Advertisement

Symmetric Searchable Encryption with Sharing and Unsharing

  • Sarvar Patel
  • Giuseppe Persiano
  • Kevin Yeo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11099)

Abstract

In this paper, we study Symmetric Searchable Encryption (SSE) in a multi-user setting in which each user dynamically shares its documents with selected other users, allowing sharees also to perform searches. We introduce the concept of a Symmetric Searchable Encryption with Sharing and Unsharing, an extension of Multi-Key Searchable Encryption (NSDI ’14), that supports dynamic sharing and unsharing of documents amongst users. We also strengthen the security notion by considering a simulation-based notion that does not restrict sharing between honest and compromised users.

We present the notion of cross-user leakage, the information leaked about a user’s documents and/or queries from the queries of other users, and introduce a novel technique to quantify cross-user leakage. Specifically, we model cross-user leakage by using a graph where nodes correspond to users and the presence of edges between two nodes indicates the existence of cross-user leakage between the two adjacent users. The statistics on the connected components of the cross-user leakage graph provide a quantifiable way to compare the leakage of multi-user schemes which has eluded previous works.

Our main technical contribution is mx-u, an efficient scheme with small cross-user leakage, whose security is based on the decisional Diffie-Hellman assumption. We prove a tight bound on the leakage of mx-u in the presence of an honest-but-curious adversary that colludes with a non-adaptively chosen subset of users. We report on experiments showing that mx-u is efficient and that cross-user leakage grows slowly as queries are performed.

Keywords

Cryptography Cloud storage Searchable encryption 

References

  1. 1.
    Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption: optimal locality in linear space via two-dimensional balanced allocations. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, pp. 1101–1114. ACM (2016)Google Scholar
  2. 2.
    Asharov, G., Segev, G., Shahaf, I.: Tight tradeoffs in searchable symmetric encryption. Cryptology ePrint Archive, Report 2018/507 (2018). https://eprint.iacr.org/2018/507
  3. 3.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_30CrossRefGoogle Scholar
  4. 4.
    Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against searchable encryption. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS 2015, pp. 668–679 (2015)Google Scholar
  5. 5.
    Cash, D., et al.: Dynamic searchable encryption in very-large databases: data structures and implementation. In: NDSS, vol. 14, pp. 23–26. Citeseer (2014)Google Scholar
  6. 6.
    Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-scalable searchable symmetric encryption with support for boolean queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_20CrossRefGoogle Scholar
  7. 7.
    Cash, D., Tessaro, S.: The locality of searchable symmetric encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 351–368. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_20CrossRefGoogle Scholar
  8. 8.
    Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17373-8_33. Also Cryptology ePrint Archive, Report 2006/210CrossRefGoogle Scholar
  9. 9.
    Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 79–88 (2006). Also Cryptology ePrint Archive, Report 2006/210Google Scholar
  10. 10.
    Demertzis, I., Papadopoulos, D., Papamanthou, C.: Searchable encryption with optimal locality: achieving sublogarithmic read efficiency. Cryptology ePrint Archive, Report 2017/749 (2017). https://eprint.iacr.org/2017/749
  11. 11.
    Demertzis, I., Papamanthou, C.: Fast searchable encryption with tunable locality. In: Proceedings of the 2017 ACM International Conference on Management of Data, pp. 1053–1067. ACM (2017)Google Scholar
  12. 12.
    Dong, C., Russello, G., Dulay, N.: Shared and searchable encrypted data for untrusted servers. In: Atluri, V. (ed.) DBSec 2008. LNCS, vol. 5094, pp. 127–143. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70567-3_10CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Grubbs, P., McPherson, R., Naveed, M., Ristenpart, T., Shmatikov, V.: Breaking web applications built on top of encrypted data. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1353–1364. ACM (2016)Google Scholar
  15. 15.
    Hamlin, A., Shelat, A., Weiss, M., Wichs, D.: Multi-key searchable encryption, revisited. Cryptology ePrint Archive, Report 2018/018 (2018). https://eprint.iacr.org/2018/018
  16. 16.
    Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., et al. (eds.) FC 2010. LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14992-4_13CrossRefGoogle Scholar
  17. 17.
    Kamara, S., Moataz, T.: Boolean searchable symmetric encryption with worst-case sub-linear complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 94–124. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56617-7_4CrossRefGoogle Scholar
  18. 18.
    Kamara, S., Moataz, T., Ohrimenko, O.: Structured encryption and leakage suppression. Cryptology ePrint Archive, Report 2018/551 (2018). https://eprint.iacr.org/2018/551
  19. 19.
    Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 965–976. ACM (2012)Google Scholar
  20. 20.
    Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Generic attacks on secure outsourced databases. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1329–1340. ACM (2016)Google Scholar
  21. 21.
    Kiayias, A., Oksuz, O., Russell, A., Tang, Q., Wang, B.: Efficient encrypted keyword search for multi-user data sharing. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 173–195. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45744-4_9CrossRefGoogle Scholar
  22. 22.
    Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving encrypted databases. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 644–655. ACM (2015)Google Scholar
  23. 23.
    Ohrimenko, O., Goodrich, M.T., Tamassia, R., Upfal, E.: The melbourne shuffle: improving oblivious storage in the cloud. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 556–567. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43951-7_47CrossRefGoogle Scholar
  24. 24.
    Pappas, V., et al.: Blind seer: a scalable private DBMS. In: Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP 2014, pp. 359–374. IEEE Computer Society (2014)Google Scholar
  25. 25.
    Patel, S., Persiano, G., Yeo, K.: CacheShuffle: an oblivious shuffle algorithm using caches. arXiv preprint arXiv:1705.07069 (2017)
  26. 26.
    Patel, S., Persiano, G., Yeo, K.: Symmetric searchable encryption with sharing and unsharing. Cryptology ePrint Archive, Report 2017/973 (2017). https://eprint.iacr.org/2017/973
  27. 27.
    Popa, R.A., Zeldovich, N.: Multi-key searchable encryption. Cryptology ePrint Archive, Report 2013/508 (2013)Google Scholar
  28. 28.
    Pouliot, D., Wright, C.V.: The shadow nemesis: inference attacks on efficiently deployable, efficiently searchable encryption. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 2016, pp. 1341–1352 (2016)Google Scholar
  29. 29.
    Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: Proceedings of the 2000 IEEE Symposium on Security and Privacy, pp. 44–55 (2000)Google Scholar
  30. 30.
    Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small leakage. In: NDSS, vol. 71, pp. 72–75 (2014)Google Scholar
  31. 31.
    Uthus, D.: Ubuntu chat corpus. http://daviduthus.org/UCC/
  32. 32.
    Van Rompay, C., Molva, R., Önen, M.: A leakage-abuse attack against multi-user searchable encryption. Proc. Priv. Enhanc. Technol. 2017(3), 168–178 (2017)CrossRefGoogle Scholar
  33. 33.
    Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the power of file-injection attacks on searchable encryption. Cryptology ePrint Archive, Report 2016/172 (2016). http://eprint.iacr.org/2016/172

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Google LLCMountain ViewUSA
  2. 2.Università di SalernoFiscianoItaly

Personalised recommendations