Advertisement

Spontaneous Intracerebral Hemorrhage

  • Jan Vargas
  • Alejandro M. Spiotta
  • Raymond D. TurnerEmail author
Chapter
  • 673 Downloads

Abstract

Spontaneous intracerebral hemorrhage (ICH) is responsible for 10–15% of strokes, with a 1-year mortality rate of more than 40%. Functional independent outcome is estimated at 16.7–24.6% at 1 year following ICH. With the exception of strict blood pressure control, no medical intervention has been shown to improve outcomes for patients with spontaneous ICH. There is a lack of consensus on appropriate treatment despite the theoretical benefits of early hematoma evacuation and prevention of secondary insults following spontaneous ICH. The STITCH trials suggested that while surgery may improve outcomes in some patients with superficial lobar hemorrhages, attempts at targeting deeper lesions may disrupt viable tissue and overcome any benefits yielded by hematoma evacuation. A minimally invasive approach to the evacuation of intracranial hematomas has been a topic of interest for some time. While such approaches to hematoma evacuation have been described for several decades, advances in neuronavigation and neuroimaging have allowed for more precise access of deep-seated lesions, thus minimizing the trauma to viable brain parenchyma and improving success rates. Completion of three ongoing trials (MISTIE-III, INVEST, ENRICH) will likely change the management of spontaneous ICH in favor of MIS evacuation.

Keywords

Spontaneous intracranial hemorrhage Minimally invasive surgery NICO BrainPath Apollo MISTIE 

References

  1. 1.
    Poon MT, Fonville AF, Al-Shahi SR. Long-term prognosis after intracerebral haemorrhage: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2014;85(6):660–7.CrossRefGoogle Scholar
  2. 2.
    Dennis MS. Outcome after brain haemorrhage. Cerebrovasc Dis. 2003;16(Suppl 1):9–13.CrossRefGoogle Scholar
  3. 3.
    Labovitz DL, Halim A, Boden-Albala B, Hauser WA, Sacco RL. The incidence of deep and lobar intracerebral hemorrhage in whites, blacks, and Hispanics. Neurology. 2005;65(4):518–22.CrossRefGoogle Scholar
  4. 4.
    Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373(9675):1632–44.PubMedCentralCrossRefGoogle Scholar
  5. 5.
    Samarasekera N, Fonville A, Lerpiniere C, Farrall AJ, Wardlaw JM, White PM, et al. Influence of intracerebral hemorrhage location on incidence, characteristics, and outcome: population-based study. Stroke. 2015;46(2):361–8.CrossRefGoogle Scholar
  6. 6.
    Nehls DG, Mendelow DA, Graham DI, Teasdale GM. Experimental intracerebral hemorrhage: early removal of a spontaneous mass lesion improves late outcome. Neurosurgery. 1990;27(5):674–82. discussion 82CrossRefGoogle Scholar
  7. 7.
    Xi G, Wagner KR, Keep RF, Hua Y, de Courten-Myers GM, Broderick JP, et al. Role of blood clot formation on early edema development after experimental intracerebral hemorrhage. Stroke. 1998;29(12):2580–6.CrossRefGoogle Scholar
  8. 8.
    Lee KR, Kawai N, Kim S, Sagher O, Hoff JT. Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. J Neurosurg. 1997;86(2):272–8.CrossRefGoogle Scholar
  9. 9.
    Lee KR, Colon GP, Betz AL, Keep RF, Kim S, Hoff JT. Edema from intracerebral hemorrhage: the role of thrombin. J Neurosurg. 1996;84(1):91–6.CrossRefGoogle Scholar
  10. 10.
    Wang G, Shao A, Hu W, Xue F, Zhao H, Jin X, et al. Changes of ferrous iron and its transporters after intracerebral hemorrhage in rats. Int J Clin Exp Pathol. 2015;8(9):10671–9.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Wang G, Hu W, Tang Q, Wang L, Sun XG, Chen Y, et al. Effect comparison of both iron chelators on outcomes, iron deposit, and iron transporters after intracerebral hemorrhage in rats. Mol Neurobiol. 2016;53(6):3576–85.CrossRefGoogle Scholar
  12. 12.
    Qing WG, Dong YQ, Ping TQ, Lai LG, Fang LD, Min HW, et al. Brain edema after intracerebral hemorrhage in rats: the role of iron overload and aquaporin 4. J Neurosurg. 2009;110(3):462–8.CrossRefGoogle Scholar
  13. 13.
    Mendelow AD, Gregson BA, Fernandes HM, Murray GD, Teasdale GM, Hope DT, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet. 2005;365(9457):387–97.CrossRefGoogle Scholar
  14. 14.
    Qureshi AI, Palesch YY, Barsan WG, Hanley DF, Hsu CY, Martin RL, et al. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med. 2016;375(11):1033–43.PubMedCentralCrossRefGoogle Scholar
  15. 15.
    Song S, Hua Y, Keep RF, He Y, Wang J, Wu J, et al. Deferoxamine reduces brain swelling in a rat model of hippocampal intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:13–8.CrossRefGoogle Scholar
  16. 16.
    Okauchi M, Hua Y, Keep RF, Morgenstern LB, Xi G. Effects of deferoxamine on intracerebral hemorrhage-induced brain injury in aged rats. Stroke. 2009;40(5):1858–63.PubMedCentralCrossRefGoogle Scholar
  17. 17.
    Yeatts SD, Palesch YY, Moy CS, Selim M. High dose deferoxamine in intracerebral hemorrhage (HI-DEF) trial: rationale, design, and methods. Neurocrit Care. 2013;19(2):257–66.PubMedCentralCrossRefGoogle Scholar
  18. 18.
    Broderick J, Connolly S, Feldmann E, Hanley D, Kase C, Krieger D, et al. Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: a guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Stroke. 2007;38(6):2001–23.CrossRefGoogle Scholar
  19. 19.
    Bhattathiri PS, Gregson B, Prasad KS, Mendelow AD, Investigators S. Intraventricular hemorrhage and hydrocephalus after spontaneous intracerebral hemorrhage: results from the STICH trial. Acta Neurochir Suppl. 2006;96:65–8.CrossRefGoogle Scholar
  20. 20.
    Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet. 2013;382(9890):397–408.PubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gregson BA, Broderick JP, Auer LM, Batjer H, Chen XC, Juvela S, et al. Individual patient data subgroup meta-analysis of surgery for spontaneous supratentorial intracerebral hemorrhage. Stroke. 2012;43(6):1496–504.PubMedCentralCrossRefGoogle Scholar
  22. 22.
    Auer LM, Deinsberger W, Niederkorn K, Gell G, Kleinert R, Schneider G, et al. Endoscopic surgery versus medical treatment for spontaneous intracerebral hematoma: a randomized study. J Neurosurg. 1989;70(4):530–5.CrossRefGoogle Scholar
  23. 23.
    Backlund EO, von Holst H. Controlled subtotal evacuation of intracerebral haematomas by stereotactic technique. Surg Neurol. 1978;9(2):99–101.Google Scholar
  24. 24.
    Barrett RJ, Hussain R, Coplin WM, Berry S, Keyl PM, Hanley DF, et al. Frameless stereotactic aspiration and thrombolysis of spontaneous intracerebral hemorrhage. Neurocrit Care. 2005;3(3):237–45.CrossRefGoogle Scholar
  25. 25.
    Higgins AC, Nashold BS, Cosman E. Stereotactic evacuation of primary intracerebral hematomas: new instrumentation. Appl Neurophysiol. 1982;45(4–5):438–42.Google Scholar
  26. 26.
    Marquardt G, Wolff R, Janzen RW, Seifert V. Basal ganglia haematomas in non-comatose patients: subacute stereotactic aspiration improves long-term outcome in comparison to purely medical treatment. Neurosurg Rev. 2005;28(1):64–9.Google Scholar
  27. 27.
    Mould WA, Carhuapoma JR, Muschelli J, Lane K, Morgan TC, McBee NA, et al. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke. 2013;44(3):627–34.PubMedCentralCrossRefGoogle Scholar
  28. 28.
    Newell DW, Shah MM, Wilcox R, Hansmann DR, Melnychuk E, Muschelli J, et al. Minimally invasive evacuation of spontaneous intracerebral hemorrhage using sonothrombolysis. J Neurosurg. 2011;115(3):592–601.PubMedCentralCrossRefGoogle Scholar
  29. 29.
    Zhou X, Chen J, Li Q, Ren G, Yao G, Liu M, et al. Minimally invasive surgery for spontaneous supratentorial intracerebral hemorrhage: a meta-analysis of randomized controlled trials. Stroke. 2012;43(11):2923–30.CrossRefGoogle Scholar
  30. 30.
    Naff N, Williams MA, Keyl PM, Tuhrim S, Bullock MR, Mayer SA, et al. Low-dose recombinant tissue-type plasminogen activator enhances clot resolution in brain hemorrhage: the intraventricular hemorrhage thrombolysis trial. Stroke. 2011;42(11):3009–16.PubMedCentralCrossRefGoogle Scholar
  31. 31.
    Daverat P, Castel JP, Dartigues JF, Orgogozo JM. Death and functional outcome after spontaneous intracerebral hemorrhage. A prospective study of 166 cases using multivariate analysis. Stroke. 1991;22(1):1–6.CrossRefGoogle Scholar
  32. 32.
    Hallevi H, Albright KC, Aronowski J, Barreto AD, Martin-Schild S, Khaja AM, et al. Intraventricular hemorrhage: Anatomic relationships and clinical implications. Neurology. 2008;70(11):848–52.PubMedCentralCrossRefGoogle Scholar
  33. 33.
    Fiorella D, Gutman F, Woo H, Arthur A, Aranguren R, Davis R. Minimally invasive evacuation of parenchymal and ventricular hemorrhage using the Apollo system with simultaneous neuronavigation, neuroendoscopy and active monitoring with cone beam CT. J Neurointerv Surg. 2015;7(10):752–7.CrossRefGoogle Scholar
  34. 34.
    Spiotta AM, Fiorella D, Vargas J, Khalessi A, Hoit D, Arthur A, et al. Initial multicenter technical experience with the Apollo device for minimally invasive intracerebral hematoma evacuation. Neurosurgery. 2015;11(Suppl 2):243–51. discussion 51CrossRefGoogle Scholar
  35. 35.
    Tan LA, Lopes DK, Munoz LF, Shah Y, Bhabad S, Jhaveri M, et al. Minimally invasive evacuation of intraventricular hemorrhage with the Apollo vibration/suction device. J Clin Neurosci. 2016;27:53–8.CrossRefGoogle Scholar
  36. 36.
    Turner RD, Vargas J, Turk AS, Chaudry MI, Spiotta AM. Novel device and technique for minimally invasive intracerebral hematoma evacuation in the same setting of a ruptured intracranial aneurysm: combined treatment in the neurointerventional angiography suite. Neurosurgery. 2015;11(Suppl 2):43–50; discussion−1.PubMedGoogle Scholar
  37. 37.
    Ding D, Przybylowski CJ, Starke RM, Sterling Street R, Tyree AE, Webster Crowley R, et al. A minimally invasive anterior skull base approach for evacuation of a basal ganglia hemorrhage. J Clin Neurosci. 2015;22(11):1816–9.CrossRefGoogle Scholar
  38. 38.
    Przybylowski CJ, Ding D, Starke RM, Webster Crowley R, Liu KC. Endoport-assisted surgery for the management of spontaneous intracerebral hemorrhage. J Clin Neurosci. 2015;22(11):1727–32.CrossRefGoogle Scholar
  39. 39.
    Labib MA, Shah M, Kassam AB, Young R, Zucker L, Maioriello A, et al. The safety and feasibility of image-guided BrainPath-mediated transsulcul hematoma evacuation: a Multicenter Study. Neurosurgery. 2017;80(4):515–24.PubMedGoogle Scholar
  40. 40.
    Fiorella D, Arthur AS, Mocco JD. 305 The INVEST trial: a randomized, controlled trial to investigate the safety and efficacy of image-guided minimally invasive endoscopic surgery with Apollo vs best medical management for supratentorial intracerebral hemorrhage. Neurosurgery. 2016;63(Suppl 1):187.CrossRefGoogle Scholar
  41. 41.
    Bauer AM, Rasmussen PA, Bain MD. Initial single-center technical experience with the BrainPath system for acute intracerebral hemorrhage evacuation. Oper Neurosurg. 2016;0:1–7.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jan Vargas
    • 1
  • Alejandro M. Spiotta
    • 1
  • Raymond D. Turner
    • 1
    Email author
  1. 1.Department of NeurosurgeryMedical University of South CarolinaCharlestonUSA

Personalised recommendations