and novel micronization techniques. Pharm Dev Technol 9:1–13CrossRefGoogle Scholar
  25. 25.
    Loh ZH, Samanta AK, Heng PWS (2015) Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm Sci 10:255–274CrossRefGoogle Scholar
  26. 26.
    Tozuka Y, Imono M, Uchiyama H, Takeuchi H (2011) A novel application of α-glucosyl hesperidin for nanoparticle formation of active pharmaceutical ingredients by dry grinding. Eur J Pharm Biopharm 79:559–565CrossRefGoogle Scholar
  27. 27.
    Hou T-H, Su C-H, Liu W-L (2007) Parameters optimization of a nanoparticle wet milling process using the taguchi method, response surface method and genetic algorithm. Powder Technol 173:153–162CrossRefGoogle Scholar
  28. 28.
    Charkhi A, Kazemian H, Kazemeini M (2010) Optimized experimental design for natural clinoptilolite zeolite ball milling to produce nano powders. Powder Technol 203:389–396CrossRefGoogle Scholar
  29. 29.
    Wang Y, Forssberg E (2006) Production of carbonate and silica nano-particles in stirred bead milling. Int J Miner Process 81:1–14CrossRefGoogle Scholar
  30. 30.
    Keck CM, Müller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 62:3–16CrossRefGoogle Scholar
  31. 31.
    Muller RH, Keck CM (2004) Challenges and solutions for the delivery of biotech drugs-a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 113:151–170CrossRefGoogle Scholar
  32. 32.
    Keck CM, Müller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization. Eur J Pharm Biopharm 62:3–16CrossRefGoogle Scholar
  33. 33.
    Kipp J (2004) The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm 284:109–122CrossRefGoogle Scholar
  34. 34.
    Chung H-R, Kwon E, Oikawa H, Kasai H, Nakanishi H (2006) Effect of solvent on organic nanocrystal growth using the reprecipitation method. J Cryst Growth 294:459–463CrossRefGoogle Scholar
  35. 35.
    De Waard H, Hinrichs W, Frijlink H (2008) A novel bottom-up process to produce drug nanocrystals: controlled crystallization during freeze-drying. J Control Release 128:179–183CrossRefGoogle Scholar
  36. 36.
    Fateminia SMA, Wang Z, Goh CC, Manghnani PN, Wu W, Mao D, Ng LG, Zhao Z, Tang BZ, Liu B (2017) Nanocrystallization: a unique approach to yield bright organic nanocrystals for biological applications. Adv Mater 29:1604100CrossRefGoogle Scholar
  37. 37.
    Fateminia SMA, Mao Z, Xu S, Yang Z, Chi Z, Liu B (2017) Organic Nanocrystals with bright red persistent room-temperature phosphorescence for biological applications. Angew Chem Int Ed 56:12160–12164CrossRefGoogle Scholar
  38. 38.
    Dong Y, Lam JWY, Li Z, Qin A, Tong H, Dong Y, Feng X, Tang BZ (2005) Vapochromism of hexaphenylsilole. J Inorg Organomet Polym Mater 15:287–291CrossRefGoogle Scholar
  39. 39.
    Dong Y, Lam JWY, Qin A, Li Z, Sun J, Dong Y, Tang BZ (2007) Vapochromism and crystallization-enhanced emission of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles. J Inorg Organomet Polym Mater 17:673–678CrossRefGoogle Scholar
  40. 40.
    Dong Y, Lam JWY, Qin A, Sun J, Liu J, Li Z, Sun J, Sung HHY, Williams ID, Kwok HS, Tang BZ (2007) Aggregation-induced and crystallization-enhanced emissions of 1,2-diphenyl-3,4-bis(diphenylmethylene)-1-cyclobutene. Chem Commun (31):3255–3257Google Scholar
  41. 41.
    Gu X, Yao J, Zhang G, Yan Y, Zhang C, Peng Q, Liao Q, Wu Y, Xu Z, Zhao Y, Hu H, Zhang D (2012) Polymorphism-dependent emission for Di(p-methoxylphenyl)dibenzofulvene and analogues: optical waveguide/amplified spontaneous emission behaviors. Adv Funct Mater 22:4862–4872CrossRefGoogle Scholar
  42. 42.
    Hsiao T-S, Deng S-L, Shih K-Y, Hong J-L (2014) Crystallization-enhanced emission through hydrogen-bond interactions in blends containing hydroxyl-functionalized azine and poly (4-vinyl pyridine). J Mater Chem C 2:4828–4834CrossRefGoogle Scholar
  43. 43.
    Yoshii R, Hirose A, Tanaka K, Chujo Y (2014) Boron diiminate with aggregation-induced emission and crystallization-induced emission-enhancement characteristics. Chem Eur J 20:8320–8324CrossRefGoogle Scholar
  44. 44.
    Shi J, Zhao W, Li C, Liu Z, Bo Z, Dong Y, Dong Y, Tang BZ (2013) Switching emissions of two tetraphenylethene derivatives with solvent vapor, mechanical, and thermal stimuli. Chin Sci Bull 58:2723–2727CrossRefGoogle Scholar
  45. 45.
    Yoon SJ, Chung JW, Gierschner J, Kim KS, Choi MG, Kim D, Park SY (2010) Multistimuli two-color luminescence switching via different slip-stacking of highly fluorescent molecular sheets. J Am Chem Soc 132:13675–13683CrossRefGoogle Scholar
  46. 46.
    Zhang X, Chi Z, Zhang J, Li H, Xu B, Li X, Liu S, Zhang Y, Xu J (2011) Piezofluorochromic properties and mechanism of an aggregation-induced emission enhancement compound containing N-hexyl-phenothiazine and anthracene moieties. J Phys Chem B 115:7606–7611CrossRefGoogle Scholar
  47. 47.
    Chi Z, Zhang X, Xu B, Zhou X, Ma C, Zhang Y, Liu S, Xu J (2012) Recent advances in organic mechanofluorochromic materials. Chem Soc Rev 41:3878–3896CrossRefGoogle Scholar
  48. 48.
    Zhang X, Chi Z, Li H, Xu B, Li X, Zhou W, Liu S, Zhang Y, Xu J (2011) Piezofluorochromism of an aggregation-induced emission compound derived from tetraphenylethylene. Chem Asian J 6:808–811CrossRefGoogle Scholar
  49. 49.
    Baryshnikov G, Minaev B, Ågren H (2017) Theory and calculation of the phosphorescence phenomenon. Chem Rev 117:6500–6537CrossRefGoogle Scholar
  50. 50.
    Hirata S (2017) Recent advances in materials with room-temperature phosphorescence: photophysics for triplet exciton stabilization. Adv Opt Mater 5:1700116CrossRefGoogle Scholar
  51. 51.
    Baldo MA, O’brien DF, You Y, Shoustiko A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154CrossRefGoogle Scholar
  52. 52.
    Zhao Q, Huang C, Li F (2011) Phosphorescent heavy-metal complexes for bioimaging. Chem Soc Rev 40:2508–2524CrossRefGoogle Scholar
  53. 53.
    Wahadoszamen M, Hamada T, Iimori T, Nakabayashi T, Ohta N (2007) External electric field effects on absorption, fluorescence, and phosphorescence spectra of diphenylpolyynes in a polymer film. J Phys Chem A 111:9544–9552CrossRefGoogle Scholar
  54. 54.
    Yuan WZ, Shen XY, Zhao H, Lam JWY, Tang L, Lu P, Wang C, Liu Y, Wang Z, Zheng Q, Sun JZ, Ma Y, Tang BZ (2010) Crystallization-induced phosphorescence of pure organic luminogens at room temperature. J Phys Chem C 114:6090–6099CrossRefGoogle Scholar
  55. 55.
    Zhen X, Tao Y, An Z, Chen P, Xu C, Chen R, Huang W, Pu K (2017) Ultralong phosphorescence of water-soluble organic nanoparticles for in vivo afterglow imaging. Adv Mater 29:1606665CrossRefGoogle Scholar
  56. 56.
    An Z, Zheng C, Yao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W (2015) Stabilizing triplet excited states for ultralong organic phosphorescence. Nat Mater 14:685–690CrossRefGoogle Scholar
  57. 57.
    Xu S, Chen R, Zhen C, Huang W (2016) Excited state modulation for organic afterglow: materials and applications. Adv Mater 28:9920–9940CrossRefGoogle Scholar
  58. 58.
    Kabe R, Adachi C (2017) Organic long persistent luminescence. Nature 550:384–387CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations