Constant-Round Client-Aided Secure Comparison Protocol

  • Hiraku MoritaEmail author
  • Nuttapong Attrapadung
  • Tadanori Teruya
  • Satsuya Ohata
  • Koji Nuida
  • Goichiro Hanaoka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11099)


We present an improved constant-round secure two-party protocol for integer comparison functionality, which is one of the most fundamental building blocks in secure computation.

Our protocol is in the so-called client-server model, which is utilized in real-world MPC products such as Sharemind, where any number of clients can create shares of their input and distribute to the servers who then jointly compute over the shares and return the shares of result to the client. In the client-aided client-server model, as mentioned briefly by Mohassel and Zhang (S&P’17), a client further generates and distributes some necessary correlated randomness to servers. Such correlated randomness admits efficient protocols since otherwise servers have to jointly generate randomness by themselves, which can be inefficient.

In this paper, we improve the state-of-the-art constant-round comparison protocols by Damgård et al. (TCC’06) and Nishide and Ohta (PKC’07) in the client-aided model. Our techniques include identifying correlated randomness in these comparison protocols. Along the way, we also use tree-based techniques for a building block, which deviate from the above two works. Our proposed protocol requires only 5 communication rounds, regardless of the bit length of inputs. This is at least 5 times fewer rounds than existing protocols. We implement our secure comparison protocol in C++. Our experimental results show that this low-round complexity benefits in low-latency networks such as WAN.


Multi-party computation Client-server model Client-aided method Less-than comparison Constant rounds GMW secret sharing 



This work was supported by JST CREST JPMJCR1688.

Supplementary material


  1. 1.
    Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 805–817 (2016)Google Scholar
  2. 2.
    Attrapadung, N., Hanaoka, G., Kiyomoto, S., Mimoto, T., Schuldt, J.C.N.: A taxonomy of secure two-party comparison protocols and efficient constructions. In: 15th Annual Conference on Privacy, Security and Trust, PST 2017, Calgary, Canada, 28–30 August 2017. IEEE (2017)Google Scholar
  3. 3.
    Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). Scholar
  4. 4.
    Blake, I.F., Kolesnikov, V.: Strong conditional oblivious transfer and computing on intervals. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 515–529. Springer, Heidelberg (2004). Scholar
  5. 5.
    Blake, I.F., Kolesnikov, V.: Conditional encrypted mapping and comparing encrypted numbers. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 206–220. Springer, Heidelberg (2006). Scholar
  6. 6.
    Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer computation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 182–199. Springer, Heidelberg (2010). Scholar
  7. 7.
    Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). Scholar
  8. 8.
    Damgård, I., Geisler, M., Krøigaard, M.: Homomorphic encryption and secure comparison. IJACT 1(1), 22–31 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Damgard, I., Geisler, M., Kroigard, M.: A correction to ‘efficient and secure comparison for on-line auctions’. Int. J. Appl. Cryptogr. 1(4), 323–324 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    David, B., Dowsley, R., Katti, R., Nascimento, A.C.A.: Efficient unconditionally secure comparison and privacy preserving machine learning classification protocols. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 354–367. Springer, Cham (2015). Scholar
  11. 11.
    Garay, J., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 330–342. Springer, Heidelberg (2007). Scholar
  12. 12.
    Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  13. 13.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: 1987 Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pp. 218–229 (1987)Google Scholar
  14. 14.
    Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: SP 2017, pp. 19–38 (2017)Google Scholar
  15. 15.
    Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007). Scholar
  16. 16.
    Reistad, T.I.: Multiparty comparison - an improved multiparty protocol for comparison of secret-shared values. In: SECRYPT 2009, pp. 325–330 (2009)Google Scholar
  17. 17.
    Reistad, T.I., Toft, T.: Secret sharing comparison by transformation and rotation. In: Desmedt, Y. (ed.) ICITS 2007. LNCS, vol. 4883, pp. 169–180. Springer, Heidelberg (2009). Scholar
  18. 18.
    Reistad, T., Toft, T.: Linear, constant-rounds bit-decomposition. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 245–257. Springer, Heidelberg (2010). Scholar
  19. 19.
    Rivest, R.L.: Unconditionally secure commitment and oblivious transfer schemes using private channels and a trusted initializer (1999, unpublished manuscript)Google Scholar
  20. 20.
    Schneider, T., Zohner, M.: GMW vs. yao? Efficient secure two-party computation with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 275–292. Springer, Heidelberg (2013). Scholar
  21. 21.
    Schoenmakers, B., Tuyls, P.: Practical two-party computation based on the conditional gate. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 119–136. Springer, Heidelberg (2004). Scholar
  22. 22.
    Veugen, T.: Encrypted integer division and secure comparison. Int. J. Appl. Cryptol. 3(2), 166–180 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Veugen, T., Blom, F., de Hoogh, S.J.A., Erkin, Z.: Secure comparison protocols in the semi-honest model. J. Sel. Top. Sig. Process. 9(7), 1217–1228 (2015)CrossRefGoogle Scholar
  24. 24.
    Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27–29 October 1986, pp. 162–167. IEEE Computer Society (1986)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Hiraku Morita
    • 1
    Email author
  • Nuttapong Attrapadung
    • 1
  • Tadanori Teruya
    • 1
  • Satsuya Ohata
    • 1
  • Koji Nuida
    • 2
  • Goichiro Hanaoka
    • 1
  1. 1.AISTTokyoJapan
  2. 2.The University of TokyoTokyoJapan

Personalised recommendations