Advertisement

Making Any Attribute-Based Encryption Accountable, Efficiently

  • Junzuo Lai
  • Qiang Tang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11099)

Abstract

Attribute-based encryption (ABE) as one of the most interesting multi-recipient public encryption systems, naturally requires some “tracing mechanisms” to identify misbehaving users to foster accountability when unauthorized key re-distributions are taken place.

We give a generic construction of (black-box) traceable ABE which only doubles the ciphertext size of the underlying ABE scheme. When instantiating properly, it yields the first such scheme with constant size ciphertext and expressive access control.

Furthermore, we extend our generic construction of traceable ABE to support authority accountability. This property is essential for generating an un-deniable proof for user misbehaviors. Our new generic construction gives the first black-box traceable ABE with authority accountability, and constant size ciphertext. All properties are achieved in standard security models.

Notes

Acknowledgement

We are grateful to the anonymous reviewers for their helpful comments. The work of Junzuo Lai was supported by National Natural Science Foundation of China (No. 61572235), and Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2015A030306045). Qiang Tang was partially supported by NSFC Fund for Oversea Chinese Scholars (No. 61728208).

References

  1. 1.
    Amiri, E., Tardos, G.: High rate fingerprinting codes and the fingerprinting capacity. In: SODA, pp. 336–345 (2009)Google Scholar
  2. 2.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)Google Scholar
  3. 3.
    Boneh, D., Kiayias, A. Montgomery, H.W.: Robust fingerprinting codes: a near optimal construction. In: DRM, pp. 3–12 (2010)Google Scholar
  4. 4.
    Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: CCS, pp. 501–510 (2008)Google Scholar
  5. 5.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48658-5_25CrossRefGoogle Scholar
  7. 7.
    Dwork, C., Lotspiech, J.B., Naor, M.: Digital signets: self-enforcing protection of digital information (preliminary version). In: STOC, pp. 489–498 (1996)Google Scholar
  8. 8.
    Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_27CrossRefGoogle Scholar
  9. 9.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC, pp. 545–554 (2013)Google Scholar
  10. 10.
    Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74143-5_24CrossRefGoogle Scholar
  11. 11.
    Goyal, V., Lu, S., Sahai, A., Waters, B.: Black-box accountable authority identity-based encryption. In: ACM Conference on Computer and Communications Security, pp. 427–436 (2008)Google Scholar
  12. 12.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM Conference on Computer and Communications Security, pp. 89–98 (2006)Google Scholar
  13. 13.
    Katz, J., Schr\(\ddot{o}\)der, D.: Tracing insider attacks in the context of predicate encryption schemes. In: ACITA (2011)Google Scholar
  14. 14.
    Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang, Q.: Communication optimal tardos-based asymmetric fingerprinting. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 469–486. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16715-2_25CrossRefGoogle Scholar
  15. 15.
    Kiayias, A., Pehlivanoglu, S.: Encryption for Digital Content. Advances in Information Security, vol. 52. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-1-4419-0044-9CrossRefMATHGoogle Scholar
  16. 16.
    Kiayias, A., Tang, Q.: How to keep a secret: leakage deterring public-key cryptosystems. In: ACM CCS 2013, pp. 943–954 (2013)Google Scholar
  17. 17.
    Kiayias, A., Tang, Q.: Traitor deterring schemes: using bitcoin as collateral for digital contents. In: ACM CCS 2015, pp. 231–242 (2015)Google Scholar
  18. 18.
    Kiayias, A., Tang, Q.: Making any identity-based encryption accountable, efficiently. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 326–346. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24174-6_17CrossRefGoogle Scholar
  19. 19.
    Lai, J., Deng, R.H., Zhao, Y., Weng, J.: Accountable authority identity-based encryption with public traceability. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 326–342. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36095-4_21CrossRefGoogle Scholar
  20. 20.
    Li, J., Huang, Q., Chen, X., Chow, S.S.M., Wong, D.S., Xie, D.: Multi-authority ciphertext-policy attribute-based encryption with accountability. In: ASIACCS, pp. 386–390 (2011)Google Scholar
  21. 21.
    Libert, B., Vergnaud, D.: Towards black-box accountable authority IBE with short ciphertexts and private keys. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 235–255. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00468-1_14CrossRefGoogle Scholar
  22. 22.
    Liu, Z., Cao, Z., Wong, D.S.: Blackbox traceable CP-ABE: how to catch people leaking their keys by selling decryption devices on eBay. In: ACM Conference on Computer and Communications Security, pp. 475–486 (2013)Google Scholar
  23. 23.
    Liu, Z., Cao, Z., Wong, D.S.: White-box traceable ciphertext-policy attribute-based encryption supporting any monotone access structures. IEEE Trans. Inf. Forensics Secur. 8(1), 76–88 (2013)CrossRefGoogle Scholar
  24. 24.
    Ning, J., Cao, Z., Dong, X., Wei, L., Lin, X.: Large universe ciphertext-policy attribute-based encryption with white-box traceability. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 55–72. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11212-1_4CrossRefGoogle Scholar
  25. 25.
    Ning, J., Dong, X., Cao, Z., Wei, L.: Accountable authority ciphertext-policy attribute-based encryption with white-box traceability and public auditing in the cloud. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 270–289. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24177-7_14CrossRefGoogle Scholar
  26. 26.
    Pfitzmann, B., Schunter, M.: Asymmetric fingerprinting. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 84–95. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68339-9_8CrossRefGoogle Scholar
  27. 27.
    Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large universe attribute-based encryption. In: CCS, pp. 463–474 (2013)Google Scholar
  28. 28.
    Sahai, A., Seyalioglu, H.: Fully secure accountable-authority identity-based encryption. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 296–316. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_19CrossRefGoogle Scholar
  29. 29.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_27CrossRefGoogle Scholar
  30. 30.
    Tardos, G.: Optimal probabilistic fingerprint codes. J. ACM 55(2), 10:1–10:24 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Yuen, T.H., Chow, S.S., Zhang, C., Yiu, S.M.: Exponent-inversion signatures and IBE under static assumptions. Cryptology ePrint Archive, Report 2014/311 (2014). http://eprint.iacr.org/
  32. 32.
    Zhang, Y., Li, J., Zheng, D., Chen, X., Li, H.: Accountable large-universe attribute-based encryption supporting any monotone access structures. In: Liu, J.K.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9722, pp. 509–524. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40253-6_31CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Ji’nan UniversityGuangzhouChina
  2. 2.State Key Laboratory of CryptologyBeijingChina
  3. 3.New Jersey Institute of TechnologyNewarkUSA

Personalised recommendations