Skip to main content

Perarylation as a Strategy Toward Aggregation-Induced Emitters: Will They Ever Be Stable?

  • Chapter
  • First Online:

Abstract

The periphery of most AIEgens is decorated with aryl substituents, which, according to the principle of restricted intramolecular motion, play a key role for fluorescence behavior of AIEgens. However, these peripheral aryl substituents create structural motifs, which undergo photoreactions (stilbenes, ortho-terphenyls, etc.). The sterically overcrowded molecules thus seek to relax their geometry by photoisomerization reactions, leading to energetically favored species. In this chapter, we will first give a brief overview of examples of perarylated AIE emitters vs. their non-AIE counterparts, then have a look at the photochemistry of stilbenes and ortho-terphenyls, dealing with their excited states and photochemistry, and discuss examples of photolabile AIEgens and the extent of their lability (hexaarylbutadienes, distyrylbenzene derivatives). Finally, we will have a look at strategies to stabilize these structural motifs, suppress the photocyclization, and look at the applicability to AIE active molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ning Z, Chen Z, Zhang Q et al (2007) Aggregation-induced emission (AIE)-active starburst triarylamine fluorophores as potential non-doped red emitters for organic light-emitting diodes and Cl2 gas chemodosimeter. Adv Funct Mater 17(18):3799–3807. https://doi.org/10.1002/adfm.200700649

    Article  CAS  Google Scholar 

  2. Qin W, Yang Z, Jiang Y et al (2015) Construction of efficient deep blue aggregation-induced emission luminogen from triphenylethene for nondoped organic light-emitting diodes. Chem Mater 27(11):3892–3901. https://doi.org/10.1021/acs.chemmater.5b00568

    Article  CAS  Google Scholar 

  3. Aldred MP, Zhang G-F, Li C et al (2013) Optical properties and red to near infrared piezo-responsive fluorescence of a tetraphenylethene–perylenebisimide–tetraphenylethene triad. J Mater Chem C 1(40):6709–6718. https://doi.org/10.1039/c3tc31452a

    Article  CAS  Google Scholar 

  4. Zhang R, Gao M, Bai S et al (2015) A fluorescent light-up platform with “AIE + ESIPT” characteristics for multi-target detection both in solution and on paper strip. J Mater Chem B 3(8):1590–1596. https://doi.org/10.1039/C4TB01937G

    Article  CAS  Google Scholar 

  5. Lu H, Xu B, Dong Y et al (2010) Novel fluorescent pH sensors and a biological probe based on anthracene derivatives with aggregation-induced emission characteristics. Langmuir 26(9):6838–6844. https://doi.org/10.1021/la904727t

    Article  CAS  Google Scholar 

  6. Hong Y, Lam JWY, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun (29):4332–4353. https://doi.org/10.1039/b904665h

  7. Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40(11):5361–5388. https://doi.org/10.1039/c1cs15113d

    Article  CAS  Google Scholar 

  8. Mei J, Hong Y, Lam JWY et al (2014) Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 26(31):5429–5479. https://doi.org/10.1002/adma.201401356

    Article  CAS  Google Scholar 

  9. Mei J, Leung NLC, Kwok RTK et al. (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev (21):11718–11940. https://doi.org/10.1021/acs.chemrev.5b00263

    Article  CAS  Google Scholar 

  10. Tang BZ, Qin A (2014) Aggregation-induced emission: fundamentals, vol 1. Wiley, Chichester

    Google Scholar 

  11. Tang BZ, Qin A (2013) Aggregation-induced emission: applications. Wiley, Chichester

    Google Scholar 

  12. Xie Z, Yang B, Cheng G et al (2005) Supramolecular interactions induced fluorescence in crystal: anomalous emission of 2,5-diphenyl-1,4-distyrylbenzene with all cis double bonds. Chem Mater 17(6):1287–1289. https://doi.org/10.1021/cm048400z

    Article  CAS  Google Scholar 

  13. Liu Y, Lam JWY, Zheng X et al (2016) Aggregation-induced emission and photocyclization of poly(hexaphenyl-1,3-butadiene)s synthesized from “1 + 2” polycoupling of internal alkynes and arylboronic acids. Macromolecules 49(16):5817–5830. https://doi.org/10.1021/acs.macromol.6b01148

    Article  CAS  Google Scholar 

  14. Tang BZ, Zhan X, Yu G et al (2001) Efficient blue emission from siloles. J Mater Chem 11(12):2974–2978. https://doi.org/10.1039/b102221k

    Article  CAS  Google Scholar 

  15. Chen J, Law CCW, Lam JWY et al (2003) Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles. Chem Mater 15(7):1535–1546. https://doi.org/10.1021/cm021715z

    Article  CAS  Google Scholar 

  16. Dong Y, Lam JWY, Qin A et al (2007) Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes. Appl Phys Lett 91(1):11111–11113. https://doi.org/10.1063/1.2753723

    Article  CAS  Google Scholar 

  17. Lin Y, Jiang X, Kim ST et al (2017) An elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water. J Am Chem Soc 139(21):7172–7175. https://doi.org/10.1021/jacs.7b03204

    Article  CAS  Google Scholar 

  18. Tan G, Zhu L, Liao X et al (2017) Rhodium/copper cocatalyzed highly trans-selective 1,2-diheteroarylation of alkynes with azoles via C-H addition/oxidative cross-coupling: a combined experimental and theoretical study. J Am Chem Soc 139(44):15724–15737. https://doi.org/10.1021/jacs.7b07242

    Article  CAS  Google Scholar 

  19. Tsvelikhovsky D, Blum J (2008) Three phase microemulsion/sol–gel system for aqueous C–C coupling of hydrophobic substrates. Eur J Org Chem 2008(14):2417–2422. https://doi.org/10.1002/ejoc.200800028

    Article  CAS  Google Scholar 

  20. Li H, Chi Z, Xu B et al (2011) Aggregation-induced emission enhancement compounds containing triphenylamine-anthrylenevinylene and tetraphenylethene moieties. J Mater Chem 21(11):3760. https://doi.org/10.1039/C0JM02571B

    Article  CAS  Google Scholar 

  21. Collins DJ, Hobbs JJ (1967) The influence of copper halides on the course of photolysis of α,α′-disubstituted stilbenes. Aust J Chem 20(9):1905. https://doi.org/10.1071/CH9671905

    Article  CAS  Google Scholar 

  22. Aldred MP, Li C, Zhu M-Q (2012) Optical properties and photo-oxidation of tetraphenylethene-based fluorophores. Chem Eur J 18(50):16037–16045. https://doi.org/10.1002/chem.201202715

    Article  CAS  Google Scholar 

  23. Huang G, Ma B, Chen J et al (2012) Dendron-containing tetraphenylethylene compounds: dependence of fluorescence and photocyclization reactivity on the dendron generation. Chemistry 18(13):3886–3892. https://doi.org/10.1002/chem.201103675

    Article  CAS  Google Scholar 

  24. Schultz A, Laschat S, Diele S et al (2003) Tetraphenylethene-derived columnar liquid crystals and their oxidative photocyclization. Eur J Org Chem 2003(15):2829–2839. https://doi.org/10.1002/ejoc.200300118

    Article  CAS  Google Scholar 

  25. Koelsch CF (1932) Syntheses with triarylvinylmagnesium bromides. Pentaarylallyl alcohols. J Am Chem Soc 54(8):3384–3389. https://doi.org/10.1021/ja01347a057

    Article  CAS  Google Scholar 

  26. Kim KS, Son SH, Joo YH et al (1987) Reactions of 1,1-diphenylethylene and its derivatives with tris(p-bromophenyl)aminium hexachloroantimonate. Chem Lett 16(11):2251–2252. https://doi.org/10.1246/cl.1987.2251

    Article  Google Scholar 

  27. Pasynkiewicz S, Pietrzykowski A, Oledzka E et al (2003) Nickel mediated coupling of organic ligands. Pol J Chem 77:701–707

    CAS  Google Scholar 

  28. Yan X, Chen C, Xi C (2014) Zirconoarylation of alkynes through p-chloranil-promoted reductive elimination of arylzirconates. Beilstein J Org Chem 10:528–534. https://doi.org/10.3762/bjoc.10.48

    Article  CAS  Google Scholar 

  29. Aves S, O’Connell K, Pike K et al (2012) Synthesis of highly substituted symmetrical 1,3-dienes via organocuprate oxidation. Synlett 2012(02):298–300. https://doi.org/10.1055/s-0031-1290116

    Article  CAS  Google Scholar 

  30. Suzuki T, Higuchi H, Ohkita M et al. (2001) Dual-mode electrochromism switched by proton transfer: dynamic redox properties of bis(diarylmethylenium)-type dyes. Chem Commun (17):1574–1575. https://doi.org/10.1039/b104742f

  31. Liu Y, Wang L, Deng L (2015) Three-coordinate iron(II) dialkenyl compound with NHC ligation: synthesis, structure, and reactivity. Organometallics 34(17):4401–4407. https://doi.org/10.1021/acs.organomet.5b00632

    Article  CAS  Google Scholar 

  32. Satoh T, Ogino S, Miura M et al (2004) Synthesis of highly substituted 1,3-butadienes by palladium-catalyzed arylation of internal alkynes. Angew Chem Int Ed 43(38):5063–5065. https://doi.org/10.1002/anie.200460409

    Article  CAS  Google Scholar 

  33. Horiguchi H, Tsurugi H, Satoh T et al (2008) Palladium/phosphite or phosphate catalyzed oxidative coupling of arylboronic acids with alkynes to produce 1,4-diaryl-1,3-butadienes. Adv Synth Catal 350(3):509–514. https://doi.org/10.1002/adsc.200700533

    Article  CAS  Google Scholar 

  34. Freudenberg J (2016) Neue Materialien zur Anwendung in organischen Leuchtdioden. Dissertation. Ruprecht-Karls-Universität Heidelberg

    Google Scholar 

  35. Freudenberg J, Uptmoor AC, Rominger F et al (2014) Photolability of per-arylated butadienes: en route to dihydronaphthalenes. J Org Chem 79(23):11787–11791. https://doi.org/10.1021/jo502293q

    Article  CAS  Google Scholar 

  36. Sakellarios E, Kyrimis T (1924) Zur Kenntnis der Reaktion der Organomagnesiumverbindungen mit Kupfer (2)-chlorid. Ber dtsch Chem Ges A/B 57(2):322–326. https://doi.org/10.1002/cber.19240570233

    Article  Google Scholar 

  37. Banal JL, White JM, Ghiggino KP et al (2014) Concentrating aggregation-induced fluorescence in planar waveguides: a proof-of-principle. Sci Rep 4:4635–4639. https://doi.org/10.1038/srep04635

    Article  CAS  Google Scholar 

  38. Zhang Y, Kong L, Shi J et al (2015) Aggregation-induced emission of hexaphenyl-1,3-butadiene. Chin J Chem 33(7):701–704. https://doi.org/10.1002/cjoc.201500116

    Article  CAS  Google Scholar 

  39. Zhang Y, Mao H, Kong L et al (2016) Effect of E/Z isomerization on the aggregation-induced emission features and mechanochromic performance of dialdehyde-substituted hexaphenyl-1,3-butadiene. Dyes Pigments 133:354–362. https://doi.org/10.1016/j.dyepig.2016.06.016

    Article  CAS  Google Scholar 

  40. Kong L, Zhang Y, Mao H et al (2017) Dimalononitrile-containing probe based on aggregation-enhanced emission features for the multi-mode fluorescence detection of volatile amines. Faraday Discuss 196:101–111. https://doi.org/10.1039/c6fd00178e

    Article  CAS  Google Scholar 

  41. Freudenberg J, Kumpf J, Schäfer V et al (2013) Water-soluble cruciforms and distyrylbenzenes: synthesis, characterization, and pH-dependent amine-sensing properties. J Org Chem 78(10):4949–4959. https://doi.org/10.1021/jo400576y

    Article  CAS  Google Scholar 

  42. Kumpf J, Bunz UHF (2012) Aldehyde-appended distyrylbenzenes: amine recognition in water. Chem Eur J 18(29):8921–8924. https://doi.org/10.1002/chem.201200930

    Article  CAS  Google Scholar 

  43. Zhang Y, Kong L, Mao H et al (2017) Light/temperature-enhanced emission characteristics of malononitrile-containing hexaphenyl-1,3-butadiene derivatives: the hotter, the brighter. Mater Chem Front 115:1740. https://doi.org/10.1039/c7qm00304h

    Article  CAS  Google Scholar 

  44. Zhang Y, Kong L, Pan X et al (2017) Reversible multicolor switching via simple reactions of the AIE-characteristic molecules. Dyes Pigments 139:714–719. https://doi.org/10.1016/j.dyepig.2016.12.064

    Article  CAS  Google Scholar 

  45. Gardecki JA, Maroncelli M (1998) Set of secondary emission standards for calibration of the spectral responsivity in emission spectroscopy. Appl Spectrosc 52(9):1179–1189. https://doi.org/10.1366/0003702981945192

    Article  CAS  Google Scholar 

  46. Chen J, Xu B, Ouyang X et al (2004) Aggregation-induced emission of cis,cis-1,2,3,4-tetraphenylbutadiene from restricted intramolecular rotation. J Phys Chem A 108(37):7522–7526. https://doi.org/10.1021/jp048475q

    Article  CAS  Google Scholar 

  47. Smith LI, Hoehn HH (1941) The reaction between lithium and diphenylacetylene. J Am Chem Soc 63(5):1184–1187. https://doi.org/10.1021/ja01850a006

    Article  CAS  Google Scholar 

  48. Yamaguchi S, Endo T, Uchida M et al (2000) Toward new materials for organic electroluminescent devices: synthesis, structures, and properties of a series of 2, 5-diaryl-3,4-diphenylsiloles. Chemistry 6(9):1683–1692. https://doi.org/10.1002/(SICI)1521-3765(20000502)6:9<1683:AID-CHEM1683>3.0.CO;2-M

    Article  CAS  Google Scholar 

  49. Bhongale CJ, Chang C-W, Lee C-S et al (2005) Relaxation dynamics and structural characterization of organic nanoparticles with enhanced emission. J Phys Chem B 109(28):13472–13482. https://doi.org/10.1021/jp0502297

    Article  CAS  Google Scholar 

  50. Shi Z, Davies J, Jang S-H et al (2012) Aggregation induced emission (AIE) of trifluoromethyl substituted distyrylbenzenes. Chem Commun 48(63):7880–7882. https://doi.org/10.1039/C2CC32380J

    Article  CAS  Google Scholar 

  51. He J, Xu B, Chen F et al (2009) Aggregation-induced emission in the crystals of 9,10-distyrylanthracene derivatives: the essential role of restricted intramolecular torsion. J Phys Chem C 113(22):9892–9899. https://doi.org/10.1021/jp900205k

    Article  CAS  Google Scholar 

  52. Itami K, Ohashi Y, Yoshida J-I (2005) Triarylethene-based extended pi-systems: programmable synthesis and photophysical properties. J Org Chem 70(7):2778–2792. https://doi.org/10.1021/jo0477401

    Article  CAS  Google Scholar 

  53. An B-K, Gierschner J, Park SY (2012) π-Conjugated cyanostilbene derivatives: a unique self-assembly motif for molecular nanostructures with enhanced emission and transport. Acc Chem Res 45(4):544–554. https://doi.org/10.1021/ar2001952

    Article  CAS  Google Scholar 

  54. Aparicio F, Cherumukkil S, Ajayaghosh A et al (2016) Color-tunable cyano-substituted divinylene arene luminogens as fluorescent π-gelators. Langmuir 32(1):284–289. https://doi.org/10.1021/acs.langmuir.5b03771

    Article  CAS  Google Scholar 

  55. Chang C-W, Bhongale CJ, Lee C-S et al (2012) Relaxation dynamics and structural characterization of organic nanobelts with aggregation-induced emission. J Phys Chem C 116(28):15146–15154. https://doi.org/10.1021/jp304117n

    Article  CAS  Google Scholar 

  56. Li C, Hanif M, Li X et al (2016) Effect of cyano-substitution in distyrylbenzene derivatives on their fluorescence and electroluminescence properties. J Mater Chem C 4(31):7478–7484. https://doi.org/10.1039/c6tc01886f

    Article  CAS  Google Scholar 

  57. Li Y, Li F, Zhang H et al. (2007) Tight intermolecular packing through supramolecular interactions in crystals of cyano substituted oligo(para-phenylene vinylene): a key factor for aggregation-induced emission. Chem Commun (3):231–233. https://doi.org/10.1039/B612732K

  58. Xie Z, Yang B, Liu L et al (2005) Experimental and theoretical studies of 2,5-diphenyl-1,4-distyrylbenzenes with all-cis- and all-trans double bonds: chemical structure determination and optical properties. J Phys Org Chem 18(9):962–973. https://doi.org/10.1002/poc.935

    Article  CAS  Google Scholar 

  59. Freudenberg J, Rominger F, Bunz UHF (2015) New aggregation-induced emitters: tetraphenyldistyrylbenzenes. Chemistry 21(47):16749–16753. https://doi.org/10.1002/chem.201502877

    Article  CAS  Google Scholar 

  60. Albota M (1998) Design of organic molecules with large two-photon absorption cross sections. Science 281(5383):1653–1656. https://doi.org/10.1126/science.281.5383.1653

    Article  CAS  Google Scholar 

  61. Zucchero AJ, Tolosa J, Tolbert LM et al (2009) Bis(4′-dibutylaminostyryl)benzene: spectroscopic behavior upon protonation or methylation. Chemistry 15(47):13075–13081. https://doi.org/10.1002/chem.200900608

    Article  CAS  Google Scholar 

  62. Xie Z, Yang B, Li F et al (2005) Cross dipole stacking in the crystal of distyrylbenzene derivative: the approach toward high solid-state luminescence efficiency. J Am Chem Soc 127(41):14152–14153. https://doi.org/10.1021/ja054661d

    Article  CAS  Google Scholar 

  63. Horspool WM, Song P-S (1995) CRC handbook of organic photochemistry and photobiology. CRC Press, Boca Raton

    Google Scholar 

  64. Meier H (1992) The photochemistry of stilbenoid compounds and their role in materials technology. Angew Chem Int Ed Engl 31(11):1399–1420. https://doi.org/10.1002/anie.199213993

    Article  Google Scholar 

  65. Ioffe IN, Quick M, Quick MT et al (2017) Tuning stilbene photochemistry by fluorination: state reordering leads to sudden polarization near the franck-condon region. J Am Chem Soc 139(42):15265–15274. https://doi.org/10.1021/jacs.7b09611

    Article  CAS  Google Scholar 

  66. Saltiel J (1967) Perdeuteriostilbene. The role of phantom states in the cis-trans photoisomerization of stilbenes. J Am Chem Soc 89(4):1036–1037. https://doi.org/10.1021/ja00980a057

    Article  CAS  Google Scholar 

  67. Orlandi G, Siebrand W (1975) Model for the direct photo-isomerization of stilbene. Chem Phys Lett 30(3):352–354. https://doi.org/10.1016/0009-2614(75)80005-4

    Article  CAS  Google Scholar 

  68. Santoro AV, Barrett EJ, Hoyer HW (1967) Kinetics of cis-trans isomerization by differential thermal analysis. J Am Chem Soc 89(17):4545–4546. https://doi.org/10.1021/ja00993a066

    Article  CAS  Google Scholar 

  69. Mallory FB, Mallory CW (1984) Photocyclizations of stilbenes and related molecules. In: Dauben WG, Boswell Jr GA, Danishefsky S et al (eds) Organic reactions, vol 30. John Wiley & Sons, Inc., New York, pp 1–456

    Google Scholar 

  70. Muszkat KA, Gegiou D, Fischer E (1965) The hexamethyl stilbene? hexamethyldithydrophenanthrene interconversion, an example of a reversible photocyclization. Chem Commun (London) (19):447. https://doi.org/10.1039/c19650000447

    Article  CAS  Google Scholar 

  71. Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100(5):1685–1716. https://doi.org/10.1021/cr980069d

    Article  CAS  Google Scholar 

  72. Irie M (2010) Photochromism of diarylethene molecules and crystals. Proc Jpn Acad Ser B 86(5):472–483. https://doi.org/10.2183/pjab.86.472

    Article  CAS  Google Scholar 

  73. Muszkat KA, Castel N, Jakob A et al (1991) Photophysics and photochemistry of ring-fluorinated stilbenes. J Photochem Photobiol A Chem 56(2–3):219–226. https://doi.org/10.1016/1010-6030(91)80022-A

    Article  CAS  Google Scholar 

  74. Ito Y, Uozu Y, Matsuura T (1987) Trans-cis photoisomerization of para-styrylstilbenes. Tetrahedron Lett 28(30):3493–3496. https://doi.org/10.1016/S0040-4039(00)96335-4

    Article  CAS  Google Scholar 

  75. Sandros K, Sundahl M, Wennerstroem O et al (1990) Cis-trans photoisomerization of a p-styrylstilbene, a one- and twofold adiabatic process. J Am Chem Soc 112(8):3082–3086. https://doi.org/10.1021/ja00164a031

    Article  CAS  Google Scholar 

  76. Fengqiang Z, Motoyoshiya J, Nakamura J et al (2006) Photochemical behavior of some p-styrylstilbenes and related compounds: spectral properties and photoisomerization in solution and in solid state. Photochem Photobiol 82(6):1645–1650. https://doi.org/10.1111/j.1751-1097.2006.tb09825.x

    Article  CAS  Google Scholar 

  77. Laarhoven WH, Cuppen TJHM, Nivard RJF (1970) Photodehydrocyclizations in stilbene-like compounds—II. Tetrahedron 26(4):1069–1083. https://doi.org/10.1016/S0040-4020(01)98783-6

    Article  CAS  Google Scholar 

  78. Sato T, Shimada S, Hata K (1971) A new route to polycondensed aromatics: photolytic formation of triphenylene and dibenzo[ fg , op ]naphthacene ring systems. Bull Chem Soc Jpn 44(9):2484–2490. https://doi.org/10.1246/bcsj.44.2484

    Article  CAS  Google Scholar 

  79. Sato T, Goto Y, Hata K (1967) A new synthesis of triphenylene by the photochemical aryl coupling reaction of o -terphenyl. BCSJ 40(8):1994–1995. https://doi.org/10.1246/bcsj.40.1994

    Article  CAS  Google Scholar 

  80. Koussini R, Lapouyade R, Fornier de Violet P (1978) Intramolecular photocyclization of 2-vinylbiphenyl-like compounds. 1. A quantitative study of the cyclization under steady-state illumination. J Am Chem Soc 100(21):6679–6683. https://doi.org/10.1021/ja00489a020

    Article  CAS  Google Scholar 

  81. Oda K, Hiroto S, Sakamaki D et al (2016) Fully-substituted 1,3-butadienes as π-conjugated linkers between pyrenes. Chem Lett 45(4):403–405. https://doi.org/10.1246/cl.151181

    Article  CAS  Google Scholar 

  82. Shah S, Eichler BE, Smith RC et al (2003) Synthesis and solid state structures of increasingly sterically crowded 1,4-diiodo-2,3,5,6-tetraarylbenzenes: a new series of bulky benzenes and aryls. New J Chem 27(2):442–445. https://doi.org/10.1039/b210577b

    Article  CAS  Google Scholar 

  83. Freudenberg J, Rominger F, Bunz UHF (2016) Suppression of photocyclization: stabilization of an aggregation-induced tetraaryldistyrylbenzene emitter. Chem Eur J 22(26):8740–8744. https://doi.org/10.1002/chem.201601069

    Article  CAS  Google Scholar 

  84. Ehlers P, Hakobyan A, Neubauer A et al (2013) Tetraalkynylated and tetraalkenylated benzenes and pyridines: synthesis and photophysical properties. Adv Synth Catal 355(9):1849–1858. https://doi.org/10.1002/adsc.201300201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Freudenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freudenberg, J., Bunz, U.H.F. (2019). Perarylation as a Strategy Toward Aggregation-Induced Emitters: Will They Ever Be Stable?. In: Tang, Y., Tang, B. (eds) Principles and Applications of Aggregation-Induced Emission. Springer, Cham. https://doi.org/10.1007/978-3-319-99037-8_1

Download citation

Publish with us

Policies and ethics