Geometric and Topological Modelling of Organs and Vascular Structures from CT Data

  • João Fradinho OliveiraEmail author
  • José Blas Pagador
  • José Luis Moyano-Cuevas
  • Francisco Miguel Sánchez-Margallo
  • Hugo Capote


Automatic segmentation of organs in CT scans is a field of rising interest for the generation of 3D models that can help surgery planning, training and support during surgical procedures. However, the reconstruction and visualization of 3D models of organs with vascular structures present several modelling problems. In this chapter, we review these problems and describe a methodology that allows for the reconstruction to be automatic. In particular this chapter describes and illustrates: how to transform and extract 3D geometry from sets of planar contours/polygons annotated on DICOM images, a solution for enforcing polygon vertex order consistency, polygon triangulation by ear clipping and respective inner angle calculation for irregular polygons, a polygon tiling algorithm for stitching contours in adjacent slices, a file format for storing multiple polygons per slice and support for storing their correspondences with other polygons in other slices. Finally, we show how these algorithms can be used together to build different reconstruction solutions: surface-based reconstruction for organs with simple topology, composite surfaces for organs with branching, single surface with branching and polygon extrusion for topologically complex vascular structures. We conclude by showing how organs and vascular structures can be viewed together using transparency.


3D reconstruction Intraoperative spatial cognitive support Computed tomography VTK IGSTK 



This work was partially funded by Programa de Cooperación Transfronteriza España Portugal (POCTEP) and Fondo Europeo de Desarrollo Regional (FEDER) Reference code: 0401_RITECA_II_4_E.


  1. 1.
    D. Meyers, Reconstruction of Surfaces from Planar Contours, Ph.D. Thesis, University of Washington, 1994Google Scholar
  2. 2.
    J.C. Nebel, in Deformable Avatars. IFIP—The International Federation for Information Processing, ed. by N. Magnenat-Thalmann, D. Thalmann. Soft Tissue Modelling from 3D Scanned Data, vol 68 (Springer, Boston, MA, 2001). CrossRefGoogle Scholar
  3. 3.
    J.F. Oliveira, D. Zhang, B. Spanlang, B. Buxton, Animating scanned human models. J. WSCG 11(2), 362–369 (2003). ISSN: 1213-6972Google Scholar
  4. 4.
    R.C. Gonzalez, R.E. Woods, Digital Image Processing, 3rd edn. (Addison-Wesley Publishing Company, Boston, MA, 1992)Google Scholar
  5. 5.
    N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). CrossRefGoogle Scholar
  6. 6.
    V. Leonardi, V. Vidal, J.-L. Mari, M. Daniel, in 3D Reconstruction from CT-Scan Volume Dataset Application to Kidney Modeling. Proceedings of the 27th Spring Conference on Computer Graphics (SCCG ’11) (2011), pp. 111–120. doi:
  7. 7.
    S. Luo, X. Li, J. Li, Review on the methods of automatic liver segmentation from abdominal images. J. Comput. Commun. 2(2), 1–7 (2014). CrossRefGoogle Scholar
  8. 8.
    A. Gotra, L. Sivakumaran, G. Chartrand, K.N. Vu, F. Vandenbroucke-Menu, C. Kauffmann, S. Kadoury, B. Gallix, J.A. de Guise, A. Tang, Liver segmentation: indications, techniques and future directions. Insights Imaging 8(4), 377–392 (2017). CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    G. Tsechpenakis, in Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, ed. by A. S. El-Baz, U. R. Acharya, M. Mirmehdi, J. S. Suri. Deformable Model-Based Medical Image Segmentation, vol 1 (Springer-Verlag, New York, 2011), pp. 33–67. CrossRefGoogle Scholar
  10. 10.
    M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)CrossRefGoogle Scholar
  11. 11.
    X. Xie, M. Mirmehdi, MAC: magnetostatic active contour model. IEEE TPAMI 30(4), 632–646 (2008). CrossRefGoogle Scholar
  12. 12.
    T.F. Cootes, C.J. Taylor, D.H. Cooper, J. Graham, Active shape models—their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995). CrossRefGoogle Scholar
  13. 13.
    T.F. Cootes, C.J. Taylor, Statistical Models of Appearance for Computer Vision (Imaging Science and Biomedical Engineering, University of Manchester, Manchester, UK, 2004). Tech ReportGoogle Scholar
  14. 14.
    S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988). CrossRefGoogle Scholar
  15. 15.
    Z. Ma, J.M.R.S. Tavares, R.N. Jorge, T. Mascarenhas, A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Comput. Methods Biomech. Biomed. Eng. 13(2), 235–246 (2010). CrossRefGoogle Scholar
  16. 16.
    S. Ghose, A. Oliver, R. Martí, X. Lladó, J. Vilanova, J. Freixenet, J. Mitra, D. Sidibé, F. Meriaudeau, A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images. Comput. Methods Programs Biomed. 108(1), 262–287 (2012). CrossRefPubMedGoogle Scholar
  17. 17.
    P.P.R. Filho, P.C. Cortez, A.C. da Silva Barros, V.H.C. Albuquerque, J.M.R.S. Tavares, Novel and powerful 3D adaptive crisp active contour method applied in the segmentation of CT lung images. Med. Image Anal. 35, 503–516 (2017). CrossRefGoogle Scholar
  18. 18.
    D.A.B. Oliveira, R.Q. Feitosa, M.M. Correia, Segmentation of liver, its vessels and lesions from CT images for surgical planning. Biomed. Eng. Online (2011).
  19. 19.
    M. Archana, S. Ramakrishnan, Segmentation of CT liver images using phase based level set method. Biomed. Sci. Instrum. 49, 7–12 (2013)PubMedGoogle Scholar
  20. 20.
    A. Zidan, N.I. Ghali, A.e. Hassamen, H. Hefny, in Level Set-Based CT Liver Image Segmentation with Watershed and Artificial Neural Networks. 12th International Conference on Hybrid Intelligent Systems (HIS) (2012), pp. 96–102.
  21. 21.
    X. Wang, J. Yang, D. Ai, Y. Zheng, S. Tang, Y. Wang, Adaptive Mesh Expansion Model (AMEM) for liver segmentation from CT image. PLoS One (2015).
  22. 22.
    T. Heimann, H.P. Meinzer, Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009). CrossRefPubMedGoogle Scholar
  23. 23.
    B. Tsagaan, A. Shimizu, H. Kobatake, K. Miyakawa, in Medical Image Computing and Computer-Assisted Intervention, ed. by D. Takeyoshi, R. Kikinis. An Automated Segmentation Method of Kidney Using Statistical Information (Springer, Berlin, Heidelberg, 2002), pp. 556–563 Google Scholar
  24. 24.
    A. Skalski, J. Jakubowski, T. Drewniak, in Kidney Tumor Segmentation and Detection on Computed Tomography Data. IEEE International Conference on Imaging Systems and Techniques (IST) (2016).
  25. 25.
    K.H. Zou, S.K. Warfield, A. Bharatha, C.M.C. Tempany, M.R. Kaus, S.J. Haker, W.M. Wells III, F.A. Jolesz, R. Kikinis, Statistical validation of image segmentation quality based on a spatial overlap index. Acad. Radiol. 11(2), 178–189 (2004). CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    G.C. Lin, W.J. Wang, C.M. Wang, S.Y. Sun, Automated classification of multispectral MR images using Linear Discriminant Analysis. Comput. Med. Imaging Graph. 34(4), 251–268 (2010). CrossRefPubMedGoogle Scholar
  27. 27.
    W. Bieniecki, S. Grabowski, in Nearest Neighbor Classifiers for Color Image Segmentation. Proceedings of the International Conference Modern Problems of Radio Engineering, Telecommunications and Computer Science (2004), pp. 209–212Google Scholar
  28. 28.
    C. Cortes, V. Vapnik, Support vector networks. Mach. Learn. 20(3), 273–297 (1995)Google Scholar
  29. 29.
    D.S. Jodas, A.S. Pereira, J.M.R.S. Tavares, A review of computational methods applied for identification and quantification of atherosclerotic plaques in images. Expert Syst. Appl. 46, 1–14 (2016). CrossRefGoogle Scholar
  30. 30.
    İ. Dağ, B. Saka, D. Irk, Galerkin method for the numerical solution of the RLW equation using quintic B-splines. J. Comput. Appl. Math. 190(1–2), 532–547 (2006). CrossRefGoogle Scholar
  31. 31.
    F. Khalifa, M. Abou El-Ghar, B. Abdollahi, H.B. Frieboes, T. El-Diasty, A. El-Baz, A comprehensive non-invasive framework for automated evaluation of acute renal transplant rejection using DCE-MRI. NMR Biomed. 26(11), 1460–1470 (2013). CrossRefPubMedGoogle Scholar
  32. 32.
    J.-W. Xu, K. Suzuki, in Computer-Aided Detection of Hepatocellular Carcinoma in Hepatic CT: False Positive Reduction with Feature Selection. 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (2011), pp. 1097–1100.
  33. 33.
    Q. Dou, H. Chen, Y. Jin, L. Yu, J. Qin, P.-A. Heng, in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, Lecture Notes in Computer Science, ed. by S. Ourselin, L. Joskowicz, M. Sabuncu, G. Unal, W. Wells. 3D Deeply Supervised Network for Automatic Liver Segmentation from CT Volumes, vol 9901 (Springer, Cham, 2016), pp. 149–157. CrossRefGoogle Scholar
  34. 34.
    H. Madero Orozco, O.O. Vergara Villegas, V.G. Cruz Sánchez, H. J. Ochoa Domínguez, M. J. Nandayapa Alfaro, Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine. Biomed. Eng. Online 14, 9 (2015).
  35. 35.
    Y. Wang, G. Morrell, M.E. Heibrun, A. Payne, D.L. Parker, 3D multi-parametric breast MRI Segmentation using hierarchical support vector machine with coil sensitivity correction. Acad. Radiol. 20(2), 137–147 (2013). CrossRefPubMedGoogle Scholar
  36. 36.
    Y.-C. Lin, J.-L. Wu, I.-C. Lee, C.-H. Wu, A. Kumar, K.-C.J. Liu, Y.-Y. Wang, CT image segmentation with supervised clustering using hierarchical support vector machines. Int. J. Comput. Consum. Control 5(2), 41–49 (2016)Google Scholar
  37. 37.
    Z. Ma, J.M.R.S. Tavares, R. M. Natal Jorge, in A Review on the Current Segmentation Algorithms for Medical Images. International Conference on Computer Imaging Theory and Applications (2009), pp. 135–140Google Scholar
  38. 38.
    A. Rosebrock, Deep Learning for Computer Vision with Python. Pyimagesearch (2017)Google Scholar
  39. 39.
    N.R. Pal, S.K. Pal, A review on image segmentation techniques. Pattern Recogn. 26(9), 1277–1294 (1993). CrossRefGoogle Scholar
  40. 40.
    A. Das, S.K. Sabut, Kernelized fuzzy C-means clustering with adaptive thresholding for segmenting liver tumors. Procedia Comput. Sci. 92, 389–395 (2016). CrossRefGoogle Scholar
  41. 41.
    H. Song, W. Kang, Q. Zhang, S. Wang, Kidney segmentation in CT sequences using SKFCM and improved GrowCut algorithm. BMC Syst. Biol. 9(Suppl 5), S5 (2015). CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    D. Shen, G. Wu, H.-I. Suk, Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017). CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Y. Liu, K. Gadepalli, M. Norouzi, G.E. Dahl, T. Kohlberger, A. Boyko, S. Venugopalan, A. Timofeev, P.Q. Nelson, G.S. Corrado, J.D. Hipp, Detecting Cancer Metastases on Gigapixel Pathology Images. arXiv preprint arXiv:1703.02442 (2017)Google Scholar
  44. 44.
    T. Heimann, B. van Ginneken, M.A. Styner, Y. Arzhaeva, V. Aurich, C. Bauer, A. Beck, C. Becker, R. Beichel, G. Bekes, F. Bello, G. Binnig, H. Bischof, A. Bornik, P.M. Cashman, Y. Chi, A. Cordova, B.M. Dawant, M. Fidrich, J.D. Furst, D. Furukawa, L. Grenacher, J. Hornegger, D. Kainmüller, R.I. Kitney, H. Kobatake, H. Lamecker, T. Lange, J. Lee, B. Lennon, R. Li, S. Li, H.P. Meinzer, G. Nemeth, D.S. Raicu, A.M. Rau, E.M. van Rikxoort, M. Rousson, L. Rusko, K.A. Saddi, G. Schmidt, D. Seghers, A. Shimizu, P. Slagmolen, E. Sorantin, G. Soza, R. Susomboon, J.M. Waite, A. Wimmer, I. Wolf, Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009). CrossRefPubMedGoogle Scholar
  45. 45.
    Sliver, Sliver (2018).
  46. 46.
    C.L. Bajaj, E.J. Coyle, K.-N. Lin, Arbitrary topology shape reconstruction from planar cross sections. Graph. Models Image Process. 58(6), 524–543 (1996). CrossRefGoogle Scholar
  47. 47.
    H.N. Christiansen, T.W. Sederberg, in Conversion of Complex Contour Line Definitions into Polygonal Element Mosaics. SIGGRAPH ’78 (1978), pp. 187–192.
  48. 48.
    ITK, ITK-SNAP (2018).
  49. 49.
    J. Shen, D. Thalmann, in Interactive Shape Design Using Metaballs and Splines. Proc. Eurographics Workshop on Implicit Surfaces ’95 (1995), pp. 187–196Google Scholar
  50. 50.
    W. Schroeder, K. Martin, B. Lorensen, The Visualization Toolkit, 4th edn. (Kitware, New York, 2006)Google Scholar
  51. 51.
    IGSTK, The Image Guided Surgery Toolkit (2018).
  52. 52.
    J.F. Oliveira, J.L. Moyano-Cuevas, J.B. Pagador, H. Capote, F.M. Sánchez-Margallo, Preoperative and intraoperative spatial reasoning support with 3D organ and vascular models: derived from CT data using VTK and IGSTK. Int. J. Creat. Interfaces Comput. Graph. 6(2), 56–82 (2015). ISSN: 1947-3117CrossRefGoogle Scholar
  53. 53.
    D. Eberly, Triangulation by Ear Clipping (2008).
  54. 54.
    O.S. Pianykh, Digital Imaging and Communications in Medicine (DICOM) A Practical Introduction and Survival Guide, 2nd edn. (Springer, Heidelberg, 2012). ISBN: 978-3-642-10849-5Google Scholar
  55. 55.
  56. 56.
    B. Braden, The surveyor’s area formula. Coll. Math. J. 17(4), 326–337 (1986)CrossRefGoogle Scholar
  57. 57.
    A. Gueziec, Surface simplification inside a tolerance volume. Technical Report, Yorktown Heights, NY 10598, March 1996. IBM Research Report RC 20440 (1996)Google Scholar
  58. 58.
    J.F. Oliveira, M. Ziebart, J. Iliffe, J. Turner, S. Robson, Trixel Buffer Logic for I/O bound point in N-polygon inclusion tests of massive bathymetric data. J. WSCG 21(1), 79–88 (2013). ISSN: 1213-6972Google Scholar
  59. 59.
    J.F. Oliveira, Surface vs volume based reconstruction of bone tissue using CAS_Annotate and CAS_Navigate. J. Biomed. Eng. Med. Imaging., ISSN: 2055-1266 4(5), 19–26 (2017). CrossRefGoogle Scholar
  60. 60.
    Stanford University, The Stanford 3D Scanning Repository (2018). Last accessed 20 Jan 2018
  61. 61.
    P.R.G. Bak, A.J.B. Mill, in Three Dimensional Applications in Geographical Information Systems, ed. by J. Raper. Three Dimensional Representation in a Geoscientific Resource Management System for the Minerals Industry (Taylor & Francis, Inc., Bristol, PA, 1989), p. 162Google Scholar
  62. 62.
    C.T. Yeo, A. MacDonald, T. Ungi, A. Lasso, D. Jalink, B. Zevin, G. Fichtinger, S. Nanji, Utility of 3D reconstruction of 2D liver computed tomography/magnetic resonance images as a surgical planning tool for residents in liver resection surgery. J. Surg. Educ. (2017).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • João Fradinho Oliveira
    • 1
    Email author
  • José Blas Pagador
    • 2
  • José Luis Moyano-Cuevas
    • 2
  • Francisco Miguel Sánchez-Margallo
    • 3
  • Hugo Capote
    • 4
  1. 1.C3i + CIAUDInstituto Politécnico de Portalegre + Universidade de LisboaLisboaPortugal
  2. 2.Bioengineering and Health Technology UnitJesús Usón Minimally Invasive Surgery CenterCáceresSpain
  3. 3.Jesús Usón Minimally Invasive Surgery CenterCáceresSpain
  4. 4.Hospital Dr. José Maria GrandePortalegrePortugal

Personalised recommendations