Dynamic Searchable Symmetric Encryption Schemes Supporting Range Queries with Forward (and Backward) Security

  • Cong Zuo
  • Shi-Feng SunEmail author
  • Joseph K. Liu
  • Jun Shao
  • Josef Pieprzyk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11099)


Dynamic searchable symmetric encryption (DSSE) is a useful cryptographic tool in encrypted cloud storage. However, it has been reported that DSSE usually suffers from file-injection attacks and content leak of deleted documents. To mitigate these attacks, forward security and backward security have been proposed. Nevertheless, the existing forward/backward-secure DSSE schemes can only support single keyword queries. To address this problem, in this paper, we propose two DSSE schemes supporting range queries. One is forward-secure and supports a large number of documents. The other can achieve both forward security and backward security, while it can only support a limited number of documents. Finally, we also give the security proofs of the proposed DSSE schemes in the random oracle model.


Dynamic searchable symmetric encryption Forward security Backward security Range queries 



The authors thank the anonymous reviewers for the valuable comments. This work was supported by the Natural Science Foundation of Zhejiang Province [grant number LZ18F020003], the National Natural Science Foundation of China [grant number 61472364] and the Australian Research Council (ARC) Grant DP180102199. Josef Pieprzyk has been supported by National Science Centre, Poland, project registration number UMO-2014/15/B/ST6/05130.


  1. 1.
    Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for numeric data. In: Proceedings of the 2004 ACM SIGMOD Ninterational Conference on Management of Data, pp. 563–574. ACM (2004)Google Scholar
  2. 2.
    Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241. Springer, Heidelberg (2009). Scholar
  3. 3.
    Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revisited: improved security analysis and alternative solutions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (2011). Scholar
  4. 4.
    Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Semantically secure order-revealing encryption: multi-input functional encryption without obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 563–594. Springer, Heidelberg (2015). Scholar
  5. 5.
    Bost, R.: \({\rm \Sigma }\) o\(\varphi \)o\(\varsigma \): forward secure searchable encryption. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1143–1154. ACM (2016)Google Scholar
  6. 6.
    Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable encryption from constrained cryptographic primitives. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1465–1482. ACM (2017)Google Scholar
  7. 7.
    Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against searchable encryption. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 668–679. ACM (2015)Google Scholar
  8. 8.
    Cash, D., et al.: Dynamic searchable encryption in very-large databases: data structures and implementation. In: NDSS, vol. 14, pp. 23–26. Citeseer (2014)Google Scholar
  9. 9.
    Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-scalable searchable symmetric encryption with support for boolean queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg (2013). Scholar
  10. 10.
    Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical order-revealing encryption with limited leakage. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 474–493. Springer, Heidelberg (2016). Scholar
  11. 11.
    Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 79–88. ACM (2006)Google Scholar
  12. 12.
    Demertzis, I., Papadopoulos, S., Papapetrou, O., Deligiannakis, A., Garofalakis, M.: Practical private range search revisited. In: Proceedings of the 2016 International Conference on Management of Data, pp. 185–198. ACM (2016)Google Scholar
  13. 13.
    Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M., Steiner, M.: Rich queries on encrypted data: beyond exact matches. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 123–145. Springer, Cham (2015). Scholar
  14. 14.
    Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 965–976. ACM (2012)Google Scholar
  15. 15.
    Kasra Kermanshahi, S., Liu, J.K., Steinfeld, R.: Multi-user cloud-based secure keyword search. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp. 227–247. Springer, Cham (2017). Scholar
  16. 16.
    Kim, K.S., Kim, M., Lee, D., Park, J.H., Kim, W.H.: Forward secure dynamic searchable symmetric encryption with efficient updates. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1449–1463. ACM (2017)Google Scholar
  17. 17.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). Scholar
  18. 18.
    Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: Proceedings 2000 IEEE Symposium on Security and Privacy. S&P 2000, pp. 44–55. IEEE (2000)Google Scholar
  19. 19.
    Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small leakage. In: NDSS, vol. 71, pp. 72–75 (2014)Google Scholar
  20. 20.
    Sun, S.-F., Liu, J.K., Sakzad, A., Steinfeld, R., Yuen, T.H.: An efficient non-interactive multi-client searchable encryption with support for boolean queries. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 154–172. Springer, Cham (2016). Scholar
  21. 21.
    Wang, Y., Wang, J., Sun, S.-F., Liu, J.K., Susilo, W., Chen, X.: Towards multi-user searchable encryption supporting boolean query and fast decryption. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.) ProvSec 2017. LNCS, vol. 10592, pp. 24–38. Springer, Cham (2017). Scholar
  22. 22.
    Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to Us: the power of file-injection attacks on searchable encryption. In: USENIX Security Symposium, pp. 707–720 (2016)Google Scholar
  23. 23.
    Zuo, C., Macindoe, J., Yang, S., Steinfeld, R., Liu, J.K.: Trusted boolean search on cloud using searchable symmetric encryption. In: Trustcom/BigDataSE/ISPA, 2016 IEEE, pp. 113–120. IEEE (2016)Google Scholar
  24. 24.
    Zuo, C., Sun, S.F., Liu, J.K., Shao, J., Pieprzyk, J.: Dynamic searchable symmetric encryption schemes supporting range queries with forward (and backward) security. IACR Cryptology ePrint Archive (2018).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Cong Zuo
    • 1
    • 2
  • Shi-Feng Sun
    • 1
    • 2
    Email author
  • Joseph K. Liu
    • 1
  • Jun Shao
    • 3
  • Josef Pieprzyk
    • 2
    • 4
  1. 1.Faculty of Information TechnologyMonash UniversityClaytonAustralia
  2. 2.Data61, CSIROMelbourne/SydneyAustralia
  3. 3.School of Computer and Information EngineeringZhejiang Gongshang UniversityHangzhouChina
  4. 4.Institute of Computer SciencePolish Academy of SciencesWarsawPoland

Personalised recommendations