Advertisement

Digital Breast Tomosynthesis: Systems, Characterization and Simulation

  • Anastasios Konstantinidis
  • Selina Kolokytha
  • Andria Hadjipanteli
Chapter

Abstract

Digital breast tomosynthesis (DBT) is an advanced imaging application for breast cancer detection, which makes use of a number of 2D X-ray projection images over a limited angular range to reconstruct quasi 3D reconstruction images. As such, first an introduction to digital X-ray tomosynthesis is given, after which existing limited angle tomosynthesis methods are presented. In the next section DBT geometry and its development to date is discussed. Details are given on geometries currently available from different manufacturers, and recent advances. Part of this section presents the available relevant reconstruction methods. Next, we look into the DBT detectors and their performance evaluation. Current DBT detectors are based on amorphous silicon (a-Si) and amorphous selenium (a-Se) thin film transistor (TFT) technology. However, complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) digital X-ray detectors have the potential to replace a-Si:H TFT detectors in DBT in the near future, due to a smaller pixel pitch, low electronic noise, faster frame rate and negligible image lag. The performance of current DBT detectors is evaluated mainly by: automatic exposure control performance, response function, noise analysis, detector element failure, and system projection modulation transfer function (MTF). Following this we discuss image quality measurements, because they are essential for the evaluation and optimization of DBT systems. They should represent relevant clinical tasks, such as the detection of microcalcifications and masses in mammographic backgrounds. Currently the CDMAM phantom is used for contrast-detail analysis (i.e., the required threshold contrast to detect discs of various diameters) of the reconstructed images. The TOR MAM phantom can also be used to score the visualization of discs, filaments and specks for various contrast levels. The parameter Z-resolution is used to assess the inter-plane spread of reconstruction artifacts associated with 1 mm diameter aluminum spheres (contained in a specific three-dimensional phantom). Furthermore, the system MTF in the xy plane is used to take into account all sources of blurring in the DBT system: detector MTF, additional sources of unsharpness and the reconstruction algorithm. The final part of the chapter describes image simulation methods for DBT optimization. Briefly, DBT is currently under consideration for its use in breast cancer screening in Europe, in combination with 2D mammography or alone. Several parameters (such as image acquisition parameters, detector response, system geometry, radiation dose, and image processing and reconstruction algorithms) are studied for their effect on image quality and the investigation of the optimum use of DBT. Traditionally, large clinical trials are required to evaluate these parameters over a large number of women. Such trials are time consuming, expensive and require irradiating asymptomatic women. Alternatively, several research groups use virtual clinical trials (based on image simulation methods) to optimize DBT parameters in fast, radiation-free, and cost-effective ways. This part of the chapter reviews several simulation methods in DBT and the applications in evaluating its effectiveness.

Keywords

Digital breast tomosynthesis Breast cancer detection Image quality DBT detectors DBT performance Image simulation 

References

  1. 1.
    D.G. Grant, Tomosynthesis: a three dimensional radiographic imaging technique. IEEE Trans. Biomed. Eng. BME-19, 20–28 (1972)CrossRefGoogle Scholar
  2. 2.
    A. Tingberg, X-ray tomosyntesis: a review of its use for breast and chest imaging. Radiat. Prot. Dosimetry 139(1–3), 100–107 (2010)PubMedCrossRefGoogle Scholar
  3. 3.
    B.G. Ziedses des Plantes, Eine neue methode zur differenzierung in der roentgenographie (planigraphie). Acta Radiol. 13, 182–192 (1932)CrossRefGoogle Scholar
  4. 4.
    T. Dobbins III, D.J. Godfrey, Digital X-ray tomosynthesis: current state of the art and clinical potential. Phys. Med. Biol. 48, R65–R106 (2003)PubMedCrossRefGoogle Scholar
  5. 5.
    J.B. Garrison, D.G. Grant, W.H. Guier, R.J. Johns, Three dimensional roentgenography. Am. J. Roentgenol. 105, 903–908 (1969)CrossRefGoogle Scholar
  6. 6.
    E.R. Miller, E.M. McCurry, B. Hruska, An infinite number of laminagrams from a finite number of radiographs. Radiology 98, 249–255 (1971)PubMedCrossRefGoogle Scholar
  7. 7.
    N.A. Baily, R.L. Crepeau, E.C. Lasser, Fluoroscopic tomography. Investig. Radiol. 9, 94–103 (1974)CrossRefGoogle Scholar
  8. 8.
    N.A. Baily, R.A. Keller, C.V. Jakowatz, A.C. Kak, The capability of fluoroscopic systems for the production of computerized axial tomograms. Investig. Radiol. 11, 434–439 (1976)CrossRefGoogle Scholar
  9. 9.
    N.A. Baily, T.D. Kampp, Digitized longitudinal tomography. Investig. Radiol. 16, 126–132 (1981)CrossRefGoogle Scholar
  10. 10.
    Z. Kolitsi, G. Panayiotakis, V. Anastassopoulos, A. Scodras, N. Pallikarakis, A multiple projection method for digital tomosynthesis. Med. Phys. 19, 1045–1050 (1992)PubMedCrossRefGoogle Scholar
  11. 11.
    M.J. Yaffe, J.G. Mainprize, Digital tomosynthesis: technique. Radiol. Clin. North Am. 52, 489–497 (2014)PubMedCrossRefGoogle Scholar
  12. 12.
    S. Destounis, J.L. Gruttadauria, An overview of digital breast tomosynthesis. J. Radiol. Nurs. 34, 131–136 (2015)CrossRefGoogle Scholar
  13. 13.
    L.T. Niklason, B.T. Christian, L.E. Niklason, D.B. Kopans, D.E. Castleberry, B.H. Opsahl-Ong, C.E. Landberg, P.J. Slanetz, A.A. Giardino, R. Moore, D. Albagli, M.C. DeJule, P.F. Fitzgerald, D.F. Fobare, B.W. Giambattista, R.F. Kwasnick, J.Q. Liu, S.J. Lubowski, G.E. Possin, J.F. Richotte, C.Y. Wei, R.F. Wirth, Digital tomosynthesis in breast imaging. Radiology 205, 399–406 (1997)PubMedCrossRefGoogle Scholar
  14. 14.
    E. Shaheen, N. Marshall, H. Bosmans, Investigation of the effect of tube motion in breast tomosynthesis: continuous or step and shoot? Proc. SPIE 7961, 79611E (2011) CrossRefGoogle Scholar
  15. 15.
    X. Qian, R. Rajaram, X. Calderon-Colon, G. Yang, T. Phan, D.S. Lalush, J. Lu, O. Zhou, Design and characterization of a spatially distributed multibeam field emission X-ray source for stationary digital breast tomosynthesis. Med. Phys. 36, 4389–4399 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    I. Sechopoulos, A review of breast tomosynthesis. Part I. The image acquisition process. Med. Phys. 40, 014301-1–014301-12 (2013)Google Scholar
  17. 17.
    I. Sechopoulos, A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications. Med. Phys. 40, 014302-1–014302-7 (2013)Google Scholar
  18. 18.
    T. Mertelmeier, J. Orman, W. Haerer, M.K. Dudam, Optimizing filtered backprojection reconstruction for a breast tomosynthesis prototype device. Proc. SPIE 6142, 61420F (2006)CrossRefGoogle Scholar
  19. 19.
    J. Orman, T. Mertelmeier, W. Haerer, Adaptation of image quality using various filter setups in the filtered backprojection approach for digital breast tomosynthesis. Proc. IWDM, 175–182 (2006)Google Scholar
  20. 20.
    Y. Zhang, H.P. Chan, B. Sahiner, J. Wei, M.M. Goodsitt, L.M. Hadjiiski, J. Ge, C. Zhou, Tomosynthesis reconstruction using the simultaneous algebraic reconstruction technique (SART) on breast phantom data. Proc. SPIE 6142, 614249 (2006)CrossRefGoogle Scholar
  21. 21.
    Y. Chen, J.Y. Lo, J.T. Dobbins III, Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: relevance to morphology of structures such as microcalcifications. Med. Phys. 34, 3885–3892 (2007)PubMedCrossRefGoogle Scholar
  22. 22.
    T. Wu, A. Stewart, M. Stanton, T. McCauley, W. Phillips, D.B. Kopans, R.H. Moore, J.W. Eberhard, B. Opsahl-Ong, L. Niklason, M.B. Williams, Tomographic mammography using a limited number of low-dose cone-beam projection images. Med. Phys. 30, 365–380 (2003)PubMedCrossRefGoogle Scholar
  23. 23.
    R.E. van Engen, H. Bosmans, R. Bouwman, D.R. Dance, P. Heid, B. Lazzari, N.W. Marshall, S. Schopphoven, C. Strudley, M.A.O. Thijssen, K.C. Young, Protocol for the Quality Control of the Physical and Technical Aspects of Digital Breast Tomosynthesis Systems, Version 1.01, EUREF (2016)Google Scholar
  24. 24.
    T.M. Svahn, N. Houssami, I. Sechopoulos, S. Mattsson, Review of radiation dose estimates in digital breast tomosynthesis relative to those in two-view full-field digital mammography. Breast 24, 93–99 (2015)PubMedCrossRefGoogle Scholar
  25. 25.
    D.R. Dance, K.C. Young, R.E. Engen, Estimation of mean glandular dose for breast tomosynthesis: factors for use with the UK, European and IAEA breast dosimetry protocols. Phys. Med. Biol. 56, 453–472 (2011)PubMedCrossRefGoogle Scholar
  26. 26.
    A. Maldera, P. De Marco, P.E. Colombo, D. Origgi, A. Torresin, Digital breast tomosynthesis: dose and image quality assessment. Phys. Med. 33, 56–67 (2017)PubMedCrossRefGoogle Scholar
  27. 27.
    R.E. van Engen, K.C. Young, H. Bosmans, M.A.O. Thijssen, European Protocol for the Quality Control of the Physical and Technical Aspects of Mammography Screening. Part B: Digital Mammography in European Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis, 4th edn. (European Commission, Luxembourg, 2006), pp. 105–165Google Scholar
  28. 28.
    A.C. Konstantinidis, in X-Ray and Ultrasound Imaging. Chapter 2.2: Physical Parameters of Image Quality in Comprehensive Biomedical Physics, vol 2 (Elsevier, Amsterdam, The Netherlands, 2014), pp. 49–62Google Scholar
  29. 29.
    E. Samei, Performance of digital radiography detectors: factors affecting sharpness and noise. Proc. RSNA 49, 61 (2003)Google Scholar
  30. 30.
    B. Zhao, W. Zhao, Imaging performance of an amorphous selenium digital mammography detector in a breast tomosynthesis system. Med. Phys. 35, 1978–1987 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    S. Naday, E.F. Bullard, S. Gunn, J.E. Brodrick, E.O. O’Tuairisg, A. McArthur, H. Amin, M.B. Williams, P.G. Judy, A. Konstantinidis, Optimised breast tomosynthesis with a novel CMOS flat panel detector. Proc. IWDM 428, 435 (2010)Google Scholar
  32. 32.
    J.G. Choi, H.S. Park, Y. Kim, Y.W. Choi, T.H. Ham, H.J. Kim, Characterization of prototype full-field breast tomosynthesis by using a CMOS array coupled with a columnar CsI(Tl) scintillator. J. Korean Phys. Soc. 60, 521–526 (2012)CrossRefGoogle Scholar
  33. 33.
    T. Patel, K. Klanian, Z. Gong, M.B. Williams, Detective quantum efficiency of a CsI-CMOS X-ray detector for breast tomosynthesis operating in high dynamic range and high sensitivity modes. Proc. IWDM, 80–87 (2012)Google Scholar
  34. 34.
    C. Zhao, J. Kanicki, A.C. Konstantinidis, T. Patel, Large area CMOS active pixel sensor X-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization. Med. Phys. 42, 6294–6308 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    C. Zhao, A.C. Konstantinidis, Y. Zheng, T. Anaxagoras, R.D. Speller, J. Kanicki, 50 μm pixel pitch wafer-scale CMOS active pixel sensor X-ray detector for digital breast tomosynthesis. Phys. Med. Biol. 60, 8977–9001 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    C. Zhao, N. Vassiljev, A. Konstantinidis, R. Speller, J. Kanicki, Three-dimensional cascaded system analysis of a 50 μm pixel pitch wafer-scale CMOS active pixel sensor X-ray detector for digital breast tomosynthesis. Phys. Med. Biol. 62, 1994–2017 (2017)PubMedCrossRefGoogle Scholar
  37. 37.
    I.M. Peters, C. Smit, J.J. Miller, A. Lomako, High dynamic range CMOS-based mammography detector for FFDM and DBT. SPIE Med. Imag. Int. Soc. Opt. Photon. 9783, 978316 (2016)Google Scholar
  38. 38.
    G. Zentai, in Comparison of CMOS and a-Si Flat Panel Imagers for X-Ray Imaging. 2011 IEEE Int. Conf. Imaging Syst. Tech. IST 2011 – Proc. (2011), pp. 194–200Google Scholar
  39. 39.
    A.C. Konstantinidis, M.B. Szafraniec, L. Rigon, G. Tromba, D. Dreossi, N. Sodini, P.F. Liaparinos, S. Naday, S. Gunn, A. McArthur, R.D. Speller, A. Olivo, X-ray performance evaluation of the Dexela CMOS APS X-ray detector using monochromatic synchrotron radiation in the mammographic energy range. IEEE Trans. Nucl. Sci. 60, 3969–3980 (2013)CrossRefGoogle Scholar
  40. 40.
    M. Esposito, T. Anaxagoras, A.C. Konstantinidis, Y. Zheng, R.D. Speller, P.M. Evans, N.M. Allinson, K. Wells, Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging. Phys. Med. Biol. 59, 3533–3554 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    H.S. Park, Y.S. Kim, H.J. Kim, Y.W. Choi, J.G. Choi, Optimization of configuration parameters in a newly developed digital breast tomosynthesis system. J. Radiat. Res. 55, 589–599 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Y.S. Kim, H.S. Park, S.J. Park, S. Choi, H. Lee, D. Lee, Y.W. Choi, H.J. Kim, Characterizing X-ray detectors for prototype digital breast tomosynthesis systems. J. Instrum. 11, P03022 (2016)CrossRefGoogle Scholar
  43. 43.
    R.E. van Engen, H. Bosmans, R. Bouwman, D.R. Dance, P. Heid, B. Lazzari, N.W. Marshall, S. Schopphoven, C. Strudley, M.A.O. Thijssen, K.C. Young, A European Protocol for technical quality control of breast tomosynthesis systems. Proc. IWDM 8539, 452–459 (2014)Google Scholar
  44. 44.
    C.J. Strudley, K.C. Young, P. Looney, F. Gilber, Development and experience of quality control methods for digital breast tomosynthesis systems. Br. J. Radiol. 88, 1–11 (2015)CrossRefGoogle Scholar
  45. 45.
    NHSBSP Equipment Report 1407, Routine Quality Control Tests for Breast Tomosynthesis (Physicists) (Public Health England, London, 2015)Google Scholar
  46. 46.
    R.E. van Engen, K.C. Young, H. Bosmans, B. Lazzari, S. Schopphoven, P. Heid, M.A. Thijssen, A supplement to the European guidelines for quality assurance in breast cancer screening and diagnosis. Proc. IWDM 6136, 643–650 (2010)Google Scholar
  47. 47.
    P. Monnin, H. Bosmans, F.R. Verdun, N.W. Marshall, Comparison of the polynomial model against explicit measurements of noise components for different mammography systems. Phys. Med. Biol. 59, 5741–5761 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    E. Samei, M.J. Flynn, An experimental comparison of detector performance for computed radiography systems. Med. Phys. 29, 447–459 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    IEC 62220-1-1, Medical Electrical Equipment – Characteristics of Digital X-Ray Imaging Devices – Part 1-1: Determination of the Detective Quantum Efficiency – Detectors Used in Radiographic Imaging (International Electrotechnical Commission (IEC), Geneva, Switzerland, 2015)Google Scholar
  50. 50.
    C. Michail, I. Valais, N. Martini, V. Koukou, N. Kalyvas, A. Bakas, I. Kandarakis, G. Fountos, Determination of the detective quantum efficiency (DQE) of CMOS/CsI imaging detectors following the novel IEC 62220-1-1:2015 International Standard. Rad. Meas. 94, 8–17 (2016)CrossRefGoogle Scholar
  51. 51.
    IEC 61223-3-6 Ed.1.0 (draft), Evaluation and Routine Testing in Medical Imaging Departments. Part 3-6: Acceptance and Constancy Tests – Imaging Performance of Mammographic Tomosynthesis Mode of Operation of Mammographic X-Ray Equipment (International Electrotechnical Commission (IEC), Geneva, Switzerland)Google Scholar
  52. 52.
    G.J. Gang, D.J. Tward, J. Lee, J.H. Siewerdsen, Anatomical background and generalized detectability in tomosynthesis and cone-beam CT. Med. Phys. 37, 1948–1965 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    S. Park, R. Jennings, H. Liu, A. Badano, K. Myers, A statistical, task-based evaluation method for three-dimensional X-ray breast imaging systems using variable-background phantoms. Med. Phys. 37, 6253–6270 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    A.K. Carton, P. Bakic, C. Ullberg, H. Derand, A.D.A. Maidment, Development of a physical 3D anthropomorphic breast phantom. Med. Phys. 38, 891–896 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    N.D. Prionas, G.W. Burkett, S.E. McKenney, L. Chen, L.L. Chenstern, J.M. Boone, Development of a patient-specific two-compartment anthropomorphic breast phantom. Phys. Med. Biol. 4293, 4293–4307 (2012)CrossRefGoogle Scholar
  56. 56.
    N. Kiarashi, G.M. Sturgeon, L.W. Nolte, J.Y. Lo, J.T. Dobbins, W.P. Segars, E. Samei, Development of matched virtual and physical breast phantoms based on patient data. Proc. SPIE 8668, 866805-1–866805-6 (2013)Google Scholar
  57. 57.
    L. Cockmartin, N.W. Marshall, G. Zhang, K. Lemmens, E. Shaheen, C. Van Ongeval, E. Fredenberg, D.R. Dance, E. Salvagnini, K. Michielsen, H. Bosmans, Design and application of a structured phantom for detection performance comparison between breast tomosynthesis and digital mammography. Phys. Med. Biol. 62, 758–780 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    V. Koukou, N. Martini, G. Fountos, C. Michail, P. Sotiropoulou, A. Bakas, N. Kalyvas, I. Kandarakis, R. Speller, G. Nikiforidis, Dual energy subtraction method for breast calcification imaging. Nucl. Instr. Methods Phys. Res. A 848, 31–38 (2017)CrossRefGoogle Scholar
  59. 59.
    J. Jacobs, N. Marshall, L. Cockmartin, F. Zanca, R. van Engen, K. Young, H. Bosmans, E. Samei, Towards an international consensus strategy for periodic quality control of digital breast tomosynthesis systems. Proc. SPIE 7622, 76220G (2010)CrossRefGoogle Scholar
  60. 60.
    A. Jannetta, J.C. Jackson, C.J. Kotre, I.P. Birch, K.J. Robson, R. Padgett, Mammographic image restoration using maximum entropy deconvolution. Phys. Med. Biol. 49, 4997–5010 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    R. Visser, N. Karssemeijer, Manual CDCOM Version 1.5.2: Software for Automated Readout of CDMAM 3.4 Images (2008)Google Scholar
  62. 62.
    K.C. Young, J.J.H. Cook, J.M. Oduko, H. Bosmans, Comparison of software and human observers in reading images of the CDMAM test object to assess digital mammography systems. Proc. SPIE 6142, 14206 (2006)Google Scholar
  63. 63.
    A.R. Cowen, D.S. Brettle, N.J. Coleman, G.J.S. Parkin, A preliminary investigation of the imaging performance of photostimulable phosphor computed radiography using a new design of mammographic quality control test object. Br. J. Radiol. 65, 528–535 (1992)PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Y.H. Hu, B. Zhao, W. Zhao, Image artifacts in digital breast tomosynthesis: investigation of the effects of system geometry and reconstruction parameters using a linear system approach. Med. Phys. 35, 5242–5252 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    R.W. Bouwman, R. Visser, K.C. Young, D.R. Dance, B. Lazzari, R. van der Burght, P. Heid, R.E. van Engen, Daily quality control for breast tomosynthesis. Proc. SPIE 7622, 762241 (2010)CrossRefGoogle Scholar
  66. 66.
    T. Wu, R.H. Moore, E.A. Rafferty, D.B. Kopans, A comparison of reconstruction algorithms for breast tomosynthesis. Med. Phys. 31, 2636–2647 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    I.A. Cunningham, in Physics and Psychophysics. Applied Linear-Systems Theory in Handbook of Medical Imaging, vol 1 (SPIE Press, Bellingham, Washington, 2000), pp. 79–159Google Scholar
  68. 68.
    M.L. Spangler, M.L. Zuley, J.H. Smukin, G. Abrams, M.A. Ganott, C. Hakim, D.M. Chough, R. Shah, D. Gur, Detection and classification of calcifications on digital breast tomosynthesis and 2D digital mammography: a comparison Am. AJR Am. J. Roentgenol. 196, 320–324 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    D. Kopans, S. Gavenonis, E. Halpern, R. Moore, Calcifications in the breast and digital breast tomosynthesis. Breast J. 17, 638–644 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    J.G. Mainprize, A.K. Bloomquist, M.P. Kempston, M.J. Yaffe, Resolution at oblique incidence angles of a flat panel imager for breast tomosynthesis. Med. Phys. 33, 3159–3164 (2006)PubMedCrossRefGoogle Scholar
  71. 71.
    I. Reiser, R.M. Nishikawa, Task-based assessment of breast tomosynthesis: effect of acquisition parameters and quantum noise. Med. Phys. 4, 1591–1600 (2010)CrossRefGoogle Scholar
  72. 72.
    I. Sechopoulos, C. Ghetti, Optimization of the acquisition geometry in digital tomosynthesis of the breast. Med. Phys. 36, 1199–1207 (2009)PubMedCrossRefGoogle Scholar
  73. 73.
    E. Samei, R.S. Saunders, J.A. Baker, D.M. Delong, Digital mammography: effects of reduced radiation dose on diagnostic performance. Radiology 243, 396–404 (2007)PubMedCrossRefGoogle Scholar
  74. 74.
    L.M. Warren, A. Mackenzie, J. Cooke, R.M. Given-Wilson, M.G. Wallis, D.P. Chakraborty, D.R. Dance, H. Bosmans, K.C. Young, Effect of image quality on calcification detection in digital mammography. Med. Phys. 39, 3202–3213 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    P. Timberg, M. Dustler, H. Petersson, A. Tingberg, S. Zackrisson, Detection of calcification clusters in digital breast tomosynthesis slices at different dose levels utilizing a SRSAR reconstruction and JAFROC. Proc. SPIE 9416, 941604 (2015)CrossRefGoogle Scholar
  76. 76.
    A. Hadjipanteli, P. Elangovan, A. Mackenzie, P.T. Looney, K. Wells, D.R. Dance, K.C. Young, The effect of system geometry and dose on the threshold detectable calcification diameter in 2D-mammography and digital breast tomosynthesis. Phys. Med. Biol. 62, 858–877 (2017)PubMedCrossRefGoogle Scholar
  77. 77.
    L.M. Warren, L. Dummott, M.G. Wallis, R.M. Given-Wilson, J. Cooke, D.R. Dance, K.C. Young, Characterisation of screen detected and simulated calcification clusters in digital mammography. Proc. IWDM 8539, 364–371 (2014)Google Scholar
  78. 78.
    P.R. Bakic, K.J. Myers, S.J. Glick, A.D.A. Maidment, Virtual tools for the evaluation of breast imaging: state-of-the science and future directions. Proc. IWDM 9699, 518–524 (2016)Google Scholar
  79. 79.
    H.P. Chan, M.M. Goodsitt, M.A. Helvie, S. Zelaklewich, A. Schmitz, M. Noroozian, C. Paramagul, A.R. Marilyn, A.V. Nees, H.N. Colleen, P. Carson, Y. Lu, L. Hadjiski, J. Wei, Digital breast tomosynthesis: observer performance of clustered microcalcification detection on breast phantom images acquired with an experimental system using variable scan angles, angular increments and number of projection views. Radiology 273, 675–685 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    M.M. Goodsitt, H.P. Chan, A. Schmitz, S. Zelaklewich, T. Santosh, L. Hadjiiski, K. Watcharotone, M.A. Helvie, C. Pramagul, C. Neal, E. Christodoulou, S.C. Larson, P.L. Carson, Digital breast tomosynthesis: studies of the effects of acquisition geometry on contrast-to-noise ratio and observer preference of low-contrast objects in breast phantom images. Phys. Med. Biol. 59, 5883–5902 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    A.S. Chawla, J.Y. Lo, J.A. Baker, E. Samei, Optimized image acquisition for breast tomosynthesis in projection and reconstruction space. Med. Phys. 36, 4859–4869 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    K. Bliznakova, A. Biznakov, V. Bravou, Z. Kolitsi, N. Pallikarakis, A three-dimensional breast software phantom for mammography simulation. Phys. Med. Biol. 48, 3699–3719 (2003)PubMedCrossRefGoogle Scholar
  83. 83.
    K. Bliznakova, S. Suryanarayanan, A. Karellas, N. Pallikarakis, Evaluation of an improved algorithm for producing realistic 3D breast software phantoms: application for mammography. Med. Phys. 37, 5604–5617 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    K. Bliznakova, I. Sechopoulos, I. Buliev, N. Pallikarakis, BreastSimulator: a software platform for breast X-ray imaging research. J. Biomed. Graph. Comput. 2, 1–14 (2012)Google Scholar
  85. 85.
    P.R. Bakic, C. Zhang, A.D.A. Madiment, Development and characterisation of an anthropomorphic breast software phantom based upon region-growing algorithm. Med. Phys. 38, 3165–3176 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    P. Elangovan, D.R. Dance, K.C. Young, K. Wells, Simulation of 3D synthetic breast blocks. Proc. SPIE 9783, 97832E (2016)Google Scholar
  87. 87.
    P. Elangovan, A. Mackenzie, D.R. Dance, K.C. Young, V. Cooke, L. Wilkinson, R.M. Given-Wilson, M.G. Wallis, K. Wells, Design and validation of realistic breast models for use in multiple alternative forced choice virtual clinical trials. Phys. Med. Biol. 62, 2778–2794 (2017)PubMedCrossRefGoogle Scholar
  88. 88.
    G.R. Hammerstein, D.W. Miller, D.R. White, M.E. Masterson, H.Q. Woodard, J.S. Laughlin, Absorbed radiation dose in mammography. Radiology 130, 485–491 (1979)PubMedCrossRefGoogle Scholar
  89. 89.
    ICRU, Report 46: Photon, Electron, Proton and Neutron Interaction Data for Body Tissues. Technical Report (International Commission on Radiation Units and Measurements, Bethesda, MD, 1992)Google Scholar
  90. 90.
    Z. Li, A. Desolneux, S. Muller, A.K. Carton, A novel 3D stochastic solid breast texture model for X-ray breast imaging. Proc. IWDM 9699, 660–667 (2016)Google Scholar
  91. 91.
    C.G. Graff, A new, open-source, multi-modality digital breast phantom. Proc. SPIE 9783, 9783091 (2016)Google Scholar
  92. 92.
    L.C. Ikejimba, C.G. Graff, S. Rosenthal, A. Badal, B. Ghammraoui, J.Y. Lo, S.J. Glick, A novel physical anthropomorphic breast phantom for 2D and 3D X-ray imaging. Med. Phys. 44, 407–416 (2017)PubMedCrossRefGoogle Scholar
  93. 93.
    A.W. Tucker, J. Lu, O. Zhou, Dependency of image quality on system configuration parameters in a stationary digital breast tomosynthesis system. Med. Phys. 40, 031917-1–031917-10 (2013)Google Scholar
  94. 94.
    E. Shaheen, C. Van Ongeval, F. Zanca, L. Cockmartin, N. Marshall, J. Jacobs, K.C. Young, D.R. Dance, H. Bosmans, The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis. Med. Phys. 38, 6659–6671 (2012)CrossRefGoogle Scholar
  95. 95.
    L.M. Warren, A. Mackenzie, D.R. Dance, K.C. Young, Comparison of the X-ray attenuation properties of breast calcifications, aluminium, hydroxyapatite and calcium oxalate. Phys. Med. Biol. 58, 104–113 (2013)Google Scholar
  96. 96.
    P. Elangovan, A. Hadjipanteli, A. Mackenzie, D.R. Dance, K.C. Young, K. Wells, OPTIMAM image simulation toolbox—recent developments and ongoing studies. Proc. IWDM, 668–675 (2016)Google Scholar
  97. 97.
    L. Cockmartin, N.W. Marshall, C. Van Ongeval, G. Aerts, D. Stalmans, F. Zanca, E. Shaheen, F. De Keyzer, D.R. Dance, K.C. Young, H. Bosmans, Comparison of digital breast tomosynthesis and 2D digital mammography using a hybrid performance test. Phys. Med. Biol. 60, 3939–3958 (2015)PubMedCrossRefGoogle Scholar
  98. 98.
    J. Zhou, B. Zhao, W. Zhao, A computer simulation platform for the optimization of a breast tomosynthesis system. Med. Phys. 34, 1098–1109 (2007)PubMedCrossRefGoogle Scholar
  99. 99.
    S. Young, P.R. Bakic, K.J. Myers, R.J. Jennings, S. Park, A virtual trial framework for quantifying the detectability of masses in breast tomosynthesis projection data. Med. Phys. 40, 51914 (2013)CrossRefGoogle Scholar
  100. 100.
    P. Elangovan, L.M. Warren, A. Mackenzie, A. Rashidnasab, O. Diaz, D.R. Dance, H. Bosmans, K.C. Young, K. Wells, Development and validation of a modelling framework for simulating 2D-mammography and breast tomosynthesis images. Phys. Med. Biol. 59, 4275–4293 (2014)PubMedCrossRefGoogle Scholar
  101. 101.
    R.L. Siddon, Fast calculation of the exact radiological path for a three-dimensional CT array. Med. Phys. 12, 252–255 (1985)PubMedCrossRefGoogle Scholar
  102. 102.
    B. De Man, S. Basu, Distance-driven projection and backprojection in three dimensions. Phys. Med. Biol. 49, 2463–2475 (2004)PubMedCrossRefGoogle Scholar
  103. 103.
    A. Mackenzie, N.W. Marshall, A. Hadjipanteli, D.R. Dance, H. Bosmans, K.C. Young, Characterisation of noise and sharpness of images from four digital breast tomosynthesis systems for simulation of images for virtual clinical trials. Phys. Med. Biol. 62, 2376–2397 (2017)PubMedCrossRefGoogle Scholar
  104. 104.
    J.M. Boone, T.R. Fewell, R.J. Jennings, Molybdenum, rhodium, and tungsten anode spectral models using interpolating polynomials with application to mammography. Med. Phys. 24, 1863–1874 (1997)PubMedCrossRefGoogle Scholar
  105. 105.
    D.R. Dance, C.L. Skinner, K.C. Young, J.R. Beckett, C.J. Kotre, Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol. Phys. Med. Biol. 45, 3225–3240 (2000)PubMedCrossRefGoogle Scholar
  106. 106.
    N. Marshall, J. Jacobs, L. Cockmartin, H. Bosmans, Technical evaluation of a digital breast tomosynthesis system. Proc. IWDM 6136, 350–356 (2010) Google Scholar
  107. 107.
    T. Olgar, T. Kahn, D. Gosch, Quantitative image quality measurements of a digital breast tomosynthesis system. Fortschr. Röntgenstrahlen 185, 1188–1194 (2013)CrossRefGoogle Scholar
  108. 108.
    A. Mackenzie, N. Marshall, D.R. Dance, H. Bosmans, K.C. Young, Characterisation of a breast tomosynthesis unit to simulate images. Proc. SPIE 8668, 86684R1–86684R8 (2013)CrossRefGoogle Scholar
  109. 109.
    A. Rodríguez-Ruiz, M. Castillo, J. Garayoa, M. Chevalier, Evaluation of the technical performance of three different commercial digital breast tomosynthesis systems in the clinical environment. Phys. Med. 32, 767–777 (2016)PubMedCrossRefGoogle Scholar
  110. 110.
    Public Health England (PHE), National Health Service Breast Screening Programme (NHSBSP), Breast Screening: Professional Guidance (2017). Available at https://www.gov.uk/government/collections/breast-screening-professional-guidance
  111. 111.
    A.E. Burgess, Comparison of receiver operating characteristic and forced choice observer performance measurement method. Med. Phys. 22, 643–655 (1995)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Anastasios Konstantinidis
    • 1
  • Selina Kolokytha
    • 2
  • Andria Hadjipanteli
    • 3
  1. 1.Diagnostic Radiology and Radiation Protection Service, Christie Medical Physics and EngineeringThe Christie NHS Foundation TrustManchesterUK
  2. 2.Empa, Centre for X-Ray AnalyticsSwiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland
  3. 3.Medical SchoolUniversity of CyprusNicosiaCyprus

Personalised recommendations