# Scalable Wildcarded Identity-Based Encryption

## Abstract

Wildcarded identity-based encryption allows a sender to simultaneously encrypt messages to a group of users matching a certain pattern, defined as a sequence of identifiers and wildcards. We propose a new wildcarded identity-based encryption scheme with generalized key delegation, which reduces the ciphertext size to be constant. To the best of our knowledge, our proposal is the first wildcarded identity-based encryption scheme that generates a constant size ciphertext regardless of the depth of the identities. The proposed scheme also improves the decryption time by minimizing the wildcard conversion cost. According to our experiment results, decryption of the proposed scheme is 3, 10, and 650 times faster than existing WIBE, WW-IBE, and CCP-ABE schemes. The proposal also subsumes the generalized key derivation naturally by allowing wildcards in the key delegation process. We prove CPA security of the proposed scheme and extend it to be CCA secure.

## Keywords

Wildcard identity based encryption Constant ciphertext Key delegation Pattern## Notes

### Acknowledgement

This work was supported by Institute for Information and communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2016-6-00599, A Study on Functional Signature and Its Applications and No. 2017-0-00661, Prevention of video image privacy infringement and authentication technique), by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2017R1A2B4009903 and No. 2016R1D1A1B03934545), and by Basic Research Laboratory Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) (No. 2017R1A4A1015498).

## References

- 1.Abdalla, M., Caro, A.D., Phan, D.H.: Generalized key delegation for wildcarded identity-based and inner-product encryption. IEEE Trans. Inf. Forensics Secur.
**7**(6), 1695–1706 (2012). https://doi.org/10.1109/TIFS.2012.2213594CrossRefGoogle Scholar - 2.Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.: Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_26CrossRefGoogle Scholar
- 3.Abdalla, M., Kiltz, E., Neven, G.: Generalized key delegation for hierarchical identity-based encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 139–154. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74835-9_10CrossRefGoogle Scholar
- 4.Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption, pp. 321–334. IEEE Computer Society (2007)Google Scholar
- 5.Birkett, J., Dent, A.W., Neven, G., Schuldt, J.C.N.: Efficient chosen-ciphertext secure identity-based encryption with wildcards. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 274–292. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73458-1_21CrossRefGoogle Scholar
- 6.Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_26CrossRefGoogle Scholar
- 7.Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13CrossRefGoogle Scholar
- 8.Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. SIAM J. Comput.
**32**(3), 586–615 (2003)MathSciNetCrossRefGoogle Scholar - 9.Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_13CrossRefGoogle Scholar
- 10.Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A ciphertext-policy attribute-based encryption scheme with constant ciphertext length. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 13–23. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00843-6_2CrossRefGoogle Scholar
- 11.Joux, A.: Multicollisions in iterated hash functions. Application to cascaded constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_19CrossRefzbMATHGoogle Scholar
- 12.Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5CrossRefGoogle Scholar
- 13.Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_7CrossRefGoogle Scholar
- 14.Zhou, Z., Huang, D.: On efficient ciphertext-policy attribute based encryption and broadcast encryption: extended abstract. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS, pp. 753–755 (2010)Google Scholar